Dynamic Changes of Terrestrial Water Cycle Components over Central Asia in the Last Two Decades from 2003 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
3. Results
3.1. Temporal and Spatial Characteristics of TMP, PRE, and PET
3.1.1. Temporal Characteristics of TMP, PRE, and PET
3.1.2. Spatial Characteristics of TMP, PRE, and PET
3.2. Temporal and Spatial Characteristics of SM and SWE
3.2.1. Temporal Characteristics of SM and SWE
3.2.2. Spatial Characteristics of SM and SWE
3.3. Temporal and Spatial Characteristics of Runoff
3.3.1. Temporal Characteristics of Runoff
3.3.2. Spatial Characteristics of Runoff
3.4. Temporal and Spatial Characteristics of TWSA
3.4.1. Temporal Characteristics of TWSA
3.4.2. Spatial Characteristics of TWSA
3.5. Temporal and Spatial Characteristics of GWSA
3.5.1. Temporal Characteristics of GWSA
3.5.2. Spatial Characteristics of GWSA
4. Discussion
4.1. Relationships between the Climate Variables and the Different Terrestrial Water Components
4.2. Water Resources and Water Withdrawal over Central Asia during 1999–2019
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Z.; Chen, X.; Zhou, Q.; Yin, G.; Liu, J. Dynamical variations of the terrestrial water cycle components and the influences of the climate factors over the Aral Sea Basin through multiple datasets. J. Hydrol. 2022, 604, 127270. [Google Scholar] [CrossRef]
- Chen, J.; Famigliett, J.S.; Scanlon, B.R.; Rodell, M. Groundwater storage changes: Present status from GRACE observations. In Remote Sensing and Water Resources. Space Sciences Series of ISSI; Springer: Cham, Switzerland, 2016; pp. 207–227. [Google Scholar]
- McColl, K.A.; Roderick, M.L.; Berg, A.; Scheff, J. The terrestrial water cycle in a warming world. Nat. Clim. Change 2022, 12, 604–606. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Yin, D.; Roderick, M.L. Inter-annual variability of the global terrestrial water cycle. Hydrol. Earth Syst. Sci. 2020, 24, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Huang, J.; Hu, Z.; Yin, G. Spatial-temporal changes to GRACE-derived terrestrial water storage in response to climate change in arid Northwest China. Hydrol. Sci. J. 2022, 67, 535–549. [Google Scholar] [CrossRef]
- Kåresdotter, E.; Destouni, G.; Ghajarnia, N.; Lammers, R.B.; Kalantari, Z. Distinguishing Direct Human-Driven Effects on the Global Terrestrial Water Cycle. Earth’s Future 2022, 10, e2022EF002848. [Google Scholar] [CrossRef]
- Rummler, T.; Arnault, J.; Gochis, D.; Kunstmann, H. Role of lateral terrestrial water flow on the regional water cycle in a complex terrain region: Investigation with a fully coupled model system. J. Geophys. Res. Atmos. 2019, 124, 507–529. [Google Scholar] [CrossRef]
- Lv, M.; Ma, Z.; Peng, S. Responses of terrestrial water cycle components to afforestation within and around the Yellow River basin. Atmos. Ocean. Sci. Lett. 2019, 12, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Harding, R.; Best, M.; Blyth, E.; Hagemann, S.; Kabat, P.; Tallaksen, L.M.; Warnaars, T.; Wiberg, D.; Weedon, G.P.; Lanen, H.V. WATCH: Current knowledge of the terrestrial global water cycle. J. Hydrometeorol. 2011, 12, 1149–1156. [Google Scholar] [CrossRef]
- Yang, W.; Yang, H.; Li, C.; Wang, T.; Liu, Z.; Hu, Q.; Yang, D. Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China. Hydrol. Earth Syst. Sci. 2022, 26, 6427–6441. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Li, Y.; Zhou, Q.; Yin, G. Temporal and Spatial variations of soil moisture over Xinjiang based on multiple GLDAS datasets. Front. Earth Sci. 2021, 9, 654848. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Tapsoba, D.; Leach, J.; Coulibaly, P. Evaluation and bias correction of SNODAS snow water equivalent (SWE) for streamflow simulation in eastern Canadian basins. Hydrol. Sci. J. 2019, 64, 1541–1555. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Z.; Sang, Y.-F.; Qian, J.; Feng, W.; Chen, X.; Zhou, Q. Temporal and spatial variations in the terrestrial water storage across Central Asia based on multiple satellite datasets and global hydrological models. J. Hydrol. 2021, 596, 126013. [Google Scholar] [CrossRef]
- Bouamri, H.; Boudhar, A.; Gascoin, S.; Kinnard, C. Performance of temperature and radiation index models for point-scale snow water equivalent (SWE) simulations in the Moroccan High Atlas Mountains. Hydrol. Sci. J. 2018, 63, 1844–1862. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Chen, D.; Li, J.; Guo, M.; Yin, G.; Duan, Z. Groundwater depletion estimated from GRACE: A challenge of sustainable development in an arid region of Central Asia. Remote Sens. 2019, 11, 1908. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Abdelrady, A.; Alarifi, S.S.; Othman, A. Geophysical and Remote Sensing Assessment of Chad’s Groundwater Resources. Remote Sens. 2023, 15, 560. [Google Scholar] [CrossRef]
- Yin, G.; Hu, Z.; Chen, X.; Tiyip, T. Vegetation dynamics and its response to climate change in Central Asia. J. Arid Land 2016, 8, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Yue, D.; Zhou, Y.; Guo, J.; Chao, Z.; Guo, X. Relationship between net primary productivity and soil water content in the Shule River Basin. Catena 2022, 208, 105770. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, Q.; Tang, X.; Yan, W.; Chen, M. Changes in soil moisture caused solely by vegetation restoration in the karst region of southwest China. J. Hydrol. 2022, 613, 128460. [Google Scholar] [CrossRef]
- Chen, X. Retrieval and Analysis of Evapotranspiration in Central Areas of Asia; China Meteorology Press: Beijing, China, 2012; p. 8.
- Ochege, F.U.; Shi, H.; Li, C.; Ma, X.; Igboeli, E.E.; Luo, G. Assessing Satellite, Land Surface Model and Reanalysis Evapotranspiration Products in the Absence of In-Situ in Central Asia. Remote Sens. 2021, 13, 5148. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Gulakhmadov, A.; Chen, X.; Gulahmadov, N.; Liu, T.; Davlyatov, R.; Sharofiddinov, S.; Gulakhmadov, M. Long-Term hydro–climatic trends in the mountainous kofarnihon river basin in central asia. Water 2020, 12, 2140. [Google Scholar] [CrossRef]
- Deng, M.; Long, A.; Zhang, Y.; Li, X.; Lei, Y. Assessment of Water Resources Development and Utilization in the Five Central Asia Countries. Adv. Earth Sci. 2010, 25, 1347. [Google Scholar]
- Varis, O. Resources: Curb vast water use in central Asia. Nature 2014, 514, 27–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nietullaeva, S.; Fayzullaev, B.; Karimova, A.; Shaudenbayev, N. An Investigation into the Hydro-Climate Processes Impacting Aral Sea Region in Central Asia. Ann. Rom. Soc. Cell Biol. 2021, 25, 11692–11703. [Google Scholar]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Li, J.; Li, Q.; Chen, D.; Liu, W.; Yin, G. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. Int. J. Climatol. 2018, 38, 3475–3493. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, W.; Zhu, H.; Yin, W.; Xu, A.; Pan, F.; Wang, Q.; Zhao, Y. Inverted Algorithm of Groundwater Storage Anomalies by Combining the GNSS, GRACE/GRACE-FO, and GLDAS: A Case Study in the North China Plain. Remote Sens. 2022, 14, 5683. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Tjärnlund, A.; Bottai, M.; Werth, V.P.; Pilkington, C.; de Visser, M.; Alfredsson, L.; Amato, A.A.; Barohn, R.J.; Liang, M.H. 2017 European League against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheumatol. 2017, 69, 2271–2282. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P. Contributions of GRACE to understanding climate change. Nat. Clim. Change 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Guo, X.; Lu, C.; Wei, J.; Fang, J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Long, D.; Scanlon, B.R.; Mann, M.E.; Li, X.; Tian, F.; Sun, Z.; Wang, G. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change 2022, 12, 801–807. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Peidou, A.; Landerer, F.; Wiese, D.; Ellmer, M.; Fahnestock, E.; McCullough, C.; Spero, R.; Yuan, D.N. Spatiotemporal Characterization of Geophysical Signal Detection Capabilities of GRACE-FO. Geophys. Res. Lett. 2022, 49, e2021GL095157. [Google Scholar] [CrossRef]
Variable | Acronym | Period | Spatial Resolution | Source |
---|---|---|---|---|
Temperature | TMP | 1901–2020 monthly | 0.5° × 0.5° | CRU TS v 4.06 https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on 28 December 2022) monthly surface climate China V2.0 |
Precipitation | PRE | 1901–2020 monthly | 0.5° × 0.5° | |
Potential evapotranspiration | PET | 1901–2020 monthly | 0.5° × 0.5° | |
Soil moisture | SM | 2003–2020 monthly | 0.25° × 0.25° | https://search.earthdata.nasa.gov/ (accessed on 28 December 2022) |
Snow water equivalent | SWE | 2003–2020 monthly | 0.25° × 0.25° | |
Runoff | Runoff | 2003–2020 monthly | 0.25° × 0.25° | https://grace.jpl.nasa.gov/data/get-data/ (accessed on 28 December 2022) |
Terrestrial water storage anomalies | TWSA | 2003–2020 monthly | 0.25° × 0.25° | |
Groundwater strong anomalies | GWSA | 2003–2020 monthly | 0.25° × 0.25° | https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS (accessed on 28 December 2022) |
ANN | MAM | JJA | SON | DJF | |
---|---|---|---|---|---|
TMP | 0.0201 | 0.0637 | 0.0486 | −0.1019 * | 0.0944 |
PRE | −0.4705 | −0.2722 | −0.4243 | 0.128 | 0.6195 |
PET | 1.9915 | 0.8718 | 1.6445 | −0.7137 | 0.4194 |
SM | −0.0207 | −0.0676 | −0.0346 | 0.0554 | −0.0343 |
SWE | 0.0269 | −0.162 | −0.0399 * | 0.0353 | 0.1731 |
RUNOFF | −0.0005 | −0.0002 | −0.0002 | 0.0003 | −0.0001 |
TWSA | −0.3065 * | −0.3291 * | −0.3483 * | −0.2464 * | −0.2917 * |
GWSA | −0.2742 * | −0.2748 * | −0.3033 * | −0.222 * | −0.2796 * |
Country | Variable | Year | P1 | Year | P2 | Year | P3 | Year | P4 | Year | P5 |
---|---|---|---|---|---|---|---|---|---|---|---|
KAZ | CA | 1999 | 3220 | 2004 | 2860 | 2009 | 2874 | 2014 | 2960 | 2019 | 2999 |
TRWR | 1999 | 108.4 | 2004 | 108.4 | 2009 | 108.4 | 2014 | 108.4 | 2019 | 108.4 | |
TRSW | 1999 | 100.6 | 2004 | 100.6 | 2009 | 100.6 | 2014 | 100.6 | 2019 | 100.6 | |
TRGW | 1999 | 33.85 | 2004 | 33.85 | 2009 | 33.85 | 2014 | 33.85 | 2019 | 33.85 | |
AWW | 1999 | 16.68 | 2004 | 16.29 | 2009 | 13.06 | 2014 | 13.34 | 2019 | 15.81 | |
TWW | 1999 | 23.5 | 2004 | 23.6 | 2009 | 21.5 | 2014 | 23 | 2019 | 25 | |
WS | 1999 | 30.42 | 2004 | 32.79 | 2009 | 29.88 | 2014 | 32.01 | 2019 | 32.65 | |
KGZ | CA | 1999 | 1435 | 2004 | 1406 | 2009 | 1351 | 2014 | 13.56 | 2019 | 1364 |
TRWR | 1999 | 23.62 | 2004 | 23.62 | 2009 | 23.62 | 2014 | 23.62 | 2019 | 23.62 | |
TRSW | 1999 | 21.15 | 2004 | 21.15 | 2009 | 21.15 | 2014 | 21.15 | 2019 | 21.15 | |
TRGW | 1999 | 13.69 | 2004 | 13.69 | 2009 | 13.69 | 2014 | 13.69 | 2019 | 13.69 | |
AWW | 1999 | 9.45 | 2004 | 8.1 | 2009 | 7.2 | 2014 | 7.1 | 2019 | 7.1 | |
TWW | 1999 | 10.08 | 2004 | 8.70 | 2009 | 7.80 | 2014 | 7.66 | 2019 | 7.66 | |
WS | 1999 | 65.13 | 2004 | 55.17 | 2009 | 50.03 | 2014 | 50.03 | 2019 | 50.03 | |
TJK | CA | 1999 | 886 | 2004 | 877 | 2009 | 884.4 | 2014 | 866.7 | 2019 | 852.7 |
TRWR | 1999 | 21.91 | 2004 | 21.91 | 2009 | 21.91 | 2014 | 21.91 | 2019 | 21.91 | |
TRSW | 1999 | 18.91 | 2004 | 18.91 | 2009 | 18.91 | 2014 | 18.91 | 2019 | 18.91 | |
TRGW | 1999 | 6 | 2004 | 6 | 2009 | 6 | 2014 | 6 | 2019 | 6 | |
AWW | 1999 | 8.96 | 2004 | 9.81 | 2009 | 9.57 | 2014 | 8.13 | 2019 | 7.38 | |
TWW | 1999 | 9.64 | 2004 | 10.73 | 2009 | 10.53 | 2014 | 8.91 | 2019 | 10.6 | |
WS | 1999 | 8034 | 2004 | 76.30 | 2009 | 72.15 | 2014 | 69.31 | 2019 | 69.94 | |
TKM | CA | 1999 | 189 | 2004 | 210 | 2009 | 205 | 2014 | 200 | 2019 | 200 |
TRWR | 1999 | 24.77 | 2004 | 24.77 | 2009 | 24.77 | 2014 | 24.77 | 2019 | 24.77 | |
TRSW | 1999 | 24.36 | 2004 | 24.36 | 2009 | 24.36 | 2014 | 24.36 | 2019 | 24.36 | |
TRGW | 1999 | 0.405 | 2004 | 0.405 | 2009 | 0.405 | 2014 | 0.405 | 2019 | 0.405 | |
AWW | 1999 | 23.9 | 2004 | 23.04 | 2009 | 26.36 | 2014 | 26.36 | 2019 | 26.36 | |
TWW | 1999 | 24.91 | 2004 | 27.95 | 2009 | 27.95 | 2014 | 27.95 | 2019 | 27.95 | |
WS | 1999 | 126.9 | 2004 | 143.6 | 2009 | 143.6 | 2014 | 143.6 | 2019 | 143.6 | |
UZB | CA | 1999 | 483 | 2004 | 475 | 2009 | 456 | 2014 | 442 | 2019 | 444 |
TRWR | 1999 | 48.87 | 2004 | 48.87 | 2009 | 48.87 | 2014 | 48.87 | 2019 | 48.87 | |
TRSW | 1999 | 42.07 | 2004 | 42.07 | 2009 | 42.07 | 2014 | 42.07 | 2019 | 42.07 | |
TRGW | 1999 | 8.8 | 2004 | 8.8 | 2009 | 8.8 | 2014 | 8.8 | 2019 | 8.8 | |
AWW | 1999 | 54.6 | 2004 | 51.5 | 2009 | 49 | 2014 | 47.4 | 2019 | 54.4 | |
TWW | 1999 | 59.8 | 2004 | 57.1 | 2009 | 54.1 | 2014 | 51.8 | 2019 | 58.9 | |
WS | 1999 | 153.3 | 2004 | 144.3 | 2009 | 142.6 | 2014 | 144.7 | 2019 | 168.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odinaev, M.; Hu, Z.; Chen, X.; Mao, M.; Zhang, Z.; Zhang, H.; Wang, M. Dynamic Changes of Terrestrial Water Cycle Components over Central Asia in the Last Two Decades from 2003 to 2020. Remote Sens. 2023, 15, 3318. https://doi.org/10.3390/rs15133318
Odinaev M, Hu Z, Chen X, Mao M, Zhang Z, Zhang H, Wang M. Dynamic Changes of Terrestrial Water Cycle Components over Central Asia in the Last Two Decades from 2003 to 2020. Remote Sensing. 2023; 15(13):3318. https://doi.org/10.3390/rs15133318
Chicago/Turabian StyleOdinaev, Mirshakar, Zengyun Hu, Xi Chen, Min Mao, Zhuo Zhang, Hao Zhang, and Meijun Wang. 2023. "Dynamic Changes of Terrestrial Water Cycle Components over Central Asia in the Last Two Decades from 2003 to 2020" Remote Sensing 15, no. 13: 3318. https://doi.org/10.3390/rs15133318
APA StyleOdinaev, M., Hu, Z., Chen, X., Mao, M., Zhang, Z., Zhang, H., & Wang, M. (2023). Dynamic Changes of Terrestrial Water Cycle Components over Central Asia in the Last Two Decades from 2003 to 2020. Remote Sensing, 15(13), 3318. https://doi.org/10.3390/rs15133318