Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = terrestrial water storage (TWS) anomaly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7610 KiB  
Article
Spatiotemporal Responses of Global Vegetation Growth to Terrestrial Water Storage
by Chao Wang, Aoxue Cui, Renke Ji, Shuzhe Huang, Pengfei Li, Nengcheng Chen and Zhenfeng Shao
Remote Sens. 2025, 17(10), 1701; https://doi.org/10.3390/rs17101701 - 13 May 2025
Cited by 1 | Viewed by 526
Abstract
Global vegetation growth is dynamically influenced and regulated by hydrological processes. Understanding vegetation responses to terrestrial water storage (TWS) dynamics is crucial for predicting ecosystem resilience and guiding water resource management under climate change. This study investigated global vegetation responses to a terrestrial [...] Read more.
Global vegetation growth is dynamically influenced and regulated by hydrological processes. Understanding vegetation responses to terrestrial water storage (TWS) dynamics is crucial for predicting ecosystem resilience and guiding water resource management under climate change. This study investigated global vegetation responses to a terrestrial water storage anomaly (TWSA) using NDVI and TWSA datasets from January 2004 to December 2023. We proposed a Pearson-ACF time lag analysis method that combined dynamic windowing and enhanced accuracy to capture spatial correlations and temporal lag effects in vegetation responses to TWS changes. The results showed the following: (1) Positive NDVI-TWSA correlations were prominent in low-latitude tropical regions, whereas negative responses occurred mainly north of 30°N and in South American rainforest, covering 38.96% of the global vegetated land. (2) Response patterns varied by vegetation type: shrubland, grassland, and cropland exhibited short lags (1–4 months), while tree cover, herbaceous wetland, mangroves, and moss and lichen typically presented delayed responses (8–9 months). (3) Significant bidirectional Granger causality was identified in 16.39% of vegetated regions, mainly in eastern Asia, central North America, and central South America. These findings underscored the vital role of vegetation in the global water cycle, providing support for vegetation prediction, water resource planning, and adaptive water management in water-scarce regions. Full article
Show Figures

Figure 1

16 pages, 21540 KiB  
Article
Responses of Terrestrial Water Storage to Climate Change in the Closed Alpine Qaidam Basin
by Liang Chang, Qunhui Zhang, Xiaofan Gu, Rui Duan, Qian Wang and Xiangzhi You
Hydrology 2025, 12(5), 105; https://doi.org/10.3390/hydrology12050105 - 28 Apr 2025
Viewed by 610
Abstract
Terrestrial water storage (TWS) in the Qaidam Basin in western China is highly sensitive to climate change. The GRACE mascon products provide variations of TWS anomalies (TWSAs), greatly facilitating the exploration of water storage dynamics. However, the main meteorological factors affecting the TWSA [...] Read more.
Terrestrial water storage (TWS) in the Qaidam Basin in western China is highly sensitive to climate change. The GRACE mascon products provide variations of TWS anomalies (TWSAs), greatly facilitating the exploration of water storage dynamics. However, the main meteorological factors affecting the TWSA dynamics in this region need to be comprehensively investigated. In this study, variations in TWSAs over the Qaidam Basin from 2002 to 2024 were analyzed using three GRACE mascon products with CSR, JPL, and GSFC. The groundwater storage anomalies (GWAs) were extracted through GRACE and GLDAS products. The impact of meteorological elements on TWSAs and GWAs was identified. The results showed that the GRACE mascon products showed a significant increasing trend with a rate of 0.51 ± 0.13 mm per month in TWSAs across the entire basin from 2003 to 2016. The groundwater part accounted for the largest proportion and was the main contributor to the increase in TWS for the entire basin. In addition to the dominant role of precipitation, other meteorological elements, particularly air humidity and solar radiation, were also identified as important contributors to TWSA and GWA variations. This study highlighted the climatic effect on water storage variations, which have important implications for local water resource management and ecological conservation under ongoing climate change. Full article
(This article belongs to the Special Issue GRACE Observations for Global Groundwater Storage Analysis)
Show Figures

Figure 1

16 pages, 5925 KiB  
Article
Revealing Water Storage Changes and Ecological Water Conveyance Benefits in the Tarim River Basin over the Past 20 Years Based on GRACE/GRACE-FO
by Weicheng Sun and Xingfu Zhang
Remote Sens. 2024, 16(23), 4355; https://doi.org/10.3390/rs16234355 - 22 Nov 2024
Cited by 2 | Viewed by 1095
Abstract
As China’s largest inland river basin and one of the world’s most arid regions, the Tarim River Basin is home to an extremely fragile ecological environment. Therefore, monitoring the water storage changes is critical for enhancing water resources management and improving hydrological policies [...] Read more.
As China’s largest inland river basin and one of the world’s most arid regions, the Tarim River Basin is home to an extremely fragile ecological environment. Therefore, monitoring the water storage changes is critical for enhancing water resources management and improving hydrological policies to ensure sustainable development. This study reveals the spatiotemporal changes of water storage and its driving factors in the Tarim River Basin from 2002 to 2022, utilizing data from GRACE, GRACE-FO (GFO), GLDAS, the glacier model, and measured hydrological data. In addition, we validate GRACE/GFO data as a novel resource that can monitor the ecological water conveyance (EWC) benefits effectively in the lower reaches of the basin. The results reveal that (1) the northern Tarim River Basin has experienced a significant decline in terrestrial water storage (TWS), with an overall deficit that appears to have accelerated in recent years. From April 2002 to December 2009, the groundwater storage (GWS) anomaly accounted for 87.5% of the TWS anomaly, while from January 2010 to January 2020, the ice water storage (IWS) anomaly contributed 57.1% to the TWS anomaly. (2) The TWS changes in the Tarim River Basin are primarily attributed to the changes of GWS and IWS, and they have the highest correlation with precipitation and evapotranspiration, with grey relation analysis (GRA) coefficients of 0.74 and 0.68, respectively, while the human factors mainly affect GWS, with an average GRA coefficient of 0.64. (3) In assessing ecological water conveyance (EWC) benefits, the GRACE/GFO-derived TWS anomaly in the lower reaches of the Tarim River exhibits a good correspondence with the changes of EWC, NDVI, and groundwater levels. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Graphical abstract

23 pages, 7337 KiB  
Article
Remote Sensing-Based Multiscale Analysis of Total and Groundwater Storage Dynamics over Semi-Arid North African Basins
by Abdelhakim Amazirh, Youness Ouassanouan, Houssne Bouimouass, Mohamed Wassim Baba, El Houssaine Bouras, Abdellatif Rafik, Myriam Benkirane, Youssef Hajhouji, Youness Ablila and Abdelghani Chehbouni
Remote Sens. 2024, 16(19), 3698; https://doi.org/10.3390/rs16193698 - 4 Oct 2024
Cited by 4 | Viewed by 2297
Abstract
This study evaluates the use of remote sensing data to improve the understanding of groundwater resources in climate-sensitive regions with limited data availability and increasing agricultural water demands. The research focuses on estimating groundwater reserve dynamics in two major river basins in Morocco, [...] Read more.
This study evaluates the use of remote sensing data to improve the understanding of groundwater resources in climate-sensitive regions with limited data availability and increasing agricultural water demands. The research focuses on estimating groundwater reserve dynamics in two major river basins in Morocco, characterized by significant local variability. The study employs data from Gravity Recovery and Climate Experiment satellite (GRACE) and ERA5-Land reanalysis. Two GRACE terrestrial water storage (TWS) products, CSR Mascon and JPL Mascon (RL06), were analyzed, along with auxiliary datasets generated from ERA5-Land, including precipitation, evapotranspiration, and surface runoff. The results show that both GRACE TWS products exhibit strong correlations with groundwater reserves, with correlation coefficients reaching up to 0.96 in the Oum Er-rbia River Basin and 0.95 in the Tensift River Basin (TRB). The root mean square errors (RMSE) were 0.99 cm and 0.88 cm, respectively. GRACE-derived groundwater storage (GWS) demonstrated a moderate correlation with observed groundwater levels in OERRB (R = 0.59, RMSE = 0.82), but a weaker correlation in TRB (R = 0.30, RMSE = 1.01). On the other hand, ERA5-Land-derived GWS showed a stronger correlation with groundwater levels in OERRB (R = 0.72, RMSE = 0.51) and a moderate correlation in TRB (R = 0.63, RMSE = 0.59). The findings suggest that ERA5-Land may provide more accurate assessments of groundwater storage anomalies, particularly in regions with significant local-scale variability in land and water use. High-resolution datasets like ERA5-land are, therefore, more recommended for addressing local-scale heterogeneity in regions with contrasted complexities in groundwater storage characteristics. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

21 pages, 12973 KiB  
Article
The Extraction of Terrestrial Water Storage Anomaly from GRACE in the Region with Medium Scale and Adjacent Weak Signal Area: A Case for the Dnieper River Basin
by Tao Zhang, Shaofeng Bian, Bing Ji, Wanqiu Li, Jingwen Zong and Jiajia Yuan
Remote Sens. 2024, 16(12), 2124; https://doi.org/10.3390/rs16122124 - 12 Jun 2024
Cited by 2 | Viewed by 1316
Abstract
The accuracy of estimating changes in terrestrial water storage (TWS) using Gravity Recovery and Climate Experiment (GRACE) level-2 products is limited by the leakage effect resulting from post-processing and the weak signal magnitude in adjacent areas. The TWS anomaly from 2003 to 2016 [...] Read more.
The accuracy of estimating changes in terrestrial water storage (TWS) using Gravity Recovery and Climate Experiment (GRACE) level-2 products is limited by the leakage effect resulting from post-processing and the weak signal magnitude in adjacent areas. The TWS anomaly from 2003 to 2016 in the Dnieper River basin, with characteristics of medium scale and an adjacent weak TWS anomaly area, are estimated in this work. Two categories of leakage error repair approaches (including forward modeling, data-driven, single, and multiple scaling factor approaches) are employed. Root mean square error (RMSE) and Nash–Sutcliffe Efficiency (NSE) are used to evaluate the efficiency of approaches. The TWS anomaly inverted by the forward modeling approach (FM) is more accurate in terms of RMSE 3.04 and NSE 0.796. We compared single and multiple scaling approaches for the TWS anomaly and found that leakage signals mostly come from semi-annual terms. From the recovered results demonstrated in the spatial domain, the South of Dnieper River basin is more sensitive to the leakage effect because of it is adjacent to a weak hydrological signal region near the Black Sea. Further, comprehensive climate insights and physical mechanisms behind the TWS anomaly were confirmed. The temperate continental climate of this river basin is shown according to the variation in TWS anomaly in the spatial domain. Snowmelt plays a significant role in the TWS anomaly of the Dnieper River basin, following the precipitation record and the 14-year temperature spatial distribution for February. We compared single and multiple scaling approaches for the TWS anomaly and found that leakage signals mostly come from semi-annual terms. Full article
Show Figures

Figure 1

18 pages, 7108 KiB  
Article
Twenty-Year Spatiotemporal Variations of TWS over Mainland China Observed by GRACE and GRACE Follow-On Satellites
by Wei Chen, Yuhao Xiong, Min Zhong, Zihan Yang, C. K. Shum, Wenhao Li, Lei Liang and Quanguo Li
Atmosphere 2023, 14(12), 1717; https://doi.org/10.3390/atmos14121717 - 22 Nov 2023
Cited by 6 | Viewed by 2134
Abstract
Terrestrial water storage (TWS) is a pivotal component of the global water cycle, profoundly impacting water resource management, hazard monitoring, and agriculture production. The Gravity Recovery and Climate Experiment (GRACE) and its successor, the GRACE Follow-On (GFO), have furnished comprehensive monthly TWS data [...] Read more.
Terrestrial water storage (TWS) is a pivotal component of the global water cycle, profoundly impacting water resource management, hazard monitoring, and agriculture production. The Gravity Recovery and Climate Experiment (GRACE) and its successor, the GRACE Follow-On (GFO), have furnished comprehensive monthly TWS data since April 2002. However, there are 35 months of missing data over the entire GRACE/GFO observational period. To address this gap, we developed an operational approach utilizing singular spectrum analysis and principal component analysis (SSA-PCA) to fill these missing data over mainland China. The algorithm was demonstrated with good performance in the Southwestern River Basin (SWB, correlation coefficient, CC: 0.71, RMSE: 6.27 cm), Yangtze River Basin (YTB, CC: 0.67, RMSE: 3.52 cm), and Songhua River Basin (SRB, CC: 0.66, RMSE: 7.63 cm). Leveraging two decades of continuous time-variable gravity data, we investigated the spatiotemporal variations in TWS across ten major Chinese basins. According to the results of GRACE/GFO, mainland China experienced an average annual TWS decline of 0.32 ± 0.06 cm, with the groundwater storage (GWS) decreasing by 0.54 ± 0.10 cm/yr. The most significant GWS depletion occurred in the Haihe River Basin (HRB) at −2.07 ± 0.10 cm/yr, significantly substantial (~1 cm/yr) depletions occurred in the Yellow River Basin (YRB), SRB, Huaihe River Basin (HHB), Liao-Luan River Basin (LRB), and Southwest River Basin (SWB), and moderate losses were recorded in the Northwest Basin (NWB, −0.34 ± 0.03 cm/yr) and Southeast River Basin (SEB, −0.24 ± 0.10 cm/yr). Furthermore, we identified that interannual TWS variations in ten basins of China were primarily driven by soil moisture water storage (SMS) anomalies, exhibiting consistently and relatively high correlations (CC > 0.60) and low root-mean-square errors (RMSE < 5 cm). Lastly, through the integration of GRACE/GFO and Global Land Data Assimilation System (GLDAS) data, we unraveled the contrasting water storage patterns between northern and southern China. Southern China experienced drought conditions, while northern China faced flooding during the 2020–2023 La Niña event, with the inverse pattern observed during the 2014–2016 El Niño event. This study fills in the missing data and quantifies water storage variations within mainland China, contributing to a deeper insight into climate change and its consequences on water resource management. Full article
Show Figures

Figure 1

17 pages, 6694 KiB  
Article
The Influence of the South-to-North Water-Diversion Project on Terrestrial Water-Storage Changes in Hebei Province
by Tianxu Liu, Dasheng Zhang, Yanfeng Shi, Yi Li, Jianchong Sun and Xiuping Zhang
Water 2023, 15(17), 3112; https://doi.org/10.3390/w15173112 - 30 Aug 2023
Cited by 1 | Viewed by 2763
Abstract
The lack of water resources has emerged as a major factor limiting the high-quality economic and ecological development in Hebei Province. Therefore, it is of great significance to understand the dynamic changes in terrestrial water storage for effectively managing water resources in Hebei [...] Read more.
The lack of water resources has emerged as a major factor limiting the high-quality economic and ecological development in Hebei Province. Therefore, it is of great significance to understand the dynamic changes in terrestrial water storage for effectively managing water resources in Hebei Province. The evolution pattern and spatial distribution of TWS anomalies (TWSA) were analyzed utilizing gravity recovery and climate experiment (GRACE) solutions and the water balance method from 2003 to 2020, and the missing monthly data during GRACE and GRACE-FO missions were filled by combining the climate-driven model and meteorological products. Moreover, the impact of the south-to-north water-diversion (SNWD) project on alleviating the water-storage deficit was quantified. The results revealed that the water-balance method on the strength of the combination of CMA precipitation and Noahv2.1-simulated evapotranspiration and runoff data matches well with the TWSA data derived from GRACE, with a correlation coefficient up to 0.95. However, the accuracy was unsatisfactory during the process of characterizing the spatial characteristics of TWSA. After the SNWD project, GRACE-derived results showed that the downtrends of TWSA were reduced by 10.93%, especially in mountainous areas: by 79.78%. Concerning the spatial scale, the deficit trends were reduced to a certain extent in northern Hebei Province, while the decreasing trends cannot be reversed for a short time in southern areas where human activities are intensive. Full article
(This article belongs to the Special Issue Application of GRACE Observations in Water Cycle and Climate Change)
Show Figures

Figure 1

21 pages, 26871 KiB  
Article
Tracking Low-Frequency Variations in Land–Sea Water Mass Redistribution during the GRACE/GRACE-FO Era
by Shanshan Deng, Zhenlong Jian, Yuxin Liu, Chushun Yi, Yi Chen and Wenxi Zhang
Remote Sens. 2023, 15(17), 4248; https://doi.org/10.3390/rs15174248 - 29 Aug 2023
Cited by 2 | Viewed by 1999
Abstract
Climate change has caused a widespread deduction in terrestrial water storage (TWS), leading to ocean water mass gains and sea level rises. A better understanding of how the land–sea water mass has been redistributed can help with the scientific response to [...] Read more.
Climate change has caused a widespread deduction in terrestrial water storage (TWS), leading to ocean water mass gains and sea level rises. A better understanding of how the land–sea water mass has been redistributed can help with the scientific response to climate change. However, there are few studies investigating the roles of the different physical processes involved in low-frequency land–sea water mass redistribution on a global scale. To address this issue, in this study, a comprehensive investigation was carried out with respect to the globally distributed key factors causing low-frequency ocean mass anomalies during the period 2004–2021. Global water mass redistribution data, derived from GRACE/GRACE-FO satellite gravity and surface wind and sea-surface temperature data from ERA5 reanalysis, were employed, and the empirical orthogonal function, maximum covariance analysis, and sea-level equation approaches were used. The results show that the long-term trend and decadal-like fluctuation are two major components of the low-frequency land–sea water mass redistribution. The wind-forcing dynamic processes significantly drive the anomalies near the North Indian Ocean, North Atlantic Ocean, South Pacific Ocean, and some marginal seas, where variance explanations range from 30% to 97%. After removing the ocean dynamics, the residual ocean mass anomaly is mostly explained by sea-level fingerprints (SLFs), especially in the open ocean. The 25th, 50th, and 75th percentiles of the SLF-explained variances in all ocean grids are 59%, 72%, and 82%, respectively. Some non-negligible noise, located in seismic zones, was also found, suggesting the misestimation of seafloor deformation resulting from earthquakes in the GRACE/GRACE-FO data processing. These findings may improve our understanding of the long-term anomalies in regional and global sea levels. Full article
(This article belongs to the Special Issue Geophysical Applications of GOCE and GRACE Measurements)
Show Figures

Graphical abstract

20 pages, 4895 KiB  
Article
Simulation and Driving Factor Analysis of Satellite-Observed Terrestrial Water Storage Anomaly in the Pearl River Basin Using Deep Learning
by Haijun Huang, Guanbin Feng, Yeer Cao, Guanning Feng, Zhikai Dai, Peizhi Tian, Juncheng Wei and Xitian Cai
Remote Sens. 2023, 15(16), 3983; https://doi.org/10.3390/rs15163983 - 11 Aug 2023
Cited by 8 | Viewed by 2174
Abstract
Accurate estimation of terrestrial water storage (TWS) and understanding its driving factors are crucial for effective hydrological assessment and water resource management. The launches of the Gravity Recovery and Climate Experiment (GRACE) satellites and their successor, GRACE Follow-On (GRACE-FO), combined with deep learning [...] Read more.
Accurate estimation of terrestrial water storage (TWS) and understanding its driving factors are crucial for effective hydrological assessment and water resource management. The launches of the Gravity Recovery and Climate Experiment (GRACE) satellites and their successor, GRACE Follow-On (GRACE-FO), combined with deep learning algorithms, have opened new avenues for such investigations. In this study, we employed a long short-term memory (LSTM) neural network model to simulate TWS anomaly (TWSA) in the Pearl River Basin (PRB) from 2003 to 2020, using precipitation, temperature, runoff, evapotranspiration, and leaf area index (LAI) data. The performance of the LSTM model was rigorously evaluated, achieving a high average correlation coefficient (r) of 0.967 and an average Nash–Sutcliffe efficiency (NSE) coefficient of 0.912 on the testing set. To unravel the relative importance of each driving factor and assess the impact of different lead times, we employed the SHapley Additive exPlanations (SHAP) method. Our results revealed that precipitation exerted the most significant influence on TWSA in the PRB, with a one-month lead time exhibiting the greatest impact. Evapotranspiration, runoff, temperature, and LAI also played important roles, with interactive effects among these factors. Moreover, we observed an accumulation effect of precipitation and evapotranspiration on TWSA, particularly with shorter lead times. Overall, the SHAP method provides an alternative approach for the quantitative analysis of natural driving factors at the basin scale, shedding light on the natural dominant influences on TWSA in the PRB. The combination of satellite observations and deep learning techniques holds promise for advancing our understanding of TWS dynamics and enhancing water resource management strategies. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

20 pages, 5865 KiB  
Article
Dynamic Changes of Terrestrial Water Cycle Components over Central Asia in the Last Two Decades from 2003 to 2020
by Mirshakar Odinaev, Zengyun Hu, Xi Chen, Min Mao, Zhuo Zhang, Hao Zhang and Meijun Wang
Remote Sens. 2023, 15(13), 3318; https://doi.org/10.3390/rs15133318 - 28 Jun 2023
Cited by 4 | Viewed by 2022
Abstract
The terrestrial water cycle is important for the arid regions of central Asia (CA). In this study, the spatiotemporal variations in the three climate variables [temperature (TMP), precipitation (PRE), and potential evapotranspiration (PET)] and terrestrial water cycle components [soil moisture (SM), snow water [...] Read more.
The terrestrial water cycle is important for the arid regions of central Asia (CA). In this study, the spatiotemporal variations in the three climate variables [temperature (TMP), precipitation (PRE), and potential evapotranspiration (PET)] and terrestrial water cycle components [soil moisture (SM), snow water equivalent (SWE), runoff, terrestrial water storage (TWS), and groundwater storage (GWS)] of CA are comprehensively analyzed based on multiple datasets from 2003 to 2020. The major results are as follows: (1) Significant decreasing trends were observed for the TWS anomaly (TWSA) and GWS anomaly (GWSA) during 2003–2020, indicating serious water resource depletion. The annual linear trend values of TWSA and GWSA are −0.31 and −0.27 mm/a, respectively. The depletion centers are distributed over most areas of western and southern Kazakhstan (KAZ) and nearly all areas of Uzbekistan (UZB), Kyrgyzstan (KGZ), and Tajikistan (TJK). (2) TMP and PET have the largest significant negative impacts on SM and SWE. The PRE has a positive impact on terrestrial water variations. (3) During 1999–2019, water withdrawal did not significantly increase, whereas TWS showed a significant decreasing trend. Our results provide a comprehensive analysis of the basic TWS variation that plays a significant role in the water resource management of CA. Full article
Show Figures

Figure 1

17 pages, 5528 KiB  
Article
Applying Reconstructed Daily Water Storage and Modified Wetness Index to Flood Monitoring: A Case Study in the Yangtze River Basin
by Cuiyu Xiao, Yulong Zhong, Yunlong Wu, Hongbing Bai, Wanqiu Li, Dingcheng Wu, Changqing Wang and Baoming Tian
Remote Sens. 2023, 15(12), 3192; https://doi.org/10.3390/rs15123192 - 20 Jun 2023
Cited by 7 | Viewed by 2980
Abstract
The terrestrial water storage anomaly (TWSA) observed by the Gravity Recovery and Climate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provides a new means for monitoring floods. However, due to the coarse temporal resolution of GRACE/GRACE-FO, the understanding of flood occurrence [...] Read more.
The terrestrial water storage anomaly (TWSA) observed by the Gravity Recovery and Climate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provides a new means for monitoring floods. However, due to the coarse temporal resolution of GRACE/GRACE-FO, the understanding of flood occurrence mechanisms and the monitoring of short-term floods are limited. This study utilizes a statistical model to reconstruct daily TWS by combining monthly GRACE observations with daily temperature and precipitation data. The reconstructed daily TWSA is utilized to monitor the catastrophic flood event that occurred in the middle and lower reaches of the Yangtze River basin in 2020. Furthermore, the study compares the reconstructed daily TWSA with the vertical displacements of eight Global Navigation Satellite System (GNSS) stations at grid scale. A modified wetness index (MWI) and a normalized daily flood potential index (NDFPI) are introduced and compared with in situ daily streamflow to assess their potential for flood monitoring and early warning. The results show that terrestrial water storage (TWS) in the study area increases from early June, reaching a peak on 19 July, and then receding till September. The reconstructed TWSA better captures the changes in water storage on a daily scale compared to monthly GRACE data. The MWI and NDFPI based on the reconstructed daily TWSA both exceed the 90th percentile 7 days earlier than the in situ streamflow, demonstrating their potential for daily flood monitoring. Collectively, these findings suggest that the reconstructed TWSA can serve as an effective tool for flood monitoring and early warning. Full article
(This article belongs to the Special Issue GRACE for Earth System Mass Change: Monitoring and Measurement)
Show Figures

Figure 1

18 pages, 4805 KiB  
Article
Impacts of Water Resources Management on Land Water Storage in the Lower Lancang River Basin: Insights from Multi-Mission Earth Observations
by Xingxing Zhang
Remote Sens. 2023, 15(7), 1747; https://doi.org/10.3390/rs15071747 - 24 Mar 2023
Cited by 6 | Viewed by 2500
Abstract
Climate change and heavy reservoir regulation in the lower Lancang River basin (LLRB) have caused significant impacts on terrestrial water storage (TWS) in several ways, including changes in surface water storage (SWS), soil moisture storage (SMS), and groundwater storage (GWS). Understanding these impacts [...] Read more.
Climate change and heavy reservoir regulation in the lower Lancang River basin (LLRB) have caused significant impacts on terrestrial water storage (TWS) in several ways, including changes in surface water storage (SWS), soil moisture storage (SMS), and groundwater storage (GWS). Understanding these impacts is crucial for promoting comprehensive cooperation in managing and utilizing water resources within the basin. This study utilized multi-mission Earth observation (EO) datasets, i.e., gravimetry (GRACE/-FO), altimetry (Jason-2, Sentinel-3, and Cryosat-2), imagery (Sentinel-1/2), and microwave sensors (IMERG), as well as gauged meteorological, hydrological data and reanalysis products, to investigate the spatial-temporal variation of water resources in the LLRB. The study shows that the fluctuations in precipitation and the construction of reservoirs are the primary drivers of changes in the TWS anomaly (TWSA) in the region. Precipitation decreased significantly from 2010 to 2019 (−34.68 cm/yr), but the TWSA showed a significant increase (8.96 cm/yr) due to enhanced water storage capacity in the Xiaowan and Nuozhadu reservoirs. SWS and GWS were also analyzed, with SWS showing a decrease (−5.48 cm/yr) from 2010 to 2019 due to declining precipitation and increasing evaporation. GWS exhibited a steady rise (9.73 cm/yr) due to the maintenance of groundwater levels by the reservoirs. This study provides valuable insights into the potential of EO data for monitoring water resources at a regional scale. Full article
(This article belongs to the Special Issue Remote Sensing Approaches to Groundwater Management and Mapping)
Show Figures

Figure 1

20 pages, 52705 KiB  
Article
Inversion of Regional Groundwater Storage Changes Based on the Fusion of GNSS and GRACE Data: A Case Study of Shaanxi–Gansu–Ningxia
by Wanqiu Li, Chuanyin Zhang, Wei Wang, Jinyun Guo, Yingchun Shen, Zhiwei Wang, Jingxue Bi, Qiuying Guo, Yulong Zhong, Wei Li, Chengcheng Zhu and Pengfei Xu
Remote Sens. 2023, 15(2), 520; https://doi.org/10.3390/rs15020520 - 15 Jan 2023
Cited by 8 | Viewed by 3246
Abstract
This paper aims to address the limitations of the distribution number and uniformity of Continuously Operating Reference Stations (CORS) and their impact on the reliability of inverting regional groundwater storage (GWS) based on Green’s function method and using global navigation satellite system (GNSS) [...] Read more.
This paper aims to address the limitations of the distribution number and uniformity of Continuously Operating Reference Stations (CORS) and their impact on the reliability of inverting regional groundwater storage (GWS) based on Green’s function method and using global navigation satellite system (GNSS) data. A fusion method on the inversion of regional GWS changes from GNSS and the Gravity Recovery and Climate Experiment (GRACE) was proposed in this paper. Taking the Shaanxi–Gansu–Ningxia (SGN) region as an example, the in situ groundwater level data from ten CORS stations and eight wells were used for test analyses. In this paper, an atmospheric pressure model from the European Centre for Medium-Range Weather Forecasts (ECMWF), a global land data assimilation system (GLDAS), a WaterGAP global hydrology model (WGHM), and mean sea level anomaly (MSLA) data were used to quantitatively monitor the influence of vertical deformation caused by non-tidal environmental load. After deducing these loading deformations from the filtered time series of non-linear monthly geodetic height from the GNSS, the GWS changes in the SGN region from 2011 to 2014 were inverted. Meanwhile, the change in surface water storage from the GLDAS and WGHM models were removed from the terrestrial water storage (TWS) changes derived from GRACE. On this basis, the remove–restore theory in the Earth’s gravity field was introduced to both fuse the inversion results and obtain the regional GWS changes based on the fusion method. The results showed the following: (1) The local characteristics from the fusion results were more prominent than those of GRACE on the spatial scale, such as in the southwest and northeast in the study area. In addition, the fusion results were more uniform than those from GNSS, especially for the sparse and missing areas in which CORS stations were located, and the local effect was weakened. (2) On the time scale, compared with GRACE, the trends in GWS changes obtained from the fusion method and from GNSS inversion were roughly the same as the in situ groundwater level changes. (3) For the in situ groundwater wells “6105010031” and “6101260010”, the correlation coefficients of the fusion result were 0.53 and 0.56, respectively. The accuracy of the fusion method was slightly higher than that from GNSS, which indicates that the fusion method may be more effective for areas where CORS stations are missing or sparsely distributed. The methods in this paper can provide significant reference material for hydrodynamic research, sustainable management of water resources, and the dynamic maintenance of height data. Full article
(This article belongs to the Special Issue Remote Sensing in Space Geodesy and Cartography Methods)
Show Figures

Figure 1

12 pages, 17448 KiB  
Communication
Global Terrestrial Water Storage Reconstruction Using Cyclostationary Empirical Orthogonal Functions (1979–2020)
by Hrishikesh A. Chandanpurkar, Benjamin D. Hamlington and John T. Reager
Remote Sens. 2022, 14(22), 5677; https://doi.org/10.3390/rs14225677 - 10 Nov 2022
Cited by 4 | Viewed by 2175
Abstract
Terrestrial water storage (TWS) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) mission have been useful for several earth science applications, ranging from global earth system science studies to regional water management. However, the relatively short record of GRACE has limited [...] Read more.
Terrestrial water storage (TWS) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) mission have been useful for several earth science applications, ranging from global earth system science studies to regional water management. However, the relatively short record of GRACE has limited its use in understanding the climate-driven interannual-to-decadal variability in TWS. Targeting these timescales, we used the novel method of cyclostationary empirical orthogonal functions (CSEOFs) and the common modes of variability of TWS with precipitation and temperature to reconstruct the TWS record of 1979–2020. Using the same common modes of variability, we also provide a realistic, time-varying uncertainty estimate of the reconstructed TWS. The interannual variability in the resulting TWS record is consistent in space and time, and links the global variations in TWS to the regional ones. In particular, we highlight improvements in the representation of ENSO variability when compared to other available TWS reconstructions. Full article
(This article belongs to the Special Issue Remote Sensing of Water Cycle: Recent Developments and New Insights)
Show Figures

Figure 1

24 pages, 11916 KiB  
Article
Terrestrial Water Storage Dynamics: Different Roles of Climate Variability, Vegetation Change, and Human Activities across Climate Zones in China
by Shiyu Deng, Mingfang Zhang, Yiping Hou, Hongyun Wang, Enxu Yu and Yali Xu
Forests 2022, 13(10), 1541; https://doi.org/10.3390/f13101541 - 21 Sep 2022
Cited by 4 | Viewed by 2485
Abstract
Understanding terrestrial water storage (TWS) dynamics and associated drivers (e.g., climate variability, vegetation change, and human activities) across climate zones is essential for designing water resources management strategies in a changing environment. This study estimated TWS anomalies (TWSAs) based on the corrected Gravity [...] Read more.
Understanding terrestrial water storage (TWS) dynamics and associated drivers (e.g., climate variability, vegetation change, and human activities) across climate zones is essential for designing water resources management strategies in a changing environment. This study estimated TWS anomalies (TWSAs) based on the corrected Gravity Recovery and Climate Experiment (GRACE) gravity satellite data and derived driving factors for 214 watersheds across six climate zones in China. We evaluated the long-term trends and stationarities of TWSAs from 2004 to 2014 using the Mann–Kendall trend test and Augmented Dickey-Fuller stationarity test, respectively, and identified the key driving factors for TWSAs using the partial correlation analysis. The results indicated that increased TWSAs were observed in watersheds in tropical and subtropical climate zones, while decreased TWSAs were found in alpine and warm temperate watersheds. For tropical watersheds, increases in TWS were caused by increasing water conservation capacity as a result of large-scale plantations and the implementation of natural forest protection programs. For subtropical watersheds, TWS increments were driven by increasing precipitation and forestation. The decreasing tendency in TWS in warm temperate watersheds was related to intensive human activities. In the cold temperate zone, increased precipitation and soil moisture resulting from accelerated and advanced melting of frozen soils outweigh the above-ground evapotranspiration losses, which consequently led to the upward tendency in TWS in some watersheds (e.g., Xiaoxing’anling mountains). In the alpine climate zone, significant declines in TWS were caused by declined precipitation and soil moisture and increased evapotranspiration and glacier retreats due to global warming, as well as increased agriculture activities. These findings can provide critical scientific evidence and guidance for policymakers to design adaptive strategies and plans for watershed-scale water resources and forest management in different climate zones. Full article
(This article belongs to the Topic Remote Sensing in Water Resources Management Models)
Show Figures

Figure 1

Back to TopTop