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Abstract: The terrestrial water cycle is important for the arid regions of central Asia (CA). In this
study, the spatiotemporal variations in the three climate variables [temperature (TMP), precipitation
(PRE), and potential evapotranspiration (PET)] and terrestrial water cycle components [soil moisture
(SM), snow water equivalent (SWE), runoff, terrestrial water storage (TWS), and groundwater storage
(GWS)] of CA are comprehensively analyzed based on multiple datasets from 2003 to 2020. The
major results are as follows: (1) Significant decreasing trends were observed for the TWS anomaly
(TWSA) and GWS anomaly (GWSA) during 2003–2020, indicating serious water resource depletion.
The annual linear trend values of TWSA and GWSA are −0.31 and −0.27 mm/a, respectively. The
depletion centers are distributed over most areas of western and southern Kazakhstan (KAZ) and
nearly all areas of Uzbekistan (UZB), Kyrgyzstan (KGZ), and Tajikistan (TJK). (2) TMP and PET have
the largest significant negative impacts on SM and SWE. The PRE has a positive impact on terrestrial
water variations. (3) During 1999–2019, water withdrawal did not significantly increase, whereas
TWS showed a significant decreasing trend. Our results provide a comprehensive analysis of the
basic TWS variation that plays a significant role in the water resource management of CA.

Keywords: central Asia; terrestrial water components; groundwater; soil moisture; snow water
equivalent; GRACE

1. Introduction

Water is one of the most essential resources on Earth and is crucial for supporting life
and sustaining ecosystems [1,2]. The terrestrial water cycle plays a critical role in regulating
the distribution and availability of water resources [3,4], which are fundamental to human
society and natural systems [5,6]. The terrestrial water cycle involves the movement of
water between the atmosphere, land surface, and subsurface, including soil moisture,
groundwater, snow, and ice [7,8]. Understanding the dynamics of the terrestrial water cycle
is essential for managing water resources, maintaining biodiversity, and predicting the
impact of climate change on the water cycle [9,10].

Soil moisture (SM) is a critical component of the terrestrial water cycle that influences
plant growth and evapotranspiration, plays a significant role in regulating the water bal-
ance on land, and is an essential indicator of drought conditions [11]. The snow water
equivalent (SWE) is another crucial component of the terrestrial water cycle that repre-
sents the amount of water contained in the snowpack [12,13]. It is an important input
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for water resource management, particularly in mountainous regions where snowmelt
contributes significantly to streamflow during the spring and summer months. Changes in
the SM and SWE significantly affect water availability, ecosystem health, and agricultural
production [14,15].

The terrestrial water storage anomaly (TWSA) and groundwater storage anomaly
(GWSA) provide insight into the dynamics of terrestrial water cycles. TWSA is an indicator
of changes in terrestrial water storage, representing the difference between actual water
storage and the long-term average. The GWSA represents changes in the actual groundwa-
ter storage relative to the long-term average. Both the TWSA and GWSA are essential for
monitoring drought conditions, predicting floods, and managing water resources in arid
and semi-arid regions [2,16,17].

Central Asia (CA) is one of the most water-stressed regions in the world, and water
scarcity is exacerbated by the increasing water demand and climate change [18]. This
region faces several challenges related to the terrestrial water cycle, including limited
water resources, uneven distribution in time and space, declining groundwater levels,
and increased water demand for agriculture and energy production. Moreover, with
its significantly increased temperature (Hu et al., 2014), the water resource problems in
CA have become more serious. The previous literature indicates that terrestrial water
storage and groundwater have largely depleted. The soil moisture in northwestern China
does not have similar variations based on multiple different datasets [19,20]. However,
for terrestrial water storage and its components, there are some important and urgent
problems to be answered, which play a key role in understanding the water resource
variations. First, what are the temporal and spatial variations in terrestrial water storage
and its components? Second, what are the relationships between terrestrial water storage
and the climate variables? A strong joint research effort is required to understand the
current changes in the terrestrial water cycle and climatic system and the interactions
between them.

Therefore, to address the above problems, we aim to provide an overview of the current
state of knowledge on the terrestrial water cycle in CA, with a particular focus on the SM,
SWE, runoff, groundwater storage anomaly (GWSA), and TWSA. We review the existing
literature on the topic, highlighting the gaps in knowledge and research requirements to
improve our understanding of the terrestrial water cycle and relationships with the climate
variables in this region. In the end, we discuss the implications of our findings on water
resource management and biodiversity conservation and identify the research priorities for
advancing our understanding of the terrestrial water cycle in CA.

2. Materials and Methods
2.1. Study Area

With a total area of 566 × 104 km2, central Asia (CA) is situated between the lati-
tudes of 30◦ 20′N and 50◦ 30′N and the longitudes of 46◦ 30′E and 96◦ 30′E (Figure 1).
Kazakhstan (KAZ; 272.49 × 104 km2), Kyrgyzstan (KGZ; 19.99 × 104 km2), Tajikistan
(TJK; 14.31 × 104 km2), Turkmenistan (TKM; 49.12 × 104 km2), and Uzbekistan (UZB;
44.74 × 104 km2) are the five nations that make up CA. [21,22]. These states are present
in the hinterlands of the Eurasian continent and have complex terrains and geomorphic
features, including major lakes, rivers, and seas, such as Balkhash Lake, Issyk-Kul Lake,
the Aral Sea, Syr River, and Amu River [23,24]. The study area of CA is known for its
diverse geography and varying elevations and climates, which support a range of ecosys-
tems and habitats. This region is also home to a rich cultural heritage, with ancient trade
routes and Silk Road cities that have shaped its history and development. Studying this
area is important for understanding the complex relationships between natural systems,
human societies, and environmental changes. This has significant implications for water
resource management, agriculture, biodiversity conservation, and sustainable development
in the region.
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Figure 1. Research area: central Asia (CA) and territories of five countries, namely, Kazakhstan (KAZ),
Kyrgyzstan (KGZ), Tajikistan (TJK), Uzbekistan (UZB), and Turkmenistan (TKM).

In the five states of CA, the total water resources are mainly composed of surface
water resources and groundwater resources [25]. The rich glacier resources are the major
water resources for the terrestrial water storage components (e.g., rivers and lakes). The
total terrestrial water storage of CA is about 1.877 × 108 m3, which has uneven spatial
distributions with the largest terrestrial water resources in KAZ, followed by TJK, KGZ,
UZB, and TKM. The groundwater is mainly sourced from precipitation, snow water, and
surface water. In the former Soviet republics, irrigation-intensive industries sucked water
bodies dry in CA, which resulted in the serious Aral Sea crisis together with climate
change [26].

2.2. Datasets

To investigate the variations in terrestrial water storage and their relationships with
climate variables, in this study, we employed climate data and terrestrial water storage
data sourced from multiple datasets (Table 1). In particular, the climate data include
three variables, temperature (TMP), precipitation (PRE), and potential evapotranspiration
(PET), which were obtained from the Climatic Research Unit (CRU) TS v4.06. The three
climate variables have the same spatial resolution of 0.5◦ × 0.5◦, covering the period of
1901–2020 [27]. In this study, the climate data were obtained from 2003 to 2020, which
is consistent with the period of the terrestrial water storage and its components [28].
Analyzing long-term changes in TMP, PRE, and PET will help better understand the
relationship between the water cycle and climate change. The performance of CRU datasets
over CA has been evaluated in previous studies [29,30], and they have suggested that CRU
datasets can effectively capture climatic variations and spatiotemporal characteristics in CA.

The terrestrial water storage components include SM, SWE, runoff, and groundwater.
SM, SWE, and runoff datasets were downloaded from the Global Land Data Assimila-
tion System (GLDAS) of NASA’s Earth Observing System Data and Information System
(EOSDIS) Data Archive [28,29] with the same spatial resolution of 0.25◦ × 0.25◦. The
GLDAS uses advanced land surface modeling and data assimilation techniques to fuse
satellite remote sensing observations and ground observations to generate the best fields
that provide land surface states and fluxes [31–33]. The system drives multiple offline land
surface models (e.g., Noah and Variable Infiltration Capacity (VIC) models) that integrate
high-resolution data based on observations with global coverage. The GLDAS-2.0, GLDAS-
2.1, 3-hourly, and monthly data products from the Noah land surface model (LSM) were
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divided into four layers (0–7, 7–28, 28–100, and 100–289 cm). The monthly GWSA products
from the NOAH model simulations of GLDAS-2.0 GWSA (2003–2020) and GLDAS-2.1
GWSA (2000-present) were used in this study over a selected depth range of 0–10 cm, with
a spatial resolution of 0.25◦ × 0.25◦.

Table 1. Datasets used in this study.

Variable Acronym Period Spatial Resolution Source

Temperature TMP 1901–2020 monthly 0.5◦ × 0.5◦ CRU TS v 4.06 https://crudata.uea.ac.uk/cru/data/hrg/
(accessed on 28 December 2022)
monthly surface climate China V2.0

Precipitation PRE 1901–2020 monthly 0.5◦ × 0.5◦

Potential
evapotranspiration PET 1901–2020 monthly 0.5◦ × 0.5◦

Soil moisture SM 2003–2020 monthly 0.25◦ × 0.25◦ https://search.earthdata.nasa.gov/ (accessed on
28 December 2022)Snow water equivalent SWE 2003–2020 monthly 0.25◦ × 0.25◦

Runoff Runoff 2003–2020 monthly 0.25◦ × 0.25◦
https://grace.jpl.nasa.gov/data/get-data/ (accessed on
28 December 2022)

Terrestrial water storage
anomalies TWSA 2003–2020 monthly 0.25◦ × 0.25◦

Groundwater strong
anomalies GWSA 2003–2020 monthly 0.25◦ × 0.25◦ https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS

(accessed on 28 December 2022)

The TWSA data are derived from the Gravity Recovery and Climate Experiment
(GRACE) products, which have been widely used to monitor the water storage and water
fluxes in regional and global water resources analyses [34–37]. Launched in March 2002,
the twin satellites known as GRACE analyze changes in the Earth’s gravitational field.
Their data are used to examine changes in water supplies over land, ice, and oceans
related to climate change and human activities [23]. Monthly fluctuations in the Earth’s
gravity field over the basin can be used to detect vertically integrated changes in the water
reserves of the planet. The monthly GRACE datasets are from April 2002 to present day,
with spatial resolutions of 0.25◦ × 0.25◦, 0.5◦ × 0.5◦, and 1◦ × 1◦. Generally, the TWSA
data are derived from the Release dataset of the monthly GRACE Tellus products of the
Centre for Space Research (CSR), the Geo Forschungs Zentrum (GFZ), the Jet Propulsion
Laboratory (JPL), CSR GRACE Mascons and GRCTellus JPL-RL06 Mascons. Since June
2018, the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) has extended
the 15-year monthly mass change record of the GRACE mission, which ended in June 2017.
The GRACE-FO instrument and flight system performance improved over GRACE [38].
Extending the global mass change data record: GRACE Follow-On instrument and science
data performance [39].

However, in this study, there is no observed record from meteorological station,
hydrologic station, and groundwater well because it is very hard to obtain the observed
record in CA.

2.3. Methods

In this study, before the comprehensive analysis of the terrestrial water cycle variations
and their relationships with the three climate variables, the spatial resolutions of different
variables are resampled using the bilinear interpolation method on the CRU dataset of
0.5◦ × 0.5◦. The missing data of GRACE are filled using linear interpolation and monthly
mean values. The record gap between the GRACE and GRACE-FO is filled by the convolu-
tional neural network. Then, a continuous TWSA time series from the period of 2003 to
2020 is obtained as the study period.

The GWSA is derived from the TWSA, SM, and SWE according to the terrestrial water
storage components and the water resource characteristics over CA as follows [16].

GWSA = TWSA − SMA − SWEA

where the SMA and SWEA are the SM anomaly and SWE anomaly based on the monthly
mean value of the period of 2004–2009.

https://crudata.uea.ac.uk/cru/data/hrg/
https://search.earthdata.nasa.gov/
https://grace.jpl.nasa.gov/data/get-data/
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
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The linear trends of the climate factors, TWSA, and its components (i.e., SM, SWE,
runoff, and GWSA) are computed using the linear least-squares method. The correlations
between the climate factors and TWSA and its components are quantified by the correla-
tion coefficient (CC). The significance of the linear trend and CC is examined at the 95%
significant confidence level (p < 0.05). All the spatial and temporal variations are analyzed
at annual and seasonal scales. The four seasons are defined as MAM (March, April, and
May), JJA (June, July, and August), SON (September, October, and November), and DJF
(December, January, and February).

3. Results

In this section, we present the spatiotemporal characteristics of the three climate
variables (i.e., TMP, PRE, and PET) and four terrestrial water cycle components (i.e., SM,
SWE, TWSA, and GWSA) from 2003 to 2020. For climatic variables, only the annual scale
was considered. For SM, SWE, TWSA, and GWSA, both annual and seasonal scales were
considered. A linear trend was used to illustrate the spatiotemporal variations in the
hydro climatic variables, which were obtained using the linear least-squares method at a
confidence level of 95% (p < 0.05).

3.1. Temporal and Spatial Characteristics of TMP, PRE, and PET

In this section, the temporal and spatial characteristics of the three climate variables,
TMP, PRE, and PET, are explored using linear trends between 2003 and 2020. The an-
nual variations in TMP, PRE, and PET provide the background of climate change for the
terrestrial water cycle components.

3.1.1. Temporal Characteristics of TMP, PRE, and PET

We observed a significant decreasing linear trend in the annual PRE, with a value
of −0.46 mm/y (Figure 2a and Table 2). Large positive annual PRE anomalies were
observed in 2003, 2009, 2013, and 2016, suggesting high PRE values during these years.
Large negative anomalies in PRE were observed in 2005, 2008, 2010, 2012, 2014, and 2017,
indicating lower PRE values during these years.

Table 2. Linear trends of the climate variables (i.e., TMP, PRE, and PET) and terrestrial water cycle
components (i.e., SM, SWE, runoff, TWSA, and GWSA) at annual and seasonal scales across CA from
2003 to 2020, where * indicates that the linear trend is significant at the 95% confidence level.

ANN MAM JJA SON DJF

TMP 0.0201 0.0637 0.0486 −0.1019 * 0.0944
PRE −0.4705 −0.2722 −0.4243 0.128 0.6195
PET 1.9915 0.8718 1.6445 −0.7137 0.4194
SM −0.0207 −0.0676 −0.0346 0.0554 −0.0343

SWE 0.0269 −0.162 −0.0399 * 0.0353 0.1731
RUNOFF −0.0005 −0.0002 −0.0002 0.0003 −0.0001

TWSA −0.3065 * −0.3291 * −0.3483 * −0.2464 * −0.2917 *
GWSA −0.2742 * −0.2748 * −0.3033 * −0.222 * −0.2796 *
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The annual PET showed a significant increasing linear trend in CA, with a value of
1.99 mm/yr over 18 years (p < 0.05). Positive TMP anomalies were observed in 2004, 2006,
2008, 2010, 2012, 2017, and 2020, indicating higher temperatures. Conversely, negative
TMP anomalies were observed in 2003, 2009, 2011, 2014, and 2016, indicating cooler
temperatures (Figure 2c).

3.1.2. Spatial Characteristics of TMP, PRE, and PET

The spatial distributions of the linear trends of annual PRE, TMP, and PET are shown
in Figure 3. The annual PRE and PET showed large spatial differences (Figure 3a,c). The
annual TMP showed a consistently increasing linear trend over most of the study area.

In particular, the positive linear trends of the annual PRE were distributed over north-
ern KAZ and most areas of TKM, with centers in the northeastern KAZ (Figure 3a). Parts of
western KAZ and most areas of TJK and KGZ had decreasing centers. Moreover, positive
linear trend areas accounted for 39% of the total, with a significant trend area of 4%. The
negative linear trend areas of the annual PRE, as shown in Figure 3a, accounted for 61%,
and the significantly negative trend areas accounted for 2%. The positive linear trends of
the annual TMP were observed across most western areas of KAZ and TKM, wherein the
centers were located in the western region of KAZ (Figure 3b). However, the southeastern
parts of TJK and KGZ exhibited decreasing centers. Furthermore, areas displaying posi-
tive linear trends accounted for 97% of the total area, whereas those displaying negative
trends accounted for only 3%, as shown in Figure 3b. As shown in Figure 3c, the positive
linear trends of the annual PET are concentrated in western KAZ and northwestern UZB.
Conversely, the northern and southern regions of KAZ and TJK, respectively, showed
decreasing annual PET trends. Additionally, the significant trend areas accounted for 9%
of the total area, with the remaining 88% showing a positive linear trend. Areas showing
negative trends accounted for 12% of the total trend areas, as shown in Figure 3c.
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3.2. Temporal and Spatial Characteristics of SM and SWE

In this section, we examine the temporal and spatial characteristics of two crucial
climate variables, SM and SWE, by analyzing their linear trends between 2003 and 2020.
We focused on the annual and seasonal variations in SM and SWE, which provide insights
into components of the terrestrial water cycle. Exploring these variables can help obtain a
better understanding of the changes in SM and SWE in CA.

3.2.1. Temporal Characteristics of SM and SWE

CA is a large and diverse region spanning several countries, including KAZ, UZB,
TKM, TJK, and KGZ. The temporal characteristics of the SM in this region can vary depend-
ing on the specific location and local climate conditions. However, in some areas, the timing
and amount of snowmelt are unpredictable, leading to fluctuations in SM levels. Overall,
the annual and seasonal SM patterns in CA were influenced by the arid to semi-arid climate
and topography of the region. Climate and land-use changes, such as increased irrigation
and land degradation, can also have a significant impact on SM dynamics in the region.

Considering the annual and seasonal SWE, the temporal characteristics of SWE in CA
varied depending on the specific location and elevation, as well as other factors, such as the
weather patterns and topography. However, the annual SWE in CA is typically the highest
in the winter months, with peak accumulation occurring in February or March. In spring,
owing to temperature rise and the melting of snow, SWE begins to decrease. Seasonally,
the SWE in CA varies depending on the region. For example, in the high-altitude regions
of the Tian Shan and Pamir Mountains, the winter SWE accounts for more than 90% of the
annual total, whereas in lower-elevation areas, such as the arid plains of KAZ, the SWE
may be negligible or nonexistent. Notably, significant variability in SWE was observed
from one year to another owing to weather patterns, and climate change is expected to
have an impact on the timing and amount of SWE in CA in the following decades.
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3.2.2. Spatial Characteristics of SM and SWE

Figure 4 depicts the spatial distributions of the linear trends obtained using the linear
least-squares approach. To further analyze the data, we computed the percentages of areas
with significantly increasing annual SM trends, as shown in Figure 5a. The results revealed
that 42% of the areas exhibited a positive linear trend of annual SM of 3%. The areas
showing significant increases in SM were mainly concentrated in KAZ, the western areas
of TJK, and southwestern KGZ, whereas most of southwestern KAZ and southern TKM
showed significantly decreasing SM trends. In particular, 16% of the areas demonstrated
a negative linear trend in the annual SM, accounting for 58% of the total across the study
area (Figure 4a).
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The annual SWE was analyzed by determining the spatial distribution of linear trends
using the linear least-squares approach. Additionally, the percentages of areas with signifi-
cantly increasing annual SWE trends were calculated, as shown in Figure 5b. The findings
indicated that 46% of the areas showed a positive linear trend of annual SWE of 4%. The



Remote Sens. 2023, 15, 3318 9 of 20

areas showing significant increases in SWE were primarily concentrated in KAZ and the
western, northern, and eastern regions of the study area. In contrast, the eastern TJK region
shows a significantly decreasing trend of annual SWE. Notably, 7% of the areas exhibited a
negative linear trend of annual SWE, accounting for 54% of the total across the study area
(as shown in Figure 4b).

Figure 5 displays the spatial distributions of the linear trends of seasonal SM during
the period of 2003–2020. DJF, MAM, and JJA have similar spatial distributions with the
negative trends across most areas of CA (Figure 5a–c), and the significant decreased trends
are distributed in western CA. The positive trends of the three seasons have the percentages
of 42%, 26%, and 31% mainly distributed in parts of northern KAZ. The positive trend areas
of SON SM are larger than the other seasons with the area shown in Figure 5. Moreover,
the significant positive areas are mainly distributed across northern KAZ (Figure 5d), and
the significant negative areas are distributed in northwestern KAZ with a percentage value
of 17%.

The spatial distribution of linear trends of seasonal SWE was evaluated over 18 years
from 2003 to 2020. Figure 6 shows the linear trends of seasonal SWE during MAM, JJA,
SON, and DJF. Positive linear trends in seasonal SWE were observed over the northern
and eastern regions of the study area, except for areas showing the greatest increase in
SWE (Figure 6). These trends differ from the increasing trend observed for the annual
SWE. During SON (Figure 6d), the SWE increased in most areas, but a significant drying
trend was observed in KGZ, KAZ, TJK, UZB, and TKM. However, the northeastern and
southeastern KAZ showed a significant increase in SWE of 78%. During JJA (Figure 6c),
the SWE showed a significant increasing trend in the northeastern KAZ and southern TJK,
whereas most areas showed a decreasing trend, except for southeastern TJK. Conversely,
during MAM and DJF (Figure 6a,b), larger areas showed increasing trends than during
DJF and SON. Regions showing increasing trends were mainly distributed in KAZ. We
observed that the SWE in the western parts of the arid region of KGZ decreased slowly
during spring, whereas it increased as a whole in autumn, wherein the speed of increase
gradually decreased from northern KAZ to southern and eastern TJK.
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3.3. Temporal and Spatial Characteristics of Runoff

In this section, we analyze the temporal and spatial characteristics of a crucial climate
variable, runoff, by examining its linear trends from 2003 to 2020. We primarily focused
on the annual and seasonal variations in runoff, which can provide valuable insights into
the components of the terrestrial water cycle. The goal of this study was to gain a deeper
understanding of changes in the runoff in CA.

3.3.1. Temporal Characteristics of Runoff

The annual runoff showed a significant negative linear trend, with a value of−0.0005 cm/a.
Years with a positive anomaly in runoff occur 50% of the time, whereas those with negative
anomalies comprise the remaining 50%. Among the four seasons, the greatest decreases in
runoff were observed during JJA, MAM, DJF, and SON; these seasons showed significant
negative linear trends of −0.0002, −0.0002, −0.0001, and 0.0003 cm/a, respectively.

3.3.2. Spatial Characteristics of Runoff

In this section, we determine the spatial distribution of linear trends of the annual
runoff. Our findings indicate that the positive linear trends are primarily distributed over
the northeastern areas of KAZ, the northwestern parts of UZB, and the northeastern parts of
KGZ, with centers in the northeastern part of the KAZ, as depicted in Figure 7. However, the
northwestern parts of KAZ, including the region bordering northern TJK, the southeastern
part, and a small portion of the northeastern parts of KGZ showed decreasing centers.
Furthermore, areas showing positive linear trends accounted for 50% of the total, wherein
areas showing significant trends accounted for 13%. In contrast, as shown in Figure 7, 50%
of the areas showed negative linear trends, and areas showing significant negative trends
accounted for 17%. Notably, areas showing negative trends were distributed over a more
extensive region than those showing positive trends. Overall, the results suggest that the
northeastern part of KAZ shows a positive annual runoff trend, whereas the northwestern
parts of KAZ and some parts of KGZ show a negative annual runoff trend. However,
further research is required to determine the underlying causes of these trends and their
potential impacts on the region.
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Figure 8 illustrates the spatial distribution of linear trends of seasonal runoff over
18 years from 2003 to 2020. Linear trends in seasonal runoff are shown for MAM, JJA,
SON, and DJF. Negative linear trends in season runoff were observed in the southeastern
regions of CA, except for areas with the greatest decrease in runoff (Figure 8). These
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trends differed from the decreasing trends of runoff during MAM (Figure 8b), wherein the
runoff decreased in most areas, but a significant drying trend was observed in KGZ, TJK,
KAZ, and UZB. However, the southeastern study area showed a significant decrease in
runoff of 51%. During SON (Figure 8d), runoff showed a significant increasing trend in the
southwestern areas of UZB and northern TKM. Although most areas showed a decreasing
trend, there were exceptions in eastern TJK and southern KGZ. Conversely, during DJF
and JJA (Figure 8a,b), larger areas showed increasing trends in northern TJK, eastern and
northwestern UZB, and southern KAZ than during DJF. The regions with increasing trends
were mainly distributed in KAZ and TJK. Runoff in the southern parts of the arid region
of KAZ and northeastern UZB decreased slowly during winter, whereas it increased as a
whole in autumn, wherein the rate of increase gradually decreased from KGZ to TJK.
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3.4. Temporal and Spatial Characteristics of TWSA

In this section, we analyze the temporal and spatial characteristics of TWSA by exam-
ining its linear trends from 2003 to 2020. We focused on the annual and seasonal variations
in the TWSA, which can provide valuable insights into the components of the terrestrial
water cycle. Through this evaluation, we aimed to gain valuable insights regarding changes
in the TWSA in CA.

3.4.1. Temporal Characteristics of TWSA

A significant negative linear trend was observed in the annual TWSA derived from
JPL, with a value of −0.3065 cm/a. The percentage of positive anomaly years was 32%, and
that of negative anomaly years was 68%. Among the four seasons, the largest decrease was
observed in JJA, followed by MAM, DJF, and SON, with significant negative linear trends
of −0.3483, −0.3291, −0.2917, and −0.2464 cm/a.
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3.4.2. Spatial Characteristics of TWSA

In this section, we analyze the annual TWSA and determine the spatial distribution of
linear trends. Positive linear trends were distributed over northeastern KAZ and most areas
of TKM, wherein the centers were observed in the northeastern part of KAZ, as depicted
in Figure 9. However, southwestern KAZ and short western TKM showed decreasing
centers. Additionally, areas showing positive linear trends accounted for 32% of the total,
wherein areas showing significant trends accounted for 2%. In contrast, as shown in
Figure 9, areas showing negative linear trends accounted for 68%, and those showing
significantly negative trends accounted for 49%.
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Figure 9. Spatial variation in annual TWSA trends in central Asia (linear trend).

Figure 10 shows the spatial distribution of linear trends in the surface TWSA during the
vegetation period from 2003 to 2020 for four seasons: MAM, JJA, SON, and DJF. Positive linear
trends in the TWSA during the growing season were observed in the northern and eastern
regions of the study area, except for areas with the most decreased TKM TWSA (Figure 10b).
These trends differ from the decreasing trend observed in the annual TWSA (Figure 9). For
instance, during MAM (Figure 10b), the TWSA decreased in most areas, and a significant
drying trend was observed in KGZ and KAZ. However, southwestern KAZ, northwestern
TKM, and eastern TJK experienced a significant decrease in TWSA of 47%, but positive trends
were observed in northeastern KAZ (with a value of 27%). During JJA (Figure 10c), the TWSA
showed a significant increasing trend in northwestern KAZ, central TKM, and southern UZB,
whereas most areas showed a decreasing trend, except for southwestern KAZ and western
TKM. Conversely, during SON and DJF (Figure 10a,d), larger areas showed decreasing trends
than during MAM and JJA. The regions showing increasing trends were mainly distributed in
KAZ and TKM. We observed that the TWSA in the southwestern parts of the arid region of
KAZ decreased slowly during spring, whereas it increased as a whole in autumn, wherein the
increasing speed gradually decreased from northeastern KAZ to southern and eastern TJK
and TKM.
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3.5. Temporal and Spatial Characteristics of GWSA

CA is an arid region with limited water resources, and groundwater is a vital source
of water for agricultural, industrial, and domestic use. A study on the temporal and spatial
characteristics of GWSA from 2003 to 2020 in CA found that the region has experienced
significant changes in groundwater levels over the years. Furthermore, the study revealed
that GWSA mainly occurred in the eastern part of CA, particularly in the Tarim and Amu
Darya basins. This anomaly is characterized by a persistent decline in groundwater levels,
indicating the unsustainable use of terrestrial water cycle components in these regions.
In this section, we analyzed the temporal and spatial characteristics of the GWSA during
2003–2020, both at annual and seasonal scales.

3.5.1. Temporal Characteristics of GWSA

A significant negative linear trend was observed in GWSA derived from the JPL and
GLDAS, with a value of −0.2742 cm/a. The percentage of positive anomaly years was 32%,
and that of negative anomaly years was 68%. Among the four seasons, the largest decrease
was observed in JJA, followed by DJF, MAM, and SON, with significant negative linear
trends of −0.3033, −0.2796, −0.2748, and −0.2222 cm/a.

3.5.2. Spatial Characteristics of GWSA

Approximately 47% of the areas in CA showed significant negative trends for the
annual GWSA, and approximately 3% showed significant positive trends (Figure 11). The
trends in other areas were insignificant. The spatial distributions of the linear trends in
GWSA were very similar, with negative centers of 68% in southwestern KAZ, central TJK,
southwestern KGZ, and western TKM. Positive centers were observed in northeastern KAZ,
northeastern TKM, and southeastern UZB (32%) (Figure 11). Most areas in CA showed
decreasing trends for GWSA.
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Compared with the annual GWSA, the areas with significant trends in the seasonal
GWSA in JJA were smaller, especially for areas with significant negative trends of 48%
(Figure 12c). The negative centers in parts of southwestern KAZ and western TKM show
decreasing trends in seasonal GWSA, and positive centers showing increasing linear trends
in seasonal GWSA during JJA still appear in the same regions as the annual GWSA. During
MAM, most areas of KAZ, western–southern TKM, and western and eastern TJK showed
insignificant changes of 41%, as shown in Figure 12b. During the other two seasons, areas
showing significant positive/negative trends in GWSA were equivalent to those during
SON and DJF (Figure 12a,d). The areas showing significant positive trends during SON
and JJA were larger than those during SON and DJF.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 11. Spatial variation in the annual GWSA in central Asia. 

Compared with the annual GWSA, the areas with significant trends in the seasonal 

GWSA in JJA were smaller, especially for areas with significant negative trends of 48% 

(Figure 12c). The negative centers in parts of southwestern KAZ and western TKM show 

decreasing trends in seasonal GWSA, and positive centers showing increasing linear 

trends in seasonal GWSA during JJA still appear in the same regions as the annual GWSA. 

During MAM, most areas of KAZ, western–southern TKM, and western and eastern TJK 

showed insignificant changes of 41%, as shown in Figure 12b. During the other two 

seasons, areas showing significant positive/negative trends in GWSA were equivalent to 

those during SON and DJF (Figure 12a,d). The areas showing significant positive trends 

during SON and JJA were larger than those during SON and DJF. 

 

Figure 12. Spatial variation in the seasonal GWSA in central Asia. Figure 12. Spatial variation in the seasonal GWSA in central Asia.



Remote Sens. 2023, 15, 3318 15 of 20

4. Discussion
4.1. Relationships between the Climate Variables and the Different Terrestrial Water Components

The terrestrial water cycle components of CA are complex [1,14], and the relationships
between the different components need to be clarified [21]. Based on a previous study,
we evaluated the impacts of PRE and TMP on various hydrological variables, such as
TWSA, TMP, PRE, PET, SM, SWE, RUNOFF, and GWSA. The study found that PRE had
positive impacts on terrestrial water cycle components, as indicated by the similar variations
between the CCs of the two variables shown in Figure 13. Additionally, increased CCs were
observed between the TWSA and several other variables, including PET and GWSA, when
compared with that between TMP and other variables. However, TMP negatively impacted
several other hydrological variables, such as PRE, SM, SWE, and TWSA, as indicated by
the negative CCs. In particular, the CCs between TMP and PRE, SM, SWE, TWSA, and
GWSA are −0.14 *, −0.78 *, −0.72 *, −0.13, and −0.17 *, respectively. Overall, PRE was
found to have a positive impact on the TWSA and other hydrological variables, whereas
TMP has negative impacts on some of these variables. Notably, these findings may depend
on the specific location and periods studied as well as the methods used for analysis.
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Figure 13. The CC values for PRE, TMP, PET, SM, SWE, RUNOFF, TWSA, and GWSA. The * represents
that the significance of CC should be a negative or positive trend, indicating the comparison of the
terrestrial water cycle component with the seventh climate factor.

4.2. Water Resources and Water Withdrawal over Central Asia during 1999–2019

This section presents a comprehensive analysis of the rising water demand and decreas-
ing terrestrial water cycle components, which are closely related to sustainable development
goal (SDG) 6.4.2, related to the water and water management strategies in CA. According to
SDG 6.4.2, the level of water stress is freshwater extraction as a share of available freshwater
resources; this represents the ratio between the total freshwater extraction of the main
sectors of the economy and the total renewable freshwater resources, considering the water
requirements of the environment (https://www.fao.org/sustainable-development-goals/
data/en, accessed on 21 December 2022).

The variability in cultivated areas (arable land and permanent crops) significantly
impacts water consumption and abstraction, particularly in dry regions. This section

https://www.fao.org/sustainable-development-goals/data/en
https://www.fao.org/sustainable-development-goals/data/en
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analyzes the variation in the crop area of five countries (KAZ, KGZ, TJK, TKM, and UZB)
in CA to illustrate the change in water resources in the dry regions of CA.

The cultivated area of KAZ decreased from 3220 × 104 ha in 1999 to 2999 × 104 ha
in 2019 at a rate of 10.5 × 104 ha/year, representing a decrease of 0.99%. Considering
UZB, the sown area decreased from 483 × 104 ha in 1999 to 475 × 104 ha in 2009 and then
increased to 444 × 104 ha in 2019. The sown area of KGZ decreased from 14.3 × 104 ha
in 1999 to 13.64 × 104 ha in 2019. The sown area slightly decreased from 88.6 × 104 ha in
1999 to 85.3 × 104 ha in 2019 in TJK. In TKM, the sown area increased from 189 × 104 ha in
1999 and 2004 to 205 × 104 ha in 2014 and 2019 (Table 3). This indicates that KAZ had the
largest cultivation area, followed by UZB and TKM. Considering the irrigated area, KAZ
had a very small percentage of cultivated area, and the cultivated areas of the other four
countries almost accounted for the remaining irrigated area. For example, UZB had the
largest irrigated area of 456 × 104 ha in 2009, followed by KAZ (2874 × 104 ha) and TKM
(205 × 104 ha). TJK has the smallest irrigated area, with a value of 88.4 × 104 ha in 2009.

For each of the three water resource variables, each country had the same value in
five years, namely, 1999, 2004, 2009, 2014, and 2019, indicating that the renewable water
resources of the five countries did not change during 1999–2019 (Table 3). Significant
differences were observed in renewable water resources among the five countries. In
particular, KAZ has the largest total renewable water resources, total renewable surface
water, and total renewable groundwater, with values of 108.4, 100.6, and 33.85 Gt/y during
1999–2019, respectively. The total renewable water resources, total renewable surface water,
and total renewable groundwater in CA were 227.57, 207.09, and 62.745 Gt/y, respectively.
However, the total renewable groundwater in CA is vulnerable and sensitive, with a
small share of total renewable water resources (i.e., 227.57, 207.09, and 62.745 Gt/y, with
percentages of 5.8, 6.4, and 21%, respectively). These results were consistent with the water
stress values for CA from SDG 6.4.2 (Table 3). Moreover, comparing the annual TWSA of
reservoir depletion, the decrease in the annual TWSA was 5.8% of the total renewable water
resources for CA at the current rate of depletion, indicating that renewable water supplies in
some states may have been depleted in 1999. During 1999–2019, in UZB and TKM, the water
used during the total withdrawal (i.e., 59.8 Gt/y in 1999 and 57.1 Gt/y in 2005 for UZB;
27.95 Gt/y in 2004 and 27.95 Gt/y in 2009 for TKM) and water extraction for agriculture
(i.e., 54.1 Gt/y in 2009 and 51.8 Gt/y in 2014 for UZB; 27.95 Gt/y in 2014 and 27.95 Gt/y
in 2019 for TKM) was greater than that in KAZ, KGZ, and TJBK. In terms of water use in
different years, the total water withdrawal rates of KAZ and TKM increased from 23.5 Gt/y
(1999) to 25 Gt/y (2019) and 24.91 Gt/y (1999) to 27.95 Gt/y (2019), respectively. In other
countries, the total water withdrawal decreased due to a decrease in the cultivated area.
Except for TJK, all the other countries have seen a decline in agricultural water use based
on agricultural water withdrawal rates. Moreover, the percentage of water extraction for
agricultural use regarding total water withdrawal is declining, mainly due to the decrease
in cultivated areas, especially in CA, with a percentage decrease from 10% in 1999 to 9%
in 2019. This also shows that water extraction for agricultural use in CA accounted for
nearly all water extraction activities (over 10% in CA). Regarding the relationship between
annual water depletion in terms of the TWSA and total water withdrawal, total water
withdrawal in CA has little effect on the decrease in TWSA (e.g., 10% in 1999 vs. 10% in
2019). Finally, the value of water stress variables (%) in CA decreased from 2.9% in 1999 to
2.8% in 2019 and from 3% in 2009 to 2.9% in 2004, indicating the severity of water scarcity
in CA. Reduced water stress has also been observed in CA. Compared with that in other
countries, water stress appears to be higher in TJK and UZB, which is consistent with their
higher levels of water storage (Table 3). Moreover, a water load of more than 100% in
TKM and UZB indicates that the total renewable freshwater resources cannot meet the
socioeconomic demand for water, which may lead to the over-exploration of groundwater.
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Table 3. Variables related to land use, water withdrawal, and sustainable development in the
Sustainable Development Goal (SDG) 6.4.2, including CA: cultivated area (arable land and permanent
crops; 10,000 ha); TRWR: total renewable water resources (Gt/y); TRSW: total renewable surface
water (Gt/y); TRGW: total renewable groundwater (Gt/y); AWW: agricultural water withdrawal
(Gt/y); TWW: total water withdrawal (Gt/y); and WS: water stress (%), which is defined as the
ratio between the total freshwater extraction by major sectors of the economy and total renewable
freshwater resources. All datasets are obtained from the Sustainable Development Goals of the
Food and Agriculture Organization of the United Nations (FAO), 2023, AQUASTAT main database.
P1: 1999–2003; P2: 2004–2008; P3: 2009–2013; P4; 2014–2018; and P5: 2019.

Country Variable Year P1 Year P2 Year P3 Year P4 Year P5

KAZ CA 1999 3220 2004 2860 2009 2874 2014 2960 2019 2999
TRWR 1999 108.4 2004 108.4 2009 108.4 2014 108.4 2019 108.4
TRSW 1999 100.6 2004 100.6 2009 100.6 2014 100.6 2019 100.6
TRGW 1999 33.85 2004 33.85 2009 33.85 2014 33.85 2019 33.85
AWW 1999 16.68 2004 16.29 2009 13.06 2014 13.34 2019 15.81
TWW 1999 23.5 2004 23.6 2009 21.5 2014 23 2019 25
WS 1999 30.42 2004 32.79 2009 29.88 2014 32.01 2019 32.65

KGZ CA 1999 1435 2004 1406 2009 1351 2014 13.56 2019 1364
TRWR 1999 23.62 2004 23.62 2009 23.62 2014 23.62 2019 23.62
TRSW 1999 21.15 2004 21.15 2009 21.15 2014 21.15 2019 21.15
TRGW 1999 13.69 2004 13.69 2009 13.69 2014 13.69 2019 13.69
AWW 1999 9.45 2004 8.1 2009 7.2 2014 7.1 2019 7.1
TWW 1999 10.08 2004 8.70 2009 7.80 2014 7.66 2019 7.66
WS 1999 65.13 2004 55.17 2009 50.03 2014 50.03 2019 50.03

TJK CA 1999 886 2004 877 2009 884.4 2014 866.7 2019 852.7
TRWR 1999 21.91 2004 21.91 2009 21.91 2014 21.91 2019 21.91
TRSW 1999 18.91 2004 18.91 2009 18.91 2014 18.91 2019 18.91
TRGW 1999 6 2004 6 2009 6 2014 6 2019 6
AWW 1999 8.96 2004 9.81 2009 9.57 2014 8.13 2019 7.38
TWW 1999 9.64 2004 10.73 2009 10.53 2014 8.91 2019 10.6
WS 1999 8034 2004 76.30 2009 72.15 2014 69.31 2019 69.94

TKM CA 1999 189 2004 210 2009 205 2014 200 2019 200
TRWR 1999 24.77 2004 24.77 2009 24.77 2014 24.77 2019 24.77
TRSW 1999 24.36 2004 24.36 2009 24.36 2014 24.36 2019 24.36
TRGW 1999 0.405 2004 0.405 2009 0.405 2014 0.405 2019 0.405
AWW 1999 23.9 2004 23.04 2009 26.36 2014 26.36 2019 26.36
TWW 1999 24.91 2004 27.95 2009 27.95 2014 27.95 2019 27.95
WS 1999 126.9 2004 143.6 2009 143.6 2014 143.6 2019 143.6

UZB CA 1999 483 2004 475 2009 456 2014 442 2019 444
TRWR 1999 48.87 2004 48.87 2009 48.87 2014 48.87 2019 48.87
TRSW 1999 42.07 2004 42.07 2009 42.07 2014 42.07 2019 42.07
TRGW 1999 8.8 2004 8.8 2009 8.8 2014 8.8 2019 8.8
AWW 1999 54.6 2004 51.5 2009 49 2014 47.4 2019 54.4
TWW 1999 59.8 2004 57.1 2009 54.1 2014 51.8 2019 58.9
WS 1999 153.3 2004 144.3 2009 142.6 2014 144.7 2019 168.9

5. Conclusions

In this study, the temporal and spatial characteristics of the terrestrial water cycle and
their relationships with the climate variables across CA are comprehensively analyzed at
annual and seasonal scales during the two decades of 2003–2020. The major results are
as follows:

For TWSA and GWSA, they have significant decreasing trends at annual and seasonal
scales with annual linear trend values of−0.31 and−0.27 cm/a, respectively, which indicate
large water depletion during the period of 2003–2020. For the seasonal changes, the largest
water depletions are observed in JJA with linear trend values of −0.35 and −0.30 cm/a for
TWSA and GWSA. Moreover, the depletion centers were spatially distributed over most
areas of western and southern KAZ and nearly all areas of UZB, KGZ, and TJK.
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For SM, SWE, and runoff, except for the increased SM during SON, SM showed a
decreasing trend at annual and seasonal scales. The annual, SON, and DJF values of SWE
showed increasing trends. Weak linear trends in runoff were observed at annual and
seasonal scales.

The increased TMP and PET and the decreased PRE have significant impacts on the
terrestrial water cycle in CA. Particularly, TMP and PET had the largest significant negative
impacts on SM and SWE compared with the other terrestrial water components. PRE had
a positive impact on terrestrial water variations, with similar impacts on SM (CC = 0.48),
runoff (CC = 0.49), and TWSA (CC = 0.44). SM, SWE, runoff, and GWSA had significant
positive contributions to the variations in TWSA. GWSA had the largest contribution,
followed by runoff, SM, and SWE.

Considering water resources and water withdrawal in CA during 1999–2019, water
withdrawal did not significantly increase, whereas terrestrial water storage experienced
a significant decreasing trend. This suggests that the large depletion of water resources
in CA may be mainly caused by climate change. Therefore, according to our analysis, the
water resource depletion in CA has been primarily caused by climate change in the last two
decades (2003–2020). The differences in the spatial distributions of TWS result in different
water resource challenges. Our results provide a comprehensive understanding of terres-
trial water resource variation that plays a significant role in water resource management
and the SDG in CA.
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