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Abstract: The terrestrial water storage anomaly (TWSA) observed by the Gravity Recovery and Cli-
mate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provides a new
means for monitoring floods. However, due to the coarse temporal resolution of GRACE/GRACE-FO,
the understanding of flood occurrence mechanisms and the monitoring of short-term floods are
limited. This study utilizes a statistical model to reconstruct daily TWS by combining monthly
GRACE observations with daily temperature and precipitation data. The reconstructed daily TWSA
is utilized to monitor the catastrophic flood event that occurred in the middle and lower reaches of
the Yangtze River basin in 2020. Furthermore, the study compares the reconstructed daily TWSA
with the vertical displacements of eight Global Navigation Satellite System (GNSS) stations at grid
scale. A modified wetness index (MWI) and a normalized daily flood potential index (NDFPI) are
introduced and compared with in situ daily streamflow to assess their potential for flood monitoring
and early warning. The results show that terrestrial water storage (TWS) in the study area increases
from early June, reaching a peak on 19 July, and then receding till September. The reconstructed
TWSA better captures the changes in water storage on a daily scale compared to monthly GRACE
data. The MWI and NDFPI based on the reconstructed daily TWSA both exceed the 90th percentile
7 days earlier than the in situ streamflow, demonstrating their potential for daily flood monitoring.
Collectively, these findings suggest that the reconstructed TWSA can serve as an effective tool for
flood monitoring and early warning.

Keywords: GRACE; terrestrial water storage anomaly; modified wetness index; flood potential index;
the Yangtze River basin

1. Introduction

Flooding is a common and severe natural disaster that threatens the lives and property
of millions of people worldwide each year [1]. The Yangtze River Basin (YRB) in China, with
its abundant water resources, mineral resources, and shipping resources, ensures China’s
water supply, food, and energy security. Through its governance and development, the
YRB supports 459 million people and plays a vital role in economic and social development.
However, the YRB in China is a flood-prone area due to climate change and human
activities. Flooding has been a significant constraint on socioeconomic development in the
YRB. A catastrophic flood event that occurred in the summer of 2020 in the YRB, associated
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with the El Niño and Indian Ocean Dipole event [2], affected 38.17 million people and
38,687 km2 of crops, and caused direct economic losses of up to 109.74 billion CNY [3].
Flood monitoring and early warning are crucial for ensuring the safety of people’s lives
and property and the development of the YRB’s economy.

Traditional in situ flood monitoring methods are costly and have limited coverage.
Although remote sensing methods can extract inundated areas with high spatiotemporal
resolution, they cannot measure variations in terrestrial water storage (TWS) [4], which is
fundamental to the regional water cycle [5,6]. The Gravity Recovery and Climate Experi-
ment (GRACE) mission and its successor GRACE-FO can provide information on terrestrial
water storage anomaly (TWSA) at a global scale with approximately monthly or higher
temporal resolution [7,8], making it a new method for monitoring large-scale flood events.
The unique strength of GRACE/GRACE-FO observations for flood monitoring has been
demonstrated in the Amazon Basin [9], the YRB [10,11], the Pearl River Basin [12], the Tonlé
Sap Basin [13], etc.

Most previous studies have focused on using monthly GRACE data to monitor and
predict flood events. However, floods are dynamic hydrological events. High temporal
resolution facilitates a detailed understanding of the evolution of flood events, better
serving water resources management and solutions. Several recent studies have explored
using daily GRACE data to characterize flooding and developed flood indices based on
daily GRACE data to indicate flood events. Gouweleeuw et al. [14] first evaluated two
daily GRACE gravity field solutions based on a Kalman filter approach using daily river
runoff data from the Ganges–Brahmaputra Delta major flood events in 2004 and 2007,
demonstrating their potential for sub-monthly flood monitoring. Jäggi et al. [15] defined a
wetness index (WI) derived from two daily gravity field solutions and applied this index
to the Danube Basin, which showed that WI exceeded the presumed threshold several
weeks before the flood peak. Han et al. [16] estimated the daily time series of water storage
change in Bangladesh by inverting line-of-sight gravity difference (LGD) between two
GRACE-FO spacecraft, which indicated that the daily LGD data can capture rapid water
mass change at a sub-monthly time scale. A standardized flood potential index based
on ITSG−Grace2018 daily solution was proposed by Xiong et al. [17] and successfully
detected 22 sub-monthly exceptional floods and droughts in the YRB between 1961 and
2015. As for the 2020 catastrophic flood in the YRB, Wang et al. [18] combined GRACE
data and the high-frequency ground gravity observations of gPhone to characterize 2020
flood events in YRB. Yan et al. [19] used Global Land Data Assimilation System (GLDAS)
daily TWS data to investigate the severe Yangtze flooding in 2020. However, the release of
ITSG−Grace2018 daily solution has a delay of several months, and the coverage of gPhone
is limited. Recently, Xie et al. [20] used machine learning techniques to downscale the
GRACE/GRACE-FO TWSA from a monthly scale to a daily scale and further established a
normalized daily flood potential index (NDFPI) based on downscaled TWSA. The results
showed that NDFPI could robustly and reliably characterize severe flood events at sub-
monthly scales.

Humphrey and Gudmundsson [21] reconstructed climate-driven monthly and daily
deseasonalized and detrended TWSAs based on historical precipitation and temperature
datasets using a statistical model trained with GRACE data. Xiao et al. [22] reconstructed the
daily TWSA to monitor the catastrophic flood in northern Henan province of China in July
2021 by introducing the statistical model proposed by Humphrey and Gudmundsson [21].
Result shows that the reconstructed daily TWSA successfully reflected the changes in
water storage during the flooding on a daily scale, demonstrating the effectiveness of this
reconstruction method for near-real-time floods monitoring. With reference to Humphrey
and Gudmundsson [21], Liu et al. [23] proposed a new method to reconstruct monthly
climate-driven water storage anomalies that incorporates seasonal terms. On the basis of the
model proposed by Liu et al. [23], we reconstruct daily TWSA to analyze the catastrophic
flood event in the YRB in 2020. In addition, the WI proposed by Jäggi et al. [15] is calculated
on the basis of deseasonalized and detrended TWSA. According to the China Ministry of
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Water Resources, the middle and lower reaches of the YRB experiences varying degrees of
flood events almost every summer, indicating that main flood event signals mainly exist in
the seasonal signal [24]. Therefore, in this study, we retain the seasonal term to calculate
the WI, which is defined as the modified wetness index (MWI). Furthermore, we evaluate
the reliability of MWI and NDFPI derived from the reconstructed daily TWSA.

The primary objectives of this study are to monitor the 2020 catastrophic flood in
the YRB on the basis of reconstructed daily TWSA and evaluate the effectiveness of MWI
and NDFPI derived from the reconstructed daily TWSA. The remainder of this paper is
divided into five sections. Section 2 describes the study area. The data and methods used
in this study are introduced in Section 3. In Section 4.1, we use the TWSA derived from
CSR Mascon, ITSG−Grace2018 daily TWSA, soil moisture estimates from the China Land
Data Assimilation System (CLDAS-V2.0), and in situ streamflow and vertical displacement
from Global Navigation Satellite System (GNSS) stations to assess the reliability of the
reconstruction results. Section 4.2 focuses on the spatiotemporal pattern of terrestrial water
storage during floods. Furthermore, the capacity of MWI and NDFPI to provide early
warning of floods is evaluated in Section 4.3. In Section 5, we compare three flood indices
and discuss the limitations of the reconstruction method and possible future applications.
Section 6 presents the conclusions of this study.

2. Study Region

The Yangtze River is the third largest river in the world, stretching over 6300 km and
covering a basin area of approximately 1.8 million km2. It originates in the eastern part of
the Tibetan Plateau and flows from west to east through 11 provinces before emptying into
the East China Sea. The topography of the YRB exhibits a three-step ladder distribution,
with high elevation in the west gradually decreasing toward the east [25,26]. Due to its vast
territory and complex topography, the YRB has a typical monsoon climate with uneven
spatial and temporal distribution of annual precipitation.

Approximately 459 million people reside in the YRB, accounting for one-third of
China’s population. As a strategic water source for water allocation in China, the YRB
is rich in water resources and plays a significant role in China’s economic and social
development. However, severe flood events have caused devastating impacts on the
socioeconomic development of the YRB. In 2020, from June to August, the rainfall in the
middle and lower reaches of the YRB was 56% higher than in the same period in the
normal year, resulting from extreme weather conditions [27]. The extensive and continuous
heavy rainfall caused severe flooding in the middle and lower reaches of the Yangtze River.
Combining rainfall and the extent of flooding in the China Flood and Drought Disaster
Prevention Bulletin, our study area was delineated (Figure 1). It encompassed a longitude
range of 108–122◦E and a latitude range of 26–34◦N, covering an area of ~360,000 km2.
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Figure 1. Map of the study region. The red line represents the study area boundary defined in
this study. The red triangle represents the Datong hydrometric station, and the yellow pentagrams
indicate GNSS stations. The sky-blue and black lines represent the Three Gorges Reservoir region
and the YRB, respectively. The left part of the study area is the sub-study area.
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3. Materials and Methods
3.1. GRACE Data

The CSR RL06 GRACE/GRACE-FO mascon solutions (CSRM) are provided by the
Center for Space Research (CSR) at The University of Texas at Austin and estimated using
GRACE Level-1 observations [28]. It is available on the official website as a 0.25◦ latitude–
longitude grid product, while its original spatial resolution is 1◦ × 1◦. The band-limited
nature limits the resolution of GRACE/GRACE-FO solutions. It is essential to note that the
solutions are limited in resolution, and users should exercise caution when applying them
to basins smaller than 200,000 km2.

Recent research has indicated that CSRM data are more consistent with in situ GPS
measurements and actual surface mass transport in the YRB than spherical harmonics data
and JPL Mascon [29]. As a result, we calibrate our parameters using 163 months of TWSA
derived from GRACE CSRM from April 2002 to June 2017.

The ITSG−Grace2018 is a series of GRACE-only gravity field solutions, which are
processed based on Level-1B Release 03 data of the GRACE observations [30]. It has an
excellent signal-to-noise ratio. We quantitatively evaluated the reconstructed daily TWSA
using ITSG−Grace2018 daily TWSA.

3.2. Precipitation, Temperature, and Soil Moisture Data
3.2.1. CLDAS-V2.0

CLDAS-V2.0 is a high-resolution (0.0625◦ × 0.0625◦) grid fusion analysis product
covering the Asian region (0◦–65◦ N, 60◦–160◦ E) published from 19 January 2017 by the
China Meteorological Administration (CMA). This dataset is developed by combining in
situ station and satellite observations, employing techniques such as optimal interpolation
(OI), probability density function matching, and terrain correction [31]. CLDAS-V2.0 has
better quality than its international counterpart in China and a higher spatial resolution.
Furthermore, the daily updates of the product with a delay of only 2 days make it possible
to reconstruct the daily TWSA in near-real time.

CLDAS-V2.0 includes five products such as atmospheric driving products, surface
temperature analysis products, and soil moisture products (divided vertically into five
layers: 0–5, 0–10, 10–40, 40–100, and 100–200 cm). In this study, daily precipitation data
and 2 m temperature of CLDAS-V2.0 from January 2020 to December 2020 are used to
reconstruct TWSA. Soil moisture, one of the main components of terrestrial water storage,
is also used to verify our reconstruction.

3.2.2. CGDPA Data

China Gauge-Based Daily Precipitation Analysis (CGDPA) uses about 2400 gauge sta-
tions over the Chinese mainland to construct the gridded precipitation using an improved
climate-based topography-corrected optimal interpolation method [32]. However, this
dataset is only updated to 2019 and is not currently available for download on the official
website. Therefore, precipitation data from CLDAS are used instead of CGDPA after 2019.

3.2.3. CN05.1

CN05.1 is a gridded dataset published by the National Climate Centre of the China
Meteorological Administration [33]. CN05.1 includes daily average, maximum and min-
imum temperature, and precipitation. This dataset covers the Chinese mainland with a
spatial resolution of 0.25◦ latitude by 0.25◦ longitude [34,35] and is constructed on the basis
of observations from over 2400 ground-based observation stations in China. It is mainly
used for climate change analysis [36]. The daily average temperature data from the CN05.1
dataset are used to reconstruct daily TWSA.

3.3. GNSS Observations

In addition to GRACE data and hydrological models, GNSS observations can be used
as an independent tool to monitor TWS changes [37,38]. A single GNSS station is sensitive
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to load deformation within 100 km [39]. The GNSS time series has high temporal resolution
(1 day or shorter) and long-term observations (more than 20 years at some stations), making
it a unique advantage for monitoring small-scale surface load deformation.

The precision detrended GNSS time series of eight GNSS stations are obtained from
the First Monitoring and Application Center, China Earthquake Administration. This daily
product is processed with GAMIT/GLOBK 10.40 software and QACA adjustment. The
effects of solid earth tides, ocean tides, and polar tides are removed in the data process-
ing, and the vertical displacement load deformation mainly reflects nontidal atmospheric,
oceanic and hydrological influences [40,41]. For comparison with the time series of re-
constructed daily TWSA, the nontidal atmospheric loading and nontidal oceanic loading
effects are removed from the GNSS time series using the products available from the Earth
system modeling group at Deutsches GeoForschungsZentrum.

This study collected time series of eight GNSS stations in and around the study area.
Their location distribution is shown in Figure 1. Due to the sparse distribution of the
stations, we use the time series of reconstructed daily TWSA from the corresponding grid
to compare with the vertical component at a single GNSS station for evaluating our results.

3.4. Streamflow Data

The in situ daily streamflow data of Datong station were collected from the Information
Center, Ministry of Water Resources, China. These data are used to identify flood events
and serve to evaluate the performance of the flood indices. They cover the period from
1 May 2003 to 31 December 2020.

The datasets used in this study are summarized in Table 1.

Table 1. Summary of the datasets used in this study.

Dataset Time Span Spatial Resolution Temporal Resolution Data Source

CSRM RL06 2002–2020 0.25◦ Monthly http://www2.csr.utexas.edu/grace/RL0
6_mascons.html, accessed on 2 June 2023

ITSG−Grace2018 2003–2020 1◦ Daily
http://ftp.tugraz.at/outgoing/ITSG/

GRACE/ITSG-Grace_operational/daily_
kalman/, accessed on 2 June 2023

CLDAS-V2.0 2019–2020 0.0625◦ Daily https://data.cma.cn/, accessed on 2
June 2023

CGDPA 2000–2019 0.25◦ Daily https://data.cma.cn/, accessed on 2
June 2023

CN05.1 2000–2019 0.25◦ Daily Contact with the authors

GNSS observations 2020 stations Daily https://www.eqdsc.com, accessed on 2
June 2023

Streamflow 2003–2020 stations Daily http://xxfb.mwr.cn/sq_djdh.html,
accessed on 2 June 2023

3.5. Methods
3.5.1. Daily TWSA Reconstruction

Humphrey and Gudmundsson [21] trained a statistical model to reconstruct the TWSA
using GRACE observations, precipitation, and temperature information. They assumed a
water store model where the water outputs are proportional to the water storage and to
the residence time of the water storage. Referring to this model, Liu et al. [23] proposed a
modified version, which can be expressed as follows:

Hti + d =
(

Hti−1 + d
)
·eτti + Pti , (1)

where ti, Hti, and Pti denote the time vector, the reconstructed climate-driven water storage,
and the input precipitation during the ti month, respectively, eτti represents the decay factor

http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace_operational/daily_kalman/
http://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace_operational/daily_kalman/
http://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace_operational/daily_kalman/
https://data.cma.cn/
https://data.cma.cn/
https://www.eqdsc.com
http://xxfb.mwr.cn/sq_djdh.html
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of water storage in the ti month, and d is the active storage involved in the water cycle over
short periods; τ can be calculated from the following equation:

τti = a + b·Pti
′ + c·Tti

′, (2)

where a, b, and c are the calibrated model parameters. Pti
′ and Tti

′ are the normalized
precipitation and temperature, respectively.

Many trends in GRACE are caused by human activities, which the climate-driven
model cannot explain by definition [21,42]. Therefore, the linear trend is not included in Hti.
On the basis of this model, we reconstruct the daily TWSA at the regional and grid scale.

3.5.2. Calculation of MWI

Referring to the formula of Jäggi et al. [15], the formula for calculating MWI in this
study is as follows:

MWI =
TWSAdetrended

S
, (3)

where TWSAdetrended is the reconstructed daily TWSA, and S represents the standard
deviation of TWSAdetrended. For comparison with the NDFPI, we also normalize the MWI
in this study.

3.5.3. Calculation of NDFPI

Reager and Famiglietti [43] proposed a monthly flood potential index (FPI) based
on GRACE TWSA and precipitation to indicate flood events. The FPI characterizes the
effective water storage capacity of the basin. A daily scale flood potential index (NDFPI) is
developed on the basis of FPI [20].

The daily flood potential amount (DFPA) can be obtained by subtracting the water
storage deficit from the daily precipitation:

DFPA(t) = P(t)− (TWSAmax − TWSA(t− 1)), (4)

where t, P, TWSAmax, and TWSA(t − 1) represent the daily time vector, the daily precipita-
tion on the t-th day, the maximum of historic storage anomaly time series, and the storage
amount from the previous day, respectively.

The NDFPI can be obtained by normalizing the DFPA:

NDFPI(t) =
DFPA(t)− DFPAmin

DFPAmax − DFPAmin
, (5)

where DFPAmax is the maximum value of DFPA, and DFPAmin represents the minimum
value of DFPA during the study period. NDFPI ranges from 0 to 1. A higher value of
NDFPI represents a higher risk of flooding in the basin.

The middle and lower reaches of the YRB have a significant long-term trend in
TWS over the last two decades due to various factors, such as precipitation and human
activities [44]. Several studies have reported an upward trend in TWSA in the YRB [45]. If
the TWSA trend increases, the MWI and NDFPI will also increase [24]. Using the TWSA
that contains an upward trend term to calculate MWI and NDFPI could result in the omis-
sion of prior flood events. As a result, the MWI and NDFPI in this study is calculated with
reconstructed TWSA that is detrended.

4. Results
4.1. Evaluation of the Reconstructed TWSA

The comparison of reconstructed monthly/daily TWSA, monthly TWSA derived from
CSRM, and daily TWSA from ITSG−Grace2018 solutions is presented in Figure 2. To
facilitate comparison, we remove the trend terms from the CSRM TWSA using a least-
squares fitting method [46,47], as we do not reconstruct the trend term. The time series of
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reconstructed monthly TWSA and CSRM monthly TWSA show good consistency, with
similar phases and amplitudes. The correlation coefficient (CC) between them is 0.90, the
Nash–Sutcliffe efficiency coefficient (NSE) is 0.81, and the root-mean-square error (RMSE) is
30.40 mm per month. In addition, there is also a good agreement between the reconstructed
daily TWSA and the ITSG−Grace2018 daily TWSA. However, the extremely low values
of CSRM TWSA in 2013, 2018, and 2019 are significantly lower than that of reconstructed
monthly TWSA.
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Figure 2. Time series of reconstructed monthly/daily TWSA, detrended monthly TWSA from CSRM
and detrended daily TWSA from ITSG−Grace2018 solutions in the study area from 2003 to 2020.

To verify the reliability of the reconstruction results, we compare the reconstructed
daily TWSAs on the grids where the GNSS stations are located with the time series of
vertical displacement of the corresponding GNSS stations and soil moisture. Soil moisture
variations show significant positive correlation with the variations in TWS, reaching their
peaks and troughs almost simultaneously. However, the time series of soil moisture in all
grids shows an abrupt and unusual drop at the beginning of May, which we attribute to
the error in the simulation of soil moisture. This phenomenon is not observed in other
products, such as the GLDAS and CMA Global Atmospheric Reanalysis (CRA) dataset
(Figure S1).

The daily vertical displacements of eight GNSS stations are also compared with
reconstructed daily TWSA. The vertical displacement of HBXF station (Figure 3a), WUHN
station (Figure 3d), AHBB station (Figure 3e), AHAQ station (Figure 3f), and JSLS station
(Figure 3g) agrees relatively well with TWSA, although they differ slightly in the time
of reaching the extreme maximal and minimal values. The observations from these five
GNSS stations are able to reflect the hydrological load displacement deformation during
flooding. The HBJM, HAQS, and WUHN stations also exhibit decreasing in vertical
displacements (Figure 3b–d, reversed axis), while there are higher peaks in late August in
WUHN (Figure 3d), and early October in HBJM and HAQS (Figure 3b,c).

We further analyze the difference between the time series of GNSS vertical displace-
ments and reconstructed daily TWSA. Firstly, the spatial resolution of the precipitation and
temperature data used for the reconstruction is higher than the spatial resolution of GRACE
(~300 km), and there may be some improvement in the resolution of the reconstructed
TWSA [22]. However, the spatial resolution of the reconstructed TWSA is still coarser than
that of GNSS, which results in different spatial sensitivity of GRACE and GNSS to water
variations [29,37]. Other geophysical signals contained in the GNSS vertical displacements
which are not entirely removed or possible common mode errors may contribute to this
phenomenon [40,48]. Additionally, the Three Gorges Reservoir usually begins to store
water at the end of September, and the water level reaches 175 m at the end of October each
year [49]. HBJM station is located near the Three Gorges reservoir area, and its vertical
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displacement is affected by the water impounding in the Three Gorges reservoir. This can
partly explain the variation in the time series of vertical displacement at HBJM station.
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Figure 3. Comparison of reconstructed daily TWSA, soil moisture, and the vertical displacement
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GNSS are inverted for comparison.

Overall, the GNSS vertical displacements and soil moisture variations provide addi-
tional qualitative verification of the reconstruction results.

Since Datong station is located in the center of the study area rather than at the outlet of
the basin, the control area of Datong station within the study area is divided as a sub-study
area to better compare the reconstructed daily TWSA with the daily streamflow. Figure 4a
presents the comparison of the reconstructed daily TWSA of the sub-study area with the
in situ daily streamflow from the Datong station during the period 2003 to 2020. Both
the regional average TWSA and the streamflow are high in summer and low in winter,
exhibiting marked seasonal characteristics, which is consistent with the seasonal variation
in precipitation. The dynamics of the reconstructed daily TWSA show good agreement
with the changes in streamflow, and the CC between them is as high as 0.87. In particular,
the reconstructed daily TWSA is able to capture the significant increase in TWS during the
2016 and 2020 flood events in the YRB.
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4.2. Spatial and Temporal Variation in TWSA during the Flood Event

The spatial distribution of reconstructed daily TWSA in the study area from June
to August 2020 is displayed in Figure 5. As observed from the figure, most of the grids
in the study area exhibit negative TWS anomalies on 1 June, indicating that the region
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is relatively dry. With the onset of the plum rains, the TWSAs start to increase rapidly.
Some grids in the southern part of the study area begin to show positive TWS anomalies
in early to mid-June. By the end of June, almost all the grids in the study area display
positive TWS anomalies. Throughout July, the TWS of the grids in the study area continues
to show significant positive anomalies, particularly in the middle part. By early August,
the range of TWSA exceeding 200 mm in the middle of the study area decreases, and the
anomalies finally subside after September. The spatial variations of monthly TWSA from
CSRM (Figure 6) are similar to those of reconstructed daily TWSA. However, reconstructed
daily TWSA captures the spatial variation in TWS at a daily scale, while monthly TWSA
from CSRM reflects the variation at a monthly scale. The finer temporal resolution of the
reconstructed TWSA provides more detailed information on the spatial evolution of floods,
which in turn facilitates disaster prevention, mitigation, and post-disaster management.
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The average TWSA in the study area peaked at 206.34 mm on July 19 (Figure 7).
From 1 June to 19 July TWSA increased by 407.57 mm (146.73 km3). After reaching the



Remote Sens. 2023, 15, 3192 10 of 17

peak, the average TWSA of the study area showed a downward trend and decreased to
−118.67 mm on 31 August (Figure 7). Although the variations in soil moisture are strongly
correlated with the variations in reconstructed TWSA, their magnitudes differ considerably.
Such a significant difference between soil moisture and reconstructed daily TWSA during
the peak may be attributed to the limited soil water storage capacity. At this time, the
soil water storage in the study area is saturated and can no longer increase. In addition,
TWS consists of groundwater, surface water, soil moisture, and snow [50–52]. Variations
in soil moisture storage account for only a tiny proportion of the variations in TWS in
many areas. The variations in groundwater and surface water storage are usually much
greater than variations in soil moisture storage [53]. Moreover, the uncertainty of soil
moisture simulated by CLDAS, and the limitations of the statistical reconstruction method
are among the reasons. Therefore, the difference between TWSA and soil moisture is
considered reasonable. From 1 June to early July, the TWSA is consistent with accumulated
precipitation. This is probably because most of the accumulated precipitation in the earlier
period serves to increase water storage, but the storage capacity of a region is limited, and
water storage does not increase beyond a certain point.
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4.3. Monitoring the Flood Event Using MWI and NDFPI

The storage capacity of a region is limited, and continuous heavy precipitation can
saturate regional aquifers. At this point, additional precipitation will increase streamflow if
it continues [43]. Although high discharge does not necessarily lead to flooding, it indicates
a high risk of flooding. Many studies have used discharge to identify flood levels [20,24,54].
In this study, we use the in situ daily streamflow from Datong station for the 90th percentile
flood to evaluate the early warning capability of MWI and NDFPI for the flood event in the
YRB in 2020.

The NDFPI is calculated using the reconstructed daily TWSA and daily precipita-
tion data derived from CLDAS V2.0, while the MWI is calculated solely on the basis of
reconstructed daily TWSA. The time series of MWI, NDFPI, and daily streamflow from the
Datong station in 2020 are presented in Figure 8. The thresholds of the MWI, NDFPI, and
daily streamflow for 90th percentile floods are 0.39, 0.49, and 3.95 × 109 m3, respectively.
The results demonstrate that MWI, NDFPI, and streamflow exhibit obvious seasonal char-
acteristics, with higher values during summer and lower values during winter. Both MWI
and NDFPI show similar patterns, gradually rising in May, experiencing a rapid increase in
June, and peaking in July. MWI and NDFPI indicate that the study area is at higher risk
of flooding from June to August, which is consistent with the observed flood evolution
recorded in the China Flood and Drought Disaster Prevention Bulletin. MWI and NDFPI
exceed their 90th percentile on 22 June, while streamflow exceeds its 90th percentile on
29 June. These two flood indices exceed their thresholds 7 days earlier than streamflow,
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indicating that the MWI and NDFPI, based on the daily reconstructed TWSA, effectively
provide early warning of this flood event. Figure 8 also illustrates the dynamics of WI for
the 2020 flood event. However, WI exceeds its 90th percentile on 1 July, 2 days after the
streamflow exceeds its 90th percentile, failing to warn about this flood.
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Figure 8. Comparison of MWI, NDFPI, and WI (NDFPI is moved up by 0.1 for a better view) of
the sub-study area and daily streamflow at Datong station in 2020. The dashed line in the figure
represents the thresholds of the MWI, NDFPI, WI, and daily streamflow for the 90th percentile floods
from 2003 to 2020.

5. Discussion
5.1. Comparison of MWI, NDFPI, and WI

TWS can reflect the basin’s wet condition, which is closely related to flood genera-
tion [43]. WI/MWI is essentially a standardization of the TWSA and reflects the wetness of
the basin. A wetter basin leads to greater risk of flooding in the basin. The DFPA quantifies
flood risk as the difference between the precipitation input and the water storage capacity
on a given day. The difference between daily TWSA and DFPA is TWSAmax minus the runoff
and evapotranspiration leaving the basin during that day (Equations (4) and (S2)) [55]. While
runoff and evapotranspiration may increase during flood events, their numerical values
are much smaller than TWSAmax. After normalization, the difference between MWI and
NDFPI is extremely small, and the two time series almost overlap. Therefore, we shifted
the NDFPI up by 0.1. WI is calculated by detrended and deseasonalized reconstructed
daily TWSA, and MWI is calculated by detrended reconstructed daily TWSA. Due to the
seasonal term, WI is higher than MWI in the spring, autumn, and winter, but lower than
MWI in the summer, rising more slowly. Therefore, the WI based on the deseasonalized
and detrended TWSA responds more slowly to summer floods than MWI and NDFPI, and
it does not even warn about the flood event occurring in the middle and lower reaches of
the YRB in the summer of 2020.

Moreover, MWI has an advantage in regions where in situ observations are sparse
and precipitation products are less accurate because this index can be directly derived from
TWSA observations. The accuracy of the precipitation product also affects the accuracy of
our reconstruction results. Therefore, MWI can be calculated with the daily GRACE gravity
field solutions that do not depend on precipitation products in such regions.

In addition, we evaluate MWI, NDFPI, and WI for the 90th percentile floods in the
2016 YRB flooding event and the 95th percentile floods in the 2016 and 2020 YRB flooding
events (Figure 9). The results show that streamflow exceeds its 90th percentile on 11 May,
which is spring in China. In 2016, both MWI and NDFPI exceed their 90th percentile 3 days
earlier than streamflow, while WI exceeds its threshold on 19 April, which is earlier than the
other two flood indices (Figure 9a). Although the streamflow exceeds the 90th percentile on
11 May, the actual flooding occurs in early July. This might be due to a significant increase
in precipitation in the sub-study area from the end of April (Figure S2), which increases the
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streamflow and TWS, putting the basin at higher risk of flooding. We also analyzed the 95th
percentile floods in 2020 (Figure 9b) and 2016 (Figure 9c). Both MWI and NDFPI exceed the
95th percentile 5 days (20 days) earlier than streamflow in 2020 (2016), demonstrating their
effectiveness in flood early warning once again.
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5.2. Possible Limitations of This Method

The maximum values of the reconstructed monthly TWSA in both 2016 and 2020 are
larger than the values of the GRACE TWSA in the same month (Figure 2). Additionally, the
low ebb of the reconstructed monthly TWSA in 2013, 2018, and 2019 are also significantly
higher than the GRACE TWSA in the same month. According to the China Flood and
Drought Disaster Prevention Bulletin, severe flooding or drought events indeed occurred
in the middle and lower reaches of the YRB in these years. However, our reconstruction
overestimates the TWSA during extreme hydrological events. This is probably because
the hydrological processes during extreme hydrological events are different from those
during normal periods, and the parameters calibrated using the long-term precipitation,
temperature, and monthly GRACE TWSA data may overestimate the residence time of
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water in the basin during the extreme events. Therefore, this factor would lead to the
overestimation of the reconstructed TWSA during the extreme events.

Furthermore, the deviation of the reconstructed monthly TWSA during drought events
shows more obvious deviation than the peak of reconstructed monthly TWSA during flood
events compared to the GRACE TWSA (Figure 2). In addition, both our reconstruction and
the GRACE observation fail to capture the severe drought events in 2011. Many studies
suggested that removing the seasonal term can better identify drought events [56,57].
Many drought indices have also been built on the basis of TWSA with the seasonal term
removed [56–58]. If the seasonal term is not eliminated, there will be a wet summer and
dry winter, which is not conducive to the identification of drought events. Therefore, the
detrended and deseasonalized TWSA can better characterize the drought events in 2011,
2013, 2018, and 2019, although some significant differences still exist at some extreme low
values in 2013, 2018, and 2019 (Figure 10).
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To improve the reconstruction accuracy, additional variables such as soil moisture can
be introduced as input data to calibrate the TWSA reconstruction parameters in the future.
Soil moisture affects not only the rate of infiltration and evapotranspiration, but also the
generation of subsurface and surface runoff, thus affecting the residence time of water in
the basin. When the soil is dry, the infiltration rate is fast, and the evapotranspiration rate
is slow. No runoff is generated until the soil moisture reaches the field moisture capacity.
When the soil is saturated, all subsequent rainfall, after evapotranspiration loss, generates
runoff. Therefore, by incorporating soil moisture to calibrate the decay factor of water
storage, more accurate and reliable TWSA reconstruction may be achieved in future studies.

5.3. Possible Future Applications

In addition to monitoring flood events, the reconstructed daily TWSA can serve as
an input for runoff simulation. Runoff estimation is challenging in areas with harsh en-
vironments and limited observations. Basin runoff data are crucial for water resource
management and natural disaster monitoring. Previous research utilized a data-driven
model to estimate long-term runoff from soil moisture dynamics, with successful results [59].
On the other hand, a study was based on the correlation between in situ river level records
and GRACE-based TWS to reconstruct past TWS on an interannual scale [60]. As illus-
trated in Figure 4b, the reconstructed daily TWSA is highly correlated with in situ runoff
observations, which may indicate that reconstructed TWSA has considerable potential for
runoff estimation, similarly to soil moisture, with an appropriate model.
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6. Conclusions

To monitor the changes in TWS during the 2020 flood in the middle and lower reaches
of the YRB at a daily scale, we utilized a statistical model to reconstruct the daily TWSA us-
ing monthly GRACE observations, daily precipitation, and temperature data. We compared
the reconstructed monthly TWSA with monthly TWSA from CSRM, daily TWSA from
ITSG−Grace2018 solutions, and in situ daily streamflow at the basin scale. Additionally,
the reconstructed daily TWSA at the grid scale was also compared with the time series of
vertical displacement from the GNSS stations to assess the reliability of our reconstructed
results. Moreover, the temporal and spatial variability of TWS during the 2020 floods in
the middle and lower reaches of the YRB was analyzed. Lastly, we compared the in situ
streamflow with NDFPI, MWI, and WI calculated on the basis of the reconstructed daily
TWSA. From our analyses, the following conclusions can be drawn:

(1) The reconstructed monthly TWSA and CSRM monthly TWSA exhibited overall
good consistency, with CC = 0.90, NSE = 0.81, and RMSE = 30.4 mm per month.

(2) The reconstructed daily TWSA in the study area exhibited an increasing trend
from early June, reaching a peak of 206.34 mm on 19 July, and then gradually subsiding
until September. The reconstructed TWSA successfully captured the daily changes in TWS,
while the monthly GRACE data could not capture the dynamic changes in terrestrial water
storage within 1 month.

(3) The MWI and NDFPI, calculated from the reconstructed daily TWSA, effectively
captured the temporal variation of flooding processes, as both indices exceeded their 90th
percentile 7 days earlier than in situ streamflow. This indicates that they are useful for flood
monitoring and early warning.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/rs15123192/s1: Figure S1. Comparison of three soil moisture products;
Figure S2. Accumulated precipitation in 2016 and 2020. Ref. [61] is cited in the Supplementary
Materials section.
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GRACE-FO GRACE Follow-On
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FPI Flood potential index
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DFPA Daily flood potential amount
YRB Yangtze River Basin
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GLDAS Global Land Data Assimilation System
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