Remote Sensing-Based Multiscale Analysis of Total and Groundwater Storage Dynamics over Semi-Arid North African Basins
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.1.1. Climatic and Hydrologic Settings
2.1.2. Hydrological Settings
2.1.3. Land and Water Use
2.2. Data Used
2.2.1. GRACE
2.2.2. ERA5-Land
2.2.3. Groundwater Data
2.3. Methods
2.3.1. Water Balance Closure for Water Storage Changes
2.3.2. Residual Approach
2.3.3. Groundwater Storage’s Trends and Seasonality
3. Results and Discussion
3.1. GRACE and ERA5-Land-Derived Water Storage: Temporal Variability and Comparison
3.2. GRACE and ERA5-Land Groundwater Storage versus Groundwater Levels
3.3. Annual Trends and Seasonality in Groundwater Storage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bierkens, M.F.P.; Wada, Y. Non-Renewable Groundwater Use and Groundwater Depletion: A Review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Reedy, R.; Strassberg, G.; Huang, Y.; Senay, G. Estimation of Groundwater Recharge to the Gulf Coast Aquifer in Texas, USA; Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin: Austin, TX, USA, 2012. [Google Scholar]
- Meixner, T.; Manning, A.H.; Stonestrom, D.A.; Allen, D.M.; Ajami, H.; Blasch, K.W.; Brookfield, A.E.; Castro, C.L.; Clark, J.F.; Gochis, D.J.; et al. Implications of Projected Climate Change for Groundwater Recharge in the Western United States. J. Hydrol. 2016, 534, 124–138. [Google Scholar] [CrossRef]
- Rafik, A.; Ait Brahim, Y.; Ouhamdouch, S.; Bouchaou, L.; Rhoujjati, N.; Chehbouni, A. A Multi-Tool 3D Conceptual Model to Elucidate Groundwater Processes, Vulnerability, and Recharge Patterns in a Semi-Arid Region: A Case Study from Morocco. Earth Syst. Environ. 2023, 7, 781–800. [Google Scholar] [CrossRef]
- Shanafield, M.; Cook, P.G. Transmission Losses, Infiltration and Groundwater Recharge through Ephemeral and Intermittent Streambeds: A Review of Applied Methods. J. Hydrol. 2014, 511, 518–529. [Google Scholar] [CrossRef]
- Bouimouass, H.; Fakir, Y.; Tweed, S.; Leblanc, M. Groundwater Recharge Sources in Semiarid Irrigated Mountain Fronts. Hydrol. Process. 2020, 34, 1598–1615. [Google Scholar] [CrossRef]
- Fakir, Y.; Bouimouass, H.; Constantz, J. Seasonality in Intermittent Streamflow Losses Beneath a Semiarid Mediterranean Wadi. Water Resour. Res. 2021, 57, e2021WR029743. [Google Scholar] [CrossRef]
- Ouhamdouch, S.; Bahir, M.; Ouazar, D.; Rafik, A. Hydrochemical Characteristics of Aquifers from the Coastal Zone of the Essaouira Basin (Morocco) and Their Suitability for Domestic and Agricultural Uses. Sustain. Water Resour. Manag. 2022, 8, 171. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. Rapid Groundwater Decline and Some Cases of Recovery in Aquifers Globally. Nature 2024, 625, 715–721. [Google Scholar] [CrossRef]
- Amazirh, A.; Chehbouni, A.; Bouras, E.H.; Benkirane, M.; Hssaine, B.A.; Entekhabi, D. Drought Cascade Lag Time Estimation across Africa Based on Remote Sensing of Hydrological Cycle Components. Adv. Water Resour. 2023, 182, 104586. [Google Scholar] [CrossRef]
- Bahir, M.; Ouhamdouch, S.; Ouazar, D.; Rafik, A.; Chehbouni, A. An Assessment of Groundwater from Semi-Arid Environment of Morocco for Drinking and Agricultural Uses with Reference to Water Quality Indices Technique. Carbonates Evaporites 2021, 36, 62. [Google Scholar] [CrossRef]
- Ouassanouan, Y.; Fakir, Y.; Simonneaux, V.; Kharrou, M.H.; Bouimouass, H.; Najar, I.; Benrhanem, M.; Sguir, F.; Chehbouni, A. Multi-Decadal Analysis of Water Resources and Agricultural Change in a Mediterranean Semiarid Irrigated Piedmont under Water Scarcity and Human Interaction. Sci. Total Environ. 2022, 834, 155328. [Google Scholar] [CrossRef] [PubMed]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate Change Vulnerability, Water Resources and Social Implications in North Africa. Reg. Environ. Chang. 2020, 20, 15. [Google Scholar] [CrossRef]
- Rafik, A.; Ait Brahim, Y.; Amazirh, A.; Ouarani, M.; Bargam, B.; Ouatiki, H.; Bouslihim, Y.; Bouchaou, L.; Chehbouni, A. Groundwater Level Forecasting in a Data-Scarce Region through Remote Sensing Data Downscaling, Hydrological Modeling, and Machine Learning: A Case Study from Morocco. J. Hydrol. Reg. Stud. 2023, 50, 101569. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Rateb, A.; Anyamba, A.; Kebede, S.; Macdonald, A.M.; Shamsudduha, M.; Small, J.; Sun, A.; Taylor, R.G.; Xie, H. Linkages between GRACE Water Storage, Hydrologic Extremes, and Climate Teleconnections in Major African Aquifers. Environ. Res. Lett. 2022, 17, 014046. [Google Scholar] [CrossRef]
- Ouatiki, H.; Boudhar, A.; Leblanc, M.; Fakir, Y.; Chehbouni, A. When Climate Variability Partly Compensates for Groundwater Depletion: An Analysis of the GRACE Signal in Morocco. J. Hydrol. Reg. Stud. 2022, 42, 101177. [Google Scholar] [CrossRef]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Viterbo, P.; Holl, S.; Wilson, C.R. Basin Scale Estimates of Evapotranspiration Using GRACE and Other Observations. Geophys. Res. Lett. 2004, 31, L20504. [Google Scholar] [CrossRef]
- Strassberg, G.; Scanlon, B.R.; Rodell, M. Comparison of Seasonal Terrestrial Water Storage Variations from GRACE with Groundwater-Level Measurements from the High Plains Aquifer (USA). Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Yeh, P.J.F.; Swenson, S.C.; Famiglietti, J.S.; Rodell, M. Remote Sensing of Groundwater Storage Changes in Illinois Using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2006, 42, 12. [Google Scholar] [CrossRef]
- Ahmed, M.; Aqnouy, M.; Stitou El Messari, J. Sustainability of Morocco’s Groundwater Resources in Response to Natural and Anthropogenic Forces. J. Hydrol. 2021, 603, 126866. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Dee, D.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, P. The ERA—Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Lawrence, H.; Albergel, C.; Rosnay, P.; Isaksen, L.; Mecklenburg, S.; Kerr, Y.; Drusch, M. Assimilation of SMOS Brightness Temperatures in the ECMWF Integrated Forecasting System. Q. J. R. Meteorol. Soc. 2019, 145, 2524–2548. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Rhoujjati, N.; Ait Brahim, Y.; Hanich, L.; Rhoujjati, A.; Rafik, A.; Ouatiki, H.; Chehbouni, A.; Bouchaou, L. Snowpack and Groundwater Recharge in the Atlas Mountains: New Evidence and Key Drivers. J. Hydrol. Reg. Stud. 2023, 49, 101520. [Google Scholar] [CrossRef]
- ABHOER Projet de Plan Directeur d’Aménagement Intégré des Ressources en eau du Bassin de l’Oum er Rbia et des Bassins Côtiers Atlantiques. Available online: https://www.scribd.com/document/745230825/Plan-Directeur-Ressources-en-EAU-ABHOER (accessed on 9 August 2024).
- Bell, B.A.; Hughes, P.D.; Fletcher, W.J.; Cornelissen, H.L.; Rhoujjati, A.; Hanich, L.; Braithwaite, R.J. Climate of the Marrakech High Atlas, Morocco: Temperature Lapse Rates and Precipitation Gradient from Piedmont to Summits. Arctic Antarct. Alp. Res. 2022, 54, 78–95. [Google Scholar] [CrossRef]
- Jarlan, L.; Khabba, S.; Er-Raki, S.; Le Page, M.; Hanich, L.; Fakir, Y.; Merlin, O.; Mangiarotti, S.; Gascoin, S.; Ezzahar, J.; et al. Remote Sensing of Water Resources in the Semi-Arid Mediterranean Areas: The Joint International Laboratory TREMA. Int. J. Remote Sens. Press. 2015, 36, 4879–4917. [Google Scholar] [CrossRef]
- Amazirh, A.; Er-Raki, S.; Chehbouni, A.; Rivalland, V.; Diarra, A.; Khabba, S.; Ezzahar, J.; Merlin, O. Modified Penman–Monteith Equation for Monitoring Evapotranspiration of Wheat Crop: Relationship between the Surface Resistance and Remotely Sensed Stress Index. Biosyst. Eng. 2017, 164, 68–84. [Google Scholar] [CrossRef]
- Amazirh, A.; Merlin, O.; Er-Raki, S.; Gao, Q.; Rivalland, V.; Malbeteau, Y.; Khabba, S.; Escorihuela, M.J. Retrieving Surface Soil Moisture at High Spatio-Temporal Resolution from a Synergy between Sentinel-1 Radar and Landsat Thermal Data: A Study Case over Bare Soil. Remote Sens. Environ. 2018, 211, 321–337. [Google Scholar] [CrossRef]
- Tanouti, O. La Gestion Intégrée des Ressources en Eau à l’Épreuve du Bassin Versant: Cas du Bassin du Tensift au Maroc. Ph.D. Thesis, Paris 10, Paris, France, 2017. [Google Scholar]
- Bouchaou, L.; Michelot, J.L.; Qurtobi, M.; Zine, N.; Gaye, C.B.; Aggarwal, P.K.; Marah, H.; Zerouali, A.; Taleb, H.; Vengosh, A. Origin and Residence Time of Groundwater in the Tadla Basin (Morocco) Using Multiple Isotopic and Geochemical Tools. J. Hydrol. 2009, 379, 323–338. [Google Scholar] [CrossRef]
- Karroum, M.; Elgettafi, M.; Elmandour, A.; Wilske, C.; Himi, M.; Casas, A. Geochemical Processes Controlling Groundwater Quality under Semi Arid Environment: A Case Study in Central Morocco. Sci. Total Environ. 2017, 609, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Fadili, A.; Mehdi, K.; Riss, J.; Najib, S.; Makan, A.; Boutayab, K. Evaluation of Groundwater Mineralization Processes and Seawater Intrusion Extension in the Coastal Aquifer of Oualidia, Morocco: Hydrochemical and Geophysical Approach. Arab. J. Geosci. 2015, 8, 8567–8582. [Google Scholar] [CrossRef]
- Fakir, Y.; Claude, C.; El Himer, H. Identifying Groundwater Discharge to an Atlantic Coastal Lagoon (Oualidia, Central Morocco) by Means of Salinity and Radium Mass Balances: Karstic Groundwater Discharge to the Coastal Lagoon of Oualidia. Environ. Earth Sci. 2019, 78, 626. [Google Scholar] [CrossRef]
- Boukhari, K.; Fakir, Y.; Stigter, T.Y.; Hajhouji, Y.; Boulet, G. Origin of Recharge and Salinity and Their Role on Management Issues of a Large Alluvial Aquifer System in the Semi-Arid Haouz Plain, Morocco. Environ. Earth Sci. 2015, 73, 6195–6212. [Google Scholar] [CrossRef]
- Sinan, M.; Razack, M. An Extension to the DRASTIC Model to Assess Groundwater Vulnerability to Pollution: Application to the Haouz Aquifer of Marrakech (Morocco). Environ. Geol. 2009, 57, 349–363. [Google Scholar] [CrossRef]
- AGIRE Élaboration de la Convention GIRE du Bassin de Haouz-Mejjate. Available online: https://www.agire-maroc.org/ (accessed on 19 August 2024).
- Bahir, M.; Mennani, A.; Jalal, M.; Youbi, N. Ressources Hydriques du Bassin Synclinal d’Essaouira (Maroc). Estud. Geol. 2000, 56, 185–195. [Google Scholar] [CrossRef]
- Lozes, A. Rapport de Synthèse sur les Études Sismiques dans la Zone Côtière d’Essaouira; Rapport inédit; Ref. 20048, 25; Office National de la Recherche Pétrole: Rabat, Morocco, 1959. [Google Scholar]
- Jalal, M. Potentialités Hydrogéologiques du Cénomano-Turo_nien du Bassin Synclinal de Meskala-Kourimat-Ida ou Zemzem. Ph.D. Thesis, Université Cadi Ayyad Maroc,, Marrakesh, Morocco, 2001. [Google Scholar]
- Ettachfine, E. Le Vraconien, Cénomanien et Turonien Du Bassin d’Essaouira (Haut Atlas Occidental, Maroc). Analyse Lithologique, Biostratigraphique et Sédimentologique, Stratigraphie Séquentielle. Ph.D. Thesis, Strata, Toulouse, France, 1992. [Google Scholar]
- Tahri, N.; El Basti, A.; Zidane, L.; Rochdi, A.; Douira, A. Ethnobotanical Study of Medicinal Plants in the Province of Settat (Morocco). J. For. Fac. 2012, 12, 192–208. [Google Scholar]
- Chaponniere, A.; Smakhtin, V. A Review of Climate Change Scenarios and Preliminary Rainfall Trend Analysis in the Oum Er Rbia Basin, Morocco; IWMI: Colombo, Sri Lanka, 2006; pp. 1–16. [Google Scholar]
- Strohmeier, S.; López López, P.; Haddad, M.; Nangia, V.; Karrou, M.; Montanaro, G.; Boudhar, A.; Linés, C.; Veldkamp, T.; Sterk, G. Surface Runoff and Drought Assessment Using Global Water Resources Datasets—From Oum Er Rbia Basin to the Moroccan Country Scale. Water Resour. Manag. 2020, 34, 2117–2133. [Google Scholar] [CrossRef]
- Bouimouass, H.; Tweed, S.; Marc, V.; Fakir, Y.; Sahraoui, H.; Leblanc, M. The Importance of Mountain-Block Recharge in Semiarid Basins: An Insight from the High-Atlas, Morocco. J. Hydrol. 2024, 631, 130818. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to Understanding Climate Change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Sun, W. International Journal of Remote Using the Vegetation Temperature Condition Index for Time Series Drought Occurrence Monitoring in the Guanzhong Plain, PR China. Int. J. Remote. Sens. 2008, 29, 5133–5144. [Google Scholar] [CrossRef]
- Mohasseb, H.A.; Shen, W.; Jiao, J. Monsoon-Based Linear Regression Analysis for Filling Data Gaps in Gravity Recovery and Climate Experiment Satellite Observations. Remote Sens. 2024, 16, 1424. [Google Scholar] [CrossRef]
- Arshad, A.; Mirchi, A.; Taghvaeian, S.; AghaKouchak, A. Downscaled-GRACE Data Reveal Anthropogenic and Climate-Induced Water Storage Decline Across the Indus Basin. Water Resour. Res. 2024, 60, e2023WR035882. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-Resolution CSR GRACE RL05 Mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and Reducing Leakage Errors in the JPL RL05M GRACE Mascon Solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Giron-Sierra, J.M. Digital Signal Processing with Matlab Examples, Volume 1 Signals and Data, Filtering, Nonstationary Signals, Modulation; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1. [Google Scholar]
- Shen, H.; Leblanc, M.; Tweed, S.; Liu, W. Groundwater Depletion in the Hai River Basin, China, from in Situ and GRACE Observations. Hydrol. Sci. J. 2015, 60, 671–687. [Google Scholar] [CrossRef]
- Ahamed, A.; Knight, R.; Alam, S.; Pauloo, R.; Melton, F. Assessing the Utility of Remote Sensing Data to Accurately Estimate Changes in Groundwater Storage. Sci. Total Environ. 2022, 807, 150635. [Google Scholar] [CrossRef]
- Xie, X.; Xu, C.; Wen, Y.; Li, W. Monitoring Groundwater Storage Changes in the Loess Plateau Using GRACE Satellite Gravity Data, Hydrological Models and Coal Mining Data. Remote Sens. 2018, 10, 605. [Google Scholar] [CrossRef]
- Hodrick, R.J.; Prescott, E.C. Postwar U.S. Business Cycles: An Empirical Investigation. J. Money Credit Bank. 1997, 29, 1–16. [Google Scholar] [CrossRef]
- Neves, M.C.; Nunes, L.M. Regional Studies Evaluation of GRACE Data for Water Resource Management in Iberia: A Case Study of Groundwater Storage Monitoring in the Algarve Region. J. Hydrol. 2020, 32, 100734. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Marchant, B.P. Analysis of Groundwater Drought Building on the Standardised Precipitation Index Approach. Hydrol. Earth Syst. Sci. 2013, 17, 4769–4787. [Google Scholar] [CrossRef]
- Moore, S.; Fisher, J.B. Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen. Water Resour. Manag. 2012, 26, 1425–1453. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.F.; Li, X.; Zhou, D.; Zhao, W. Subregional-Scale Groundwater Depletion Detected by GRACE for Both Shallow and Deep Aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Biancamaria, S.; Mballo, M.; Le Moigne, P.; Sánchez Pérez, J.M.; Espitalier-Noël, G.; Grusson, Y.; Cakir, R.; Häfliger, V.; Barathieu, F.; Trasmonte, M.; et al. Total Water Storage Variability from GRACE Mission and Hydrological Models for a 50,000 km2 Temperate Watershed: The Garonne River Basin (France). J. Hydrol. Reg. Stud. 2019, 24, 100609. [Google Scholar] [CrossRef]
- Rahimzadegan, M.; Entezari, S.A. Desempenho do Método GRACE (Gravity Recovery and Climate Experiment) No Monitoramento de Mudanças No Nível das Águas Subterrâneas em Regiões de Estudo em Escala Local Dentro do Irãn. Hydrogeol. J. 2019, 27, 2497–2509. [Google Scholar] [CrossRef]
- Hajhouji, Y.; Fakir, Y.; Gascoin, S.; Simonneaux, V.; Chehbouni, A. Dynamics of Groundwater Recharge near a Semi-Arid Mediterranean Intermittent Stream under Wet and Normal Climate Conditions. J. Arid. Land 2022, 14, 739–752. [Google Scholar] [CrossRef]
- Rhoujjati, N.; Hanich, L.; Brahim, Y.A.; Rhoujjati, A.; Patris, N.; Chehbouni, A.; Bouchaou, L. Understanding the Groundwater Recharge Processes in the Moroccan Middle Atlas Using Water Isotopes (Δ18O and Δ2H). In Advances in Science, Technology and Innovation; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Cao, G.; Scanlon, B.R.; Han, D.; Zheng, C. Impacts of Thickening Unsaturated Zone on Groundwater Recharge in the North China Plain. J. Hydrol. 2016, 537, 260–270. [Google Scholar] [CrossRef]
- El Khalki, E.M.; Tramblay, Y.; Amengual, A.; Homar, V.; Romero, R.; Saidi, M.E.M.; Alaou, M. Validation of the AROME, ALADIN and WRF Meteorological Models for Flood Forecasting in Morocco. Water 2020, 12, 437. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global Synthesis of Groundwater Recharge in Semiarid and Arid Regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Yong, B.; Tourian, M.J.; Ndehedehe, C.E.; Shen, Z.; Seitz, K.; Dannouf, R. Characterization of the Hydro-Geological Regime of Yangtze River Basin Using Remotely-Sensed and Modeled Products. Sci. Total Environ. 2020, 718, 137354. [Google Scholar] [CrossRef] [PubMed]
- Bouimouass, H.; Fakir, Y.; Tweed, S.; Sahraoui, H.; Leblanc, M.; Chehbouni, A. Traditional Irrigation Practices Sustain Groundwater Quality in a Semiarid Piedmont. Catena 2022, 210, 105923. [Google Scholar] [CrossRef]
- Meliho, M.; Khattabi, A.; Jobbins, G.; Sghir, F. Impact of Meteorological Drought on Agriculture in the Tensift Watershed of Morocco. J. Water Clim. Chang. 2020, 11, 1323–1338. [Google Scholar] [CrossRef]
- Long, D.; Scanlon, B.R.; Longuevergne, L.; Sun, A.Y.; Fernando, D.N.; Save, H. GRACE Satellite Monitoring of Large Depletion in Water Storage in Response to the 2011 Drought in Texas. Geophys. Res. Lett. 2013, 40, 3395–3401. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying Renewable Groundwater Stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 Reanalysis as a Potential Reference Dataset for Hydrological Modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWep v2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Sebbar, B.E.; Khabba, S.; Merlin, O.; Simonneaux, V.; Hachimi, C.E.; Kharrou, M.H.; Chehbouni, A. Machine-Learning-Based Downscaling of Hourly ERA5-Land Air Temperature over Mountainous Regions. Atmosphere 2023, 14, 610. [Google Scholar] [CrossRef]
- De Filippis, G.; Pouliaris, C.; Kahuda, D.; Vasile, T.A.; Manea, V.A.; Zaun, F.; Panteleit, B.; Dadaser-Celik, F.; Positano, P.; Nannucci, M.S.; et al. Spatial Data Management and Numerical Modelling: Demonstrating the Application of the QGIS-Integrated FREEWAT Platform at 13 Case Studies for Tackling Groundwater Resource Management. Water 2020, 12, 41. [Google Scholar] [CrossRef]
- Haagmans, R.; Siemes, C.; Massotti, L.; Carraz, O.; Silvestrin, P. ESA’s next-Generation Gravity Mission Concepts. Rend. Lincei 2020, 31, 15–25. [Google Scholar] [CrossRef]
- Massotti, L.; Gonzalez del Amo, J.; Silvestrin, P.; Krejci, D.; Reissner, A.; Seifert, B. The Next Generation Gravity Mission and the Qualification of the Indium-Fed MN-FEEP Thruster. CEAS Sp. J. 2022, 14, 109–124. [Google Scholar] [CrossRef]
- Massotti, L.; Siemes, C.; March, G.; Haagmans, R.; Silvestrin, P. Next Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design. Remote Sens. 2021, 13, 3935. [Google Scholar] [CrossRef]
Number of Wells | Basin/Aquifer | Time Period | Origin (Reference) |
---|---|---|---|
11 | TRB/Haouz aquifer | 2002–2021 | Hydraulic Basin Agencies of Tensift (ABHT) |
40 | OERRB/Oum Er-rabia aquifer | 2002–2017 | Hydraulic Basin Agencies of Oum Er-rbia (ABHO) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amazirh, A.; Ouassanouan, Y.; Bouimouass, H.; Baba, M.W.; Bouras, E.H.; Rafik, A.; Benkirane, M.; Hajhouji, Y.; Ablila, Y.; Chehbouni, A. Remote Sensing-Based Multiscale Analysis of Total and Groundwater Storage Dynamics over Semi-Arid North African Basins. Remote Sens. 2024, 16, 3698. https://doi.org/10.3390/rs16193698
Amazirh A, Ouassanouan Y, Bouimouass H, Baba MW, Bouras EH, Rafik A, Benkirane M, Hajhouji Y, Ablila Y, Chehbouni A. Remote Sensing-Based Multiscale Analysis of Total and Groundwater Storage Dynamics over Semi-Arid North African Basins. Remote Sensing. 2024; 16(19):3698. https://doi.org/10.3390/rs16193698
Chicago/Turabian StyleAmazirh, Abdelhakim, Youness Ouassanouan, Houssne Bouimouass, Mohamed Wassim Baba, El Houssaine Bouras, Abdellatif Rafik, Myriam Benkirane, Youssef Hajhouji, Youness Ablila, and Abdelghani Chehbouni. 2024. "Remote Sensing-Based Multiscale Analysis of Total and Groundwater Storage Dynamics over Semi-Arid North African Basins" Remote Sensing 16, no. 19: 3698. https://doi.org/10.3390/rs16193698
APA StyleAmazirh, A., Ouassanouan, Y., Bouimouass, H., Baba, M. W., Bouras, E. H., Rafik, A., Benkirane, M., Hajhouji, Y., Ablila, Y., & Chehbouni, A. (2024). Remote Sensing-Based Multiscale Analysis of Total and Groundwater Storage Dynamics over Semi-Arid North African Basins. Remote Sensing, 16(19), 3698. https://doi.org/10.3390/rs16193698