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Abstract: Terrestrial water storage (TWS) anomalies derived from the Gravity Recovery and Climate
Experiment (GRACE) mission have been useful for several earth science applications, ranging from
global earth system science studies to regional water management. However, the relatively short
record of GRACE has limited its use in understanding the climate-driven interannual-to-decadal
variability in TWS. Targeting these timescales, we used the novel method of cyclostationary empirical
orthogonal functions (CSEOFs) and the common modes of variability of TWS with precipitation
and temperature to reconstruct the TWS record of 1979–2020. Using the same common modes of
variability, we also provide a realistic, time-varying uncertainty estimate of the reconstructed TWS.
The interannual variability in the resulting TWS record is consistent in space and time, and links
the global variations in TWS to the regional ones. In particular, we highlight improvements in the
representation of ENSO variability when compared to other available TWS reconstructions.

Keywords: cyclostationary empirical functions; remote sensing; terrestrial water storage; TWS
reconstruction; GRACE

1. Introduction

Terrestrial water storage (TWS), as observed by NASA’s Gravity Recovery and Climate
Experiment (GRACE) [1] and GRACE Follow On (GRACE-FO) missions [2], represents
vertically integrated water storage systems over global landmass (excluding ice sheets)
and includes water stored in vegetation canopies, rivers and lakes (surface water), snow,
soil (also called soil moisture), and groundwater. While little is known about the absolute
amount of TWS, it is the spatio-temporal variability in TWS that directly relates to water
availability (or a lack of thereof) for human and ecosystem use, and hence is of interest
to a range of local-to-regional scale water resource researchers and managers. As TWS
is a net residual of the terrestrial water balance between precipitation, evaporation, and
runoff, its variability describes the changes in the overall water cycle. TWS change is also
indicative of changes in the energy budget, since water and energy budgets are tightly
coupled through changes in phase [3,4]. TWS, through soil moisture, is also closely linked
with the carbon cycle [5]. Finally, changes in TWS directly correspond to the movement of
water mass between land and ocean and are the dominant cause of interannual variability
in global mean sea level (GMSL) (e.g., [6]).

While TWS has traditionally been a difficult state variable to measure globally, monthly
global observations of TWS change have been made possible by the GRACE mission since
2002. GRACE can measure gravity anomalies for areas larger than about 200,000 km2,
and at monthly to interannual time scales, these anomalies largely represent changes in
water mass. GRACE ceased operations in mid-2017, and the GRACE-FO mission was
launched in early 2018 to continue providing global TWS anomalies fields. GRACE data
have been widely used in hydrology research from a regional to global scale on topics
such as hydrologic extremes; human water management; analyzing changes in surface

Remote Sens. 2022, 14, 5677. https://doi.org/10.3390/rs14225677 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225677
https://doi.org/10.3390/rs14225677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7573-8056
https://orcid.org/0000-0002-2315-6425
https://orcid.org/0000-0001-7575-2520
https://doi.org/10.3390/rs14225677
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14225677?type=check_update&version=1


Remote Sens. 2022, 14, 5677 2 of 12

water, lakes and reservoirs, and groundwater; and better understanding of the natural and
forced variability in storage at multiple timescales, including annual/seasonal variability,
interannual variability—including that associated with the El Nino–Southern Oscillation
(ENSO), and longer-term variability possibly associated with secular changes (see [1] for
the wide range of GRACE application studies in earth sciences). However, compared to
other terrestrial water cycle variables, such as precipitation, TWS data from GRACE still
cover a relatively short period for attempts to robustly investigate interannual-to-decadal
changes in terrestrial hydrology.

In recognition of the value of TWS observations and in an attempt to overcome the
challenges presented by the relatively short satellite-measured record of TWS, increased
focus has been put on extending the GRACE/GRACE-FO record back in time. A number
of recent publications have tackled this topic using an array of approaches (e.g., [7–13]).
The resultant reconstructions of TWS display a range of strengths and weaknesses, owing
largely to the variability that is targeted or signal(s) of interest in each study. Providing
direct comparisons between the datasets is then a challenge and can lead to conclusions
assigned to a particular study that are outside of the original intent or objectives. Rather
than introduce another technique to be evaluated broadly, we focused on establishing
and implementing an approach that is targeted at interannual-to-decadal variability, and
specifically the variability on those timescales that is driven by large-scale climate signals.
Past studies have identified large shifts in global and regional TWS on these timescales and
further connected these variations to ENSO (e.g., [6,14–17]).

In this study, we use a reconstruction technique based on cyclostationary empirical
orthogonal functions (CSEOFs; [18]) to extend the GRACE record of TWS back to 1979.
CSEOFs can be thought of as a special case of empirical orthogonal function (EOF) analysis
where, unlike the standard EOF analysis, the eigenvectors (the spatial patterns commonly
called EOFs) are not time-invariant and are allowed to vary within a specified period,
commonly referred to as the “nested period.” This enables enhanced capturing of the
quasi-periodicity of the natural climate variability modes within fewer modes than the
traditional EOF analysis method. For example, in the standard EOF analysis, it is common
to find that several modes together depict the annual cycle. In CSEOF analysis, these would
get combined together as a single mode, allowing for a cleaner interpretation of the annual
cycle. Kim et al., in 1996 [19], introduced CSEOFs specifically to capture the time-varying
spatial patterns and longer-timescale fluctuations present in geophysical signals. Since then,
CSEOFs have been used extensively to reconstruct historical regional and global sea-level
variability based on relationships between tide gauges and satellite altimetry (e.g., [20,21])
as well as in multi-variate climate reconstructions [6,22]. The method has also been used to
analyze spatio-temporal variability in TWS [16,23]. Recently, Hamlington et al. [6] applied
the CSEOF method to reconstruct steric (ocean temperature) and barystatic (global TWS)
components of the global mean sea-level budget and investigated the budget closure across
a range of timescales (interannual to decadal).

Here, we extend and improve upon the CSEOF application in Hamlington et al. [6]
to produce a reconstruction of TWS based on its common variability with precipitation
and temperature. The improvements center on capturing regional-level variations while
maintaining consistency with the global-level variations, ensuring orthogonality between
the precipitation- and temperature-driven TWS patterns, and providing a time-varying
estimate of uncertainty. The use of CSEOFs provides advantages by leveraging large-
scale space-time patterns that serve as the basis for the reconstructed dataset. This yields
estimates of interannual variability in TWS that are consistent in space and time and that
link the global variations in TWS to those that occur on regional scales. In particular, we
highlight improvements in the representation of ENSO variability in the resulting TWS
record when compared to other available TWS reconstructions.
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2. Data and Methods
2.1. Data

JPL GRACE/GRACE-FO Mascon Release 6 Version 2 (https://grace.jpl.nasa.gov/
data/get-data/jpl_global_mascons/, accessed on 12 February 2021) was used for TWS
training observations in this study. The data consist of monthly gravity field variations in
terms of 4551 equal-area 3◦ spherical cap mascons [24,25]. While gain factors are included
with the datasets which scale the intra-mascon variability of the mass changes, the gain
factors were not applied in this study, since we were interested in the large-scale (beyond
3°) mass changes. We did use a version of the mascon dataset that includes a coastline
resolution improvement (CRI) filter to separate land and ocean portions of water mass
within each land/ocean mascon.

Terrestrial precipitation from Global Precipitation Climatology Project version 2.3
(GPCP, [26]) and 2 m temperature fields from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis v5, commonly known as the ERA5 reanalysis [27],
were used to identify relationships with GRACE TWS anomalies and for the reconstruction.
While not pure observations, GPCP and ERA5 represent the widely used and most recent
representations of the variables that are spatially and temporally consistent, have global
coverage, and extend back considerably longer than GRACE. Hence, in this study they
were used as proxies for observed precipitation and temperature. The backward extension
of TWS anomalies is hence bounded by the start date of GPCP precipitation, 1/1979. While
there are other precipitation products that have longer record lengths that also cover the
pre-satellite era, we focus on the satellite era for consistency.

Additionally, the Multivariate ENSO Index (MEI) [28] was used for global-scale com-
parison and evaluation. TWS estimates from Global Land Data Assimilation System V2
(GLDAS V2, NOAH model) [29] and two other TWS reconstructions—one by Humphrey
and Gudmundsson, 2019 [7] (hereafter referred to as HG2019), and the other by Li et al.,
2021 [8] (hereafter referred to as Li2021)—were used for regional-scale comparisons.

2.2. Methods

Precipitation and temperature datasets were interpolated to the 0.5 × 0.5° resolution of
the GRACE mascon solution using bilinear interpolation, and the global ocean and the two
ice sheets were masked out. All data were trimmed to the overlapping GRACE duration
and were normalized by their variance in order to be unitless. Below are the steps involved
in the reconstruction algorithm.

2.2.1. TWS Reconstruction Algorithm

Step 1. Joint CSEOF decomposition was performed on GRACE TWS and GRACE-era
precipitation (2002–2020) following Hamlington et al. [6] and using a nested period of
12 months to obtain dominant modes that are common between TWS and precipitation. A
schematic showing the major steps involved in a typical CSEOF-based data extension can
be found in Figure 1 in Hamlington et al. [6].

Step 2. Ten most dominant modes that explained about 95% of the variance in TWS
and precipitation were identified.

Step 3. These modes were then extended using the entire duration of precipitation
(1979–2020) to obtain a reconstruction of TWS (1979–2020), following [6].

Step 4. This reconstruction was then subtracted from GRACE observations to obtain a
residual TWS for the GRACE-era.

Step 5. Steps 1–3 were repeated but with temperature instead of precipitation, and
with residual TWS instead of GRACE TWS.

Step 6. The TWS reconstruction output from steps 3 and 5 were added together to
create a final reconstruction of TWS.

The algorithm thus computed TWS reconstructions twice, once based on the common
modes between TWS and precipitation alone (Steps 1–3), and once using the common
modes between residual TWS and temperature (Step 5). Subtracting the precipitation-

https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
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based TWS reconstruction from the observed TWS (Step 3) and using it as an input
for temperature-based reconstruction ensured orthogonality between precipitation- and
temperature-driven TWS patterns. In the following sections, the reconstructed TWS time
series is referred to as TWS_CSEOF.

2.2.2. Reconstruction of Precipitation and Temperature Fields

In order to evaluate the consistency during the GRACE era with the pre-GRACE-era,
we also reconstructed precipitation using the common modes in Section 2.2.1 Steps 1–3,
and temperature following Step 5.

2.2.3. Uncertainty Estimation

Since GRACE was the first-ever and is still the only satellite mission to provide
TWS estimates, there are no remote sensing-based observations to compare the TWS
reconstructions. Large-scale in situ observations of TWS do not exist. Additionally, while
land surface models have made considerable progress in recent years, they still have
inadequate representations of TWS, and their TWS estimates are not quite reliable [30].
Considering all this, validating the TWS reconstruction for the pre-GRACE era is difficult.

Along with reconstruction of TWS, it is possible to use the common modes TWS
shares with precipitation and temperature to reconstruct the latter two variables. In other
words, exactly the same modes (or the physical processes that the modes represent) that
were used for the TWS reconstruction could be also used in precipitation and temperature
reconstructions. This provided a novel opportunity to validate the reconstructed modes:
by comparing reconstructed precipitation and temperature data with their observational
counterparts. Doing this gave a direct insight into how well could we expect the TWS
reconstruction to behave for the pre-GRACE era.

The steps to compute uncertainty on the TWS reconstruction based on the above
concept are as follows:

Step 1. Precipitation and temperature data were reconstructed following Section 2.2.2.
Step 2. A 12-month rolling root mean-square error (RMSE) was computed between the

reconstructed precipitation and observed GPCP precipitation throughout the entire time
duration (1979–2020).

Step 3. The resultant RMSE time series was then normalized by the average RMSE
between reconstructed precipitation and observed precipitation during the the GRACE era.

Step 4. Average RMSE was computed between GRACE and the TWS reconstructed
from common modes with precipitation (Step 3 from the Section 2.2.1).

Step 5. The average RMSE was then scaled to the normalized rolling RMSE time
series from Step 3, to provide an estimate of the uncertainty on TWS reconstructed from
precipitation (the blue curve in Figure 1c).

Step 6. Steps 2–5 were repeated for the reconstructed temperature data from Step 1,
and an uncertainty estimate for the TWS reconstructed from temperature was obtained (the
yellow curve in Figure 1c).

Step 7. The RMSE values from Steps 5 and 6 were added together to provide a total
RMSE estimate for the reconstructed TWS.
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Figure 1. Time series of global terrestrial precipitation (a) and 2 m air temperature (b) along with
their reconstructions (P_REC and T_REC, respectively), and the uncertainty of the reconstructed
global TWS (TWS_CSEOF) based on precipitation and temperature (c).

3. Results
3.1. Uncertainty of the TWS Reconstruction

Figure 1a,b show global precipitation and temperature time series from observations
and their reconstruction using the steps mentioned in Sections 2.2.1 and 2.2.2. GRACE-era
correlation coefficients (ρ) were 0.96 and 0.78 for precipitation and temperature model-
observation comparisons, respectively. These correlations degraded by about 0.11 and
0.21 in the pre-GRACE era, with ρ being 0.85 and 0.57 for precipitation and temperature,
respectively. This relative change in the model’s performance from the GRACE-era to the
pre-GRACE era was used to estimate the uncertainty in the TWS reconstruction.

As can be seen in Figure 1c, the RMSE values of TWS reconstructed using precipitation
are lowest during the GRACE era, and then increase as we go away from the GRACE era.
The RMSE values, however, do not continue to increase as we go back in time, but decrease
pre-2000 and become somewhat stable during 1981–1993. This is consistent with model-
observation comparisons in Figure 1a,b. The reason behind this behavior is the contribution
of the reconstructed modes to the total variance in observed precipitation. For example, in
years where the RMSE is high, such as 2000–2002, precipitation is likely governed by some
other modes that were not dominant during the GRACE era and hence are not represented
in the reconstruction at all. In the low-RMSE periods, such as 1992–1999, the reconstructed
modes indeed contributed significantly to the observed precipitation. The RMSEs of TWS
reconstructed using temperature show overall stable behavior compared to precipitation.
This suggests that the modes that were used to reconstruct TWS from temperature and the
residual TWS contributed consistently throughout the 1980–2020 duration.

Overall, at the global scale, the uncertainty between TWS reconstruction and GRACE
observations is 1.26 mm sea-level equivalents (mm SLE) for the GRACE era (with 0.92
and 0.34 mm SLE coming from the reconstructions using precipitation and temperature,
respectively) and 2.26 mm SLE during the pre-GRACE era (with 1.75 and 0.51 mm SLE
coming from the reconstructions from precipitation and temperature, respectively). It is
worth noting that the uncertainty presented here concerns the model’s uncertainty alone.
In other words, it describes the limits of the ability of our model to reconstruct the GRACE
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data. It does not include uncertainty and errors in the GRACE data. As a reference, 1 σ
uncertainty of global TWS from GRACE is about 0.4 mm SLE [25,31].

3.2. Global-Scale Analysis

Our aim for the TWS reconstruction was to optimize globally integrated TWS time
series. Figure 2 shows the global TWS time series from various sources, such as GRACE,
our reconstruction, GLDAS, and HG2019 and L2021. The long-term linear trend and the
monthly climatology have been removed from these in order to focus on the interannual
variability. As can be seen in the figure, the global TWS shows pronounced interannual
variability that has a total range of about 12 mm SLE. Seen together, these curves correspond
strongly with important ENSO years, such as the 1982–1983, 1997–1998, and 2014–2016
major El Niño events; and the 1998–2001 and 2010–2012 La Niña events.

Figure 2. Detrended and deseasonalized time series of global TWS from GRACE, TWS_CSEOF,
HG2019, Li2021, and GLDAS2. The shaded red area indicates uncertainty on the TWS_CSEOF time
series. The gray area at the bottom depicts the maximum spread between all the curves at any given
month.

While the TWS estimates, especially the reconstructions, agree quite well with GRACE
data, as we go back in time, their differences increase. The gray shaded area in the figure
shows the maximum spread between the curves at any given month. The spread is limited
to about 3 mm SLE during the GRACE era but increases to up to 6 mm SLE in the pre-
GRACE era.

To further understand the pre-GRACE-ra and GRACE-era behavior of the curves,
in Figure 3 we analyze normalized distributions of the TWS estimates during these two
eras and compare them to that of Multivariate ENSO Index Version 2 (MEI.v2) [28]. The
diagonal panels describe empirical cumulative distribution functions (ECDF) of a single
time series during the pre-GRACE and GRACE eras. In the top-left panel, it is shown that
MEI behavior is similar in the pre-GRACE and GRACE eras, except for some lower ENSO
values (El Niño years) in the GRACE era. Similarly, the TWS_CSEOF ECDFs from the
two eras closely follow each other. The ECDFs for Li2021 show slightly different behavior
for the two eras: less extreme values are present in the pre-GRACE era compared to the
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GRACE era. HG2019 shows remarkably different behavior during the two eras, with most
differences occurring for the moderate values (neutral years) and positive extreme values
(La Niña years).

Figure 3. A series of pair plots showing normalized distributions of global TWS from TWS_CSEOF,
HG2019, Li2021, and the Multivariate ENSO Index. The diagonal panels show ECDFs, the above-
diagonal panels show scatter plots, and the below-diagonal panels show 2D kernel density estimation.
The colors indicate the periods of the time series (pre-GRACE-era and GRACE era).

Scatter and kernel density estimation (KDE) plots in the figure (above-diagonal and
below-diagonal panels, respectively) each describe the relationship between a pair of time
series broken into pre-GRACE and GRACE eras. Scatterplots show the actual values,
whereas KDE plots show the density of the occurrences of certain values. Consistently with
Figure 2, the scatter and KDE associations are stronger and positively correlated during
the GRACE era (values in orange). Comparatively, the spread in the scatter is quite large
during the pre-GRACE era (values in blue). Correlations with MEI are most consistent for
TWS_CSEOF: pre-GRACE and GRACE era coefficients are 0.63 and 0.62, respectively. The
correlations degrade rapidly in the pre-GRACE era for both HG2019 (from 0.49 to 0.21) and
L2021 (from 0.63 to 0.37).
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3.3. Local-Scale Analysis

While the aim of the reconstruction was to optimize the global time series, local-scale
analysis brings insights into where the global signal comes from and highlights areas that
are well or poorly represented by the reconstruction method.

Figure 4 shows detrended and de-seasonalized Pearson correlation coefficients between
GRACE TWS observations and TWS_CSEOF, HG2019, Li2021, and GLDAS2. TWS_CSEOF
has the highest correlation values (>0.8) consistently across most land regions. HG2019 and
Li2021 have moderately high correlations for most land regions except in central and north-
ern Africa and eastern Central Asia (encompassing parts of China and Mongolia). GLDAS2
has the lowest correlation values with GRACE compared to the three reconstructions, and
these include parts of South America (including the Amazon basin) and South Asia.

Figure 4. Correlations with GRACE for TWS_CSEOF (a), HG2019 (b), Li2021 (c), and GLDAS2 (d).

While Figure 4 shows a favorable reconstruction-observation comparison during
the GRACE era, it is important to understand how consistent this comparison would
be in the pre-GRACE era. While direct comparison with gridded TWS observations is
not possible for the pre-GRACE era, we provide comparisons between precipitation and
temperature reconstructions and their observational counterparts. Figure 5 shows local
Kolmogorov–Smirnov (K-S) goodness-of-fit test results between the input datasets of
precipitation and temperature and their reconstructed counterparts (from Section 2.2.2)
for the pre-GRACE era and the GRACE era. A low K-S statistic suggests that the two
distributions are statistically identical and could have come from the same population.

The reconstruction-observation K-S statistics for precipitation (Figure 5a) and temper-
ature (Figure 5c) are quite low for the GRACE era (mostly limited to 0.2), suggesting an
excellent goodness-of-fit. For the pre-GRACE era (Figure 5b,d), the K-S statistic increases
slightly by about 0.05 to 0.1 almost uniformly across most of the global land regions, which
is still low overall (less than 0.3). In other words, comparing Figure 5a with Figure 5b and
Figure 5c with Figure 5d shows that the model-observation distribution characteristics
from the GRACE era were not significantly different in the pre-GRACE era.
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Figure 5. Kolmogorov—Smirnov goodness-of-fit statistic D between reconstructed and GPCP pre-
cipitation during the GRACE era (a) and pre-GRACE-era (b), and between reconstructed and ERA5
temperature during the GRACE era (c) and pre-GRACE-era (d).

4. Discussion

Through the analysis presented in Section 3, we try to address two main questions:
Question 1: “How good is the CSEOF method at reconstructing GRACE TWS, at global

and local scales?”
Question 2: “Can the pre-GRACE era behavior of the TWS_CSEOF be expected to be

consistent with its GRACE-era behavior, both globally and locally?”
Comparison against GRACE is crucial in addressing Question 1. The rationale is

that, if our model were perfect, it would reproduce GRACE TWS perfectly. Based on
Figures 2 and 4, we can claim that our model performs quite well and compares favorably
with GRACE observations at both global and local scales.

Addressing Question 2 is important, since it relates to the large spread that we see in
the pre-GRACE era in Figure 2. It is also very challenging due to the lack of GRACE-like
TWS observations in the past. We address this question in the following steps. First, we
look at how the ENSO variability compares in the pre-GRACE and GRACE eras. After all,
we specifically target interannual variability in our model, and numerous studies have well
established that ENSO dominates TWS variability at the interannual time scale. The MEI
ECDFs from Figure 3 suggest that the ENSO distributions are quite similar during the two
eras; the KS-statistic is low, at D = 0.17. Next, we should note whether the ECDFs of our
TWS reconstruction behave similarly in the pre-GRACE and GRACE eras. They do, and
the KS-statistic is similarly low (D = 0.14). In addition to the ECDFs, we also compared
correlations with MEI during pre-GRACE and GRACE eras. The scatter and kernel density
plots in Figure 3 show an overall positive and narrow spread, and the correlation coefficients
with MEI are identical for the pre-GRACE (ρ = 0.63) and GRACE (ρ = 0.62) eras. Overall,
this suggests that globally, the TWS_CSEOF behavior during pre-GRACE and GRACE eras
is consistent and similar to that of ENSO variability.

While ENSO variability serves as a reasonable proxy for interannual variability in
global TWS and enables cross-checking the pre-GRACE-era and GRACE-era behavior of
TWS_CSEOF, no such data are readily available at local scales. We addressed this problem
by making use of the CSEOF method itself, which, along with TWS reconstruction, can also
reconstruct the precipitation and temperature datasets. Since the three reconstructions were
based on exactly the same modes, a direct comparison can be made between precipitation
and temperature reconstructions and their observational counterparts during pre-GRACE
and GRACE eras. The differences highlight regions where our TWS_CSEOF reconstruction
can be expected to perform consistently during the pre-GRACE era, and where its reliability
may degrade. Comparing Figure 5a,b suggests that the distribution of the reconstructed
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precipitation is close to that of the observed precipitation for both pre-GRACE and GRACE
periods, especially in the high-precipitation regions, such as the rain forests and monsoon
regions, whereas the model’s performance is degraded a bit in the arid regions, such as
northeast Africa and the Persian Gulf states, in the pre-GRACE era. Similarly, comparing
Figure 5c,d suggests that the reconstructed temperatures also closely match the distribution
of the observed temperatures for both eras. This is especially true in regions where the
temperature has a close link with TWS, viz., the northern higher latitudes. In the case of
both variables, the model degradation during the pre-GRACE era is limited to a roughly
0.1 increase in the KS statistic D over most regions. In other words, the probability that the
two distributions are different is about 10% higher in the pre-GRACE era. However, the
overall probability of the distributions being different is still less than 30% (D statistic is
less than 0.3) over most land regions. Overall, Figure 5 suggests that the local relationships
between model-observations are quite consistent during the pre-GRACE and GRACE eras
for most of the global land area.

Finally, another challenge in TWS reconstruction was to compute a realistic uncertainty
value for our model. By comparing how the precipitation and temperature reconstructions—
from exactly the same modes as their corresponding TWS reconstructions—compare with
the observations in the pre-GRACE era, one can understand how the model could deviate
from the observations in the pre-GRACE era. In Figure 1, low RMSE values during the
GRACE era are not surprising and provide an estimate of how good the model is with its
optimal settings. However, the RMSE values can be seen to increase as we go away from
the GRACE era, suggesting model degradation. However, the model does not continue
to degrade further and in fact improves during certain years, when the modes used to
reconstruct the variability contribute more to the total variance. There are also certain
periods when the RMSE is quite high, such as 2000–2002. Interestingly, these are also the
periods when most of the reconstruction data do not agree with each other.

5. Conclusions

In this study, noting the large spread among the TWS reconstruction datasets in esti-
mating global land TWS variability, especially in the pre-GRACE era, we applied a novel
method of CSEOF to estimate TWS. We found the resultant reconstruction (TWS_CSEOF)
performs quite well globally and locally against GRACE. Doing extensive tests on its con-
sistency during the pre-GRACE era, we found that the TWS variability remains consistent
with the GRACE-era data, both at global and local scales. We also provided a realistic,
time-varying uncertainty estimate of the TWS reconstruction based on the contribution of
the CSEOF modes to the total variance back in time. The reconstructed TWS is likely useful
for a range of stakeholders. For example, globally-integrated TWS reconstruction that is
consistent with ENSO variability can be used readily by the global sea-level community
in constraining the global means sea-level budget, e.g., [6]. The reconstructed TWS, being
based on temperature and precipitation relationships with TWS, excludes direct signals
from human water management. Thus, regional/local hydrologists, water managers and
policymakers may find it useful for providing estimates of the interannual climatic vari-
ability in their regional/local water resources. Finally, while the reconstructed TWS was
not optimized to fill the GRACE/GRACE-Follow On gap, it can certainly be used for that
purpose. Further analysis of the contributing modes could provide insight into the climatic
drivers of the interannual-to-decadal variability in terrestrial water storage.
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