Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,456)

Search Parameters:
Keywords = terrestrial performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2308 KiB  
Article
Reconstructing of Satellite-Derived CO2 Using Multiple Environmental Variables—A Case Study in the Provinces of Huai River Basin, China
by Yuxin Zhu, Ying Zhang, Linping Zhu and Jinzong Zhang
Atmosphere 2025, 16(8), 903; https://doi.org/10.3390/atmos16080903 - 24 Jul 2025
Abstract
The introduction of the ”dual carbon” target has increased the need for products that can accurately measure carbon dioxide levels, reflecting the rising demand. Due to challenges in achieving the required spatiotemporal resolution, accuracy, and spatial continuity with current carbon dioxide concentration products, [...] Read more.
The introduction of the ”dual carbon” target has increased the need for products that can accurately measure carbon dioxide levels, reflecting the rising demand. Due to challenges in achieving the required spatiotemporal resolution, accuracy, and spatial continuity with current carbon dioxide concentration products, it is essential to explore methods for obtaining carbon dioxide concentration products with completeness in space and time. Based on the 2018 OCO-2 carbon dioxide products and environmental variables such as vegetation coverage (FVC, LAI), net primary productivity (NPP), relative humidity (RH), evapotranspiration (ET), temperature (T) and wind (U, V), this study constructed a multiple regression model to obtain the spatial continuous carbon dioxide concentration products in the provinces of Huai River Basin. Using indicators such as correlation coefficient, root mean square error (RMSE), local variance, and percentage of valid pixels, the performance of model was validated. The validation results are shown as follows: (1) Among the selected environmental variables, the primary factors affecting the spatiotemporal distribution of carbon dioxide concentration are ET, LAI, FVC, NPP, T, U, and RH. (2) Compared with the OCO-2 carbon dioxide products, the percentage of valid pixels of the reconstructed carbon dioxide concentration data increased from less than 1% to over 90%. (3) The local variance in reconstructed data was significantly larger than that of original OCO-2 CO2 products. (4) The average monthly RMSE is 2.69. Therefore, according to the model developed in this study, we can obtain a carbon dioxide concentration dataset that is spatially complete, meets precision requirements, and is rich in local detail information, which can better reflect the spatial pattern of carbon dioxide concentration and can be used to examine the carbon cycle between the terrestrial environment, biosphere, and atmosphere. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 2737 KiB  
Technical Note
Obtaining the Highest Quality from a Low-Cost Mobile Scanner: A Comparison of Several Pipelines with a New Scanning Device
by Marek Hrdina, Juan Alberto Molina-Valero, Karel Kuželka, Shinichi Tatsumi, Keiji Yamaguchi, Zlatica Melichová, Martin Mokroš and Peter Surový
Remote Sens. 2025, 17(15), 2564; https://doi.org/10.3390/rs17152564 - 23 Jul 2025
Viewed by 40
Abstract
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to [...] Read more.
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to tree health, structural stability, and vulnerability. Although a range of devices and methodologies are currently under investigation, the widespread adoption of laser scanners remains constrained by their high cost. This study therefore aimed to compare high-end laser scanners (Trimble TX8 and GeoSLAM ZEB Horizon) with cost-effective alternatives, represented by the Apple iPhone 14 Pro and the LA03 scanner developed by mapry Co., Ltd. (Tamba, Japan). It further sought to evaluate the feasibility of employing these more affordable devices, even for small-scale forest owners or managers. Given the growing availability of 3D-based forest inventory algorithms, a selection of such processing pipelines was used to assess the practical potential of the scanning devices. The tested low-cost device produced moderate results, achieving a tree detection rate of up to 78% and a relative root mean square error (rRMSE) of 19.7% in diameter at breast height (DBH) estimation. However, performance varied depending on the algorithms applied. In contrast, the high-end mobile laser scanning (MLS) and terrestrial laser scanning (TLS) systems outperformed the low-cost alternative across all metrics, with tree detection rates reaching up to 99% and DBH estimation rRMSEs as low as 5%. Nevertheless, the low-cost device may still be suitable for scanning small sample plots at a reduced cost and could potentially be deployed in larger quantities to support broader forest inventory initiatives. Full article
Show Figures

Figure 1

18 pages, 3178 KiB  
Article
Biomass Estimation of Apple and Citrus Trees Using Terrestrial Laser Scanning and Drone-Mounted RGB Sensor
by Min-Ki Lee, Yong-Ju Lee, Dong-Yong Lee, Jee-Su Park and Chang-Bae Lee
Remote Sens. 2025, 17(15), 2554; https://doi.org/10.3390/rs17152554 - 23 Jul 2025
Viewed by 111
Abstract
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. [...] Read more.
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. This study evaluates the potential of terrestrial laser scanning (TLS) and drone-mounted RGB sensors (Drone_RGB) for estimating biomass in two major perennial crops in South Korea: apple (‘Fuji’/M.9) and citrus (‘Miyagawa-wase’). Trees of different ages were destructively sampled for biomass measurement, while volume, height, and crown area data were collected via TLS and Drone_RGB. Regression analyses were performed, and the model accuracy was assessed using R2, RMSE, and bias. The TLS-derived volume showed strong predictive power for biomass (R2 = 0.704 for apple, 0.865 for citrus), while the crown area obtained using both sensors showed poor fit (R2 ≤ 0.7). Aboveground biomass was reasonably estimated (R2 = 0.725–0.865), but belowground biomass showed very low predictability (R2 < 0.02). Although limited in scale, this study provides empirical evidence to support the development of remote sensing-based biomass estimation methods and may contribute to improving national greenhouse gas inventories by refining emission/removal factors for perennial fruit crops. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Figure 1

23 pages, 2363 KiB  
Review
Handover Decisions for Ultra-Dense Networks in Smart Cities: A Survey
by Akzhibek Amirova, Ibraheem Shayea, Didar Yedilkhan, Laura Aldasheva and Alma Zakirova
Technologies 2025, 13(8), 313; https://doi.org/10.3390/technologies13080313 - 23 Jul 2025
Viewed by 144
Abstract
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, [...] Read more.
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, heterogeneous smart city environments. Existing studies often fail to provide integrated HO solutions that consider key concerns such as energy efficiency, security vulnerabilities, and interoperability across diverse network domains, including terrestrial, aerial, and satellite systems. Moreover, the dynamic and high-mobility nature of smart city ecosystems further complicate real-time HO decision-making. This survey aims to highlight these critical gaps by systematically categorizing state-of-the-art HO approaches into AI-based, fuzzy logic-based, and hybrid frameworks, while evaluating their performance against emerging 6G requirements. Future research directions are also outlined, emphasizing the development of lightweight AI–fuzzy hybrid models for real-time decision-making, the implementation of decentralized security mechanisms using blockchain, and the need for global standardization to enable seamless handovers across multi-domain networks. The key outcome of this review is a structured and in-depth synthesis of current advancements, which serves as a foundational reference for researchers and engineers aiming to design intelligent, scalable, and secure HO mechanisms that can support the operational complexity of next-generation smart cities. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

41 pages, 1710 KiB  
Article
Toward Integrated Satellite Operations and Network Management: A Review and Novel Framework
by Arnau Singla, Franco Criscola, David Canales, Juan A. Fraire, Anna Calveras and Joan A. Ruiz-de-Azua
Technologies 2025, 13(8), 312; https://doi.org/10.3390/technologies13080312 - 22 Jul 2025
Viewed by 143
Abstract
Achieving global coverage and performance goals for 6G requires seamless integration of satellite and terrestrial networks, yet current operational frameworks lack common standards for managing these heterogeneous infrastructures. This paper addresses the critical need for unified satellite-terrestrial network operations by proposing the CMS [...] Read more.
Achieving global coverage and performance goals for 6G requires seamless integration of satellite and terrestrial networks, yet current operational frameworks lack common standards for managing these heterogeneous infrastructures. This paper addresses the critical need for unified satellite-terrestrial network operations by proposing the CMS framework, a novel task-scheduling-based approach that bridges the operational gap between satellite operations (SatOps) and network operations (NetOps). The framework integrates satellite-specific constraints with network service requirements and QoS metrics through constraint satisfaction programming and multi-objective optimization. Three novel architectures are introduced: integrated operations (embedding NetOps within SatOps), coordinated operations (unified control with separate execution channels), and adaptive operations (mutual adaptation through intelligent interfaces). Each architecture addresses different connectivity scenarios and integration requirements for both sporadic and persistent satellite constellations. The proposed architectures are evaluated against challenges spanning infrastructure and architecture, interoperability and standardization, integrated management, operational dynamics, and technology maturation and deployment. Validation through simulation demonstrates significant performance improvements, with task completion rates improving by 17.87% to 44.02% and data throughput gains of 25.09% to 93.62% compared to traditional approaches. The CMS framework establishes a resilient operational standard for future 6G networks, offering practical solutions to bridge the current divide between satellite and terrestrial network operations. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

23 pages, 5644 KiB  
Article
Exploring the Performance of Transparent 5G NTN Architectures Based on Operational Mega-Constellations
by Oscar Baselga, Anna Calveras and Joan Adrià Ruiz-de-Azua
Network 2025, 5(3), 25; https://doi.org/10.3390/network5030025 - 18 Jul 2025
Viewed by 179
Abstract
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between [...] Read more.
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between mobile network operators and satellite providers, allowing the former to leverage mature space infrastructure and the latter to integrate with terrestrial mobile standards. However, integrating these technologies presents significant architectural challenges. This study investigates 5G NTN architectures using satellite mega-constellations, focusing on transparent architectures where Starlink is employed to relay the backhaul, midhaul, and new radio (NR) links. The performance of these architectures is assessed through a testbed utilizing OpenAirInterface (OAI) and Open5GS, which collects key user-experience metrics such as round-trip time (RTT) and jitter when pinging the User Plane Function (UPF) in the 5G core (5GC). Results show that backhaul and midhaul relays maintain delays of 50–60 ms, while NR relays incur delays exceeding one second due to traffic overload introduced by the RFSimulator tool, which is indispensable to transmit the NR signal over Starlink. These findings suggest that while transparent architectures provide valuable insights and utility, regenerative architectures are essential for addressing current time issues and fully realizing the capabilities of space-based broadband services. Full article
Show Figures

Figure 1

14 pages, 895 KiB  
Article
Biomechanical Trade-Offs Between Speed and Agility in the Northern Brown Bandicoot
by Kaylah Del Simone, Skye F. Cameron, Christofer J. Clemente, Taylor J. M. Dick and Robbie S. Wilson
Biomechanics 2025, 5(3), 52; https://doi.org/10.3390/biomechanics5030052 - 17 Jul 2025
Viewed by 150
Abstract
Background/Objectives: Australian terrestrial mammals that fall within the critical weight range (35 g–5.5 kg) have experienced large population declines due to a combination of habitat loss and modification, and the introduction of non-native cats, dogs, and foxes. Because running speed typically increases with [...] Read more.
Background/Objectives: Australian terrestrial mammals that fall within the critical weight range (35 g–5.5 kg) have experienced large population declines due to a combination of habitat loss and modification, and the introduction of non-native cats, dogs, and foxes. Because running speed typically increases with body size, predators are usually faster but less agile than their prey due to the biomechanical trade-offs between speed and agility. Quantifying the maximum locomotor capacities of Australian mammals in the critical weight range, and the magnitude of the trade-off between speed and agility, can aid in estimating species’ vulnerability to predation. Methods: To do this, we quantified the trade-off between speed and agility in both males and females (n = 36) of a critical weight range species, the northern brown bandicoot (Isoodon macrourus), and determined if there was an influence of morphology on locomotor performance. Results: When turning, individuals who had higher turn approach speeds, and higher within-turn speeds, had greater turning radii and lower angular velocities, meaning a decrease in overall maneuverability. Females were more agile and exhibited greater turning speeds at similar turning radii than males. For both sexes, individuals with longer relative hind digits had relatively faster sprint speeds, while those with longer forearms had relatively smaller turning radii and higher agility. Conclusions: Due to the constrained limb morphology of the bandicoot species, these findings could translate across this group to provide a better understanding of their escape performance and risk of predation. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

23 pages, 3492 KiB  
Article
A Multimodal Deep Learning Framework for Accurate Biomass and Carbon Sequestration Estimation from UAV Imagery
by Furkat Safarov, Ugiloy Khojamuratova, Misirov Komoliddin, Xusinov Ibragim Ismailovich and Young Im Cho
Drones 2025, 9(7), 496; https://doi.org/10.3390/drones9070496 - 14 Jul 2025
Viewed by 263
Abstract
Accurate quantification of above-ground biomass (AGB) and carbon sequestration is vital for monitoring terrestrial ecosystem dynamics, informing climate policy, and supporting carbon neutrality initiatives. However, conventional methods—ranging from manual field surveys to remote sensing techniques based solely on 2D vegetation indices—often fail to [...] Read more.
Accurate quantification of above-ground biomass (AGB) and carbon sequestration is vital for monitoring terrestrial ecosystem dynamics, informing climate policy, and supporting carbon neutrality initiatives. However, conventional methods—ranging from manual field surveys to remote sensing techniques based solely on 2D vegetation indices—often fail to capture the intricate spectral and structural heterogeneity of forest canopies, particularly at fine spatial resolutions. To address these limitations, we introduce ForestIQNet, a novel end-to-end multimodal deep learning framework designed to estimate AGB and associated carbon stocks from UAV-acquired imagery with high spatial fidelity. ForestIQNet combines dual-stream encoders for processing multispectral UAV imagery and a voxelized Canopy Height Model (CHM), fused via a Cross-Attentional Feature Fusion (CAFF) module, enabling fine-grained interaction between spectral reflectance and 3D structure. A lightweight Transformer-based regression head then performs multitask prediction of AGB and CO2e, capturing long-range spatial dependencies and enhancing generalization. Proposed method achieves an R2 of 0.93 and RMSE of 6.1 kg for AGB prediction, compared to 0.78 R2 and 11.7 kg RMSE for XGBoost and 0.73 R2 and 13.2 kg RMSE for Random Forest. Despite its architectural complexity, ForestIQNet maintains a low inference cost (27 ms per patch) and generalizes well across species, terrain, and canopy structures. These results establish a new benchmark for UAV-enabled biomass estimation and provide scalable, interpretable tools for climate monitoring and forest management. Full article
(This article belongs to the Special Issue UAVs for Nature Conservation Tasks in Complex Environments)
Show Figures

Figure 1

32 pages, 8202 KiB  
Article
A Machine Learning-Based Method for Lithology Identification of Outcrops Using TLS-Derived Spectral and Geometric Features
by Yanlin Shao, Peijin Li, Ran Jing, Yaxiong Shao, Lang Liu, Kunpeng Zhao, Binqing Gan, Xiaolei Duan and Longfan Li
Remote Sens. 2025, 17(14), 2434; https://doi.org/10.3390/rs17142434 - 14 Jul 2025
Viewed by 194
Abstract
Lithological identification of outcrops in complex geological settings plays a crucial role in hydrocarbon exploration and geological modeling. To address the limitations of traditional field surveys, such as low efficiency and high risk, we proposed an intelligent lithology recognition method, SG-RFGeo, for terrestrial [...] Read more.
Lithological identification of outcrops in complex geological settings plays a crucial role in hydrocarbon exploration and geological modeling. To address the limitations of traditional field surveys, such as low efficiency and high risk, we proposed an intelligent lithology recognition method, SG-RFGeo, for terrestrial laser scanning (TLS) outcrop point clouds, which integrates spectral and geometric features. The workflow involves several key steps. First, lithological recognition units are created through regular grid segmentation. From these units, spectral reflectance statistics (e.g., mean, standard deviation, kurtosis, and other related metrics), and geometric morphological features (e.g., surface variation rate, curvature, planarity, among others) are extracted. Next, a double-layer random forest model is employed for lithology identification. In the shallow layer, the Gini index is used to select relevant features for a coarse classification of vegetation, conglomerate, and mud–sandstone. The deep-layer module applies an optimized feature set to further classify thinly interbedded sandstone and mudstone. Geological prior knowledge, such as stratigraphic attitudes, is incorporated to spatially constrain and post-process the classification results, enhancing their geological plausibility. The method was tested on a TLS dataset from the Yueyawan outcrop of the Qingshuihe Formation, located on the southern margin of the Junggar Basin in China. Results demonstrate that the integration of spectral and geometric features significantly improves classification performance, with the Macro F1-score increasing from 0.65 (with single-feature input) to 0.82. Further, post-processing with stratigraphic constraints boosts the overall classification accuracy to 93%, outperforming SVM (59.2%), XGBoost (67.8%), and PointNet (75.3%). These findings demonstrate that integrating multi-source features and geological prior constraints effectively addresses the challenges of lithological identification in complex outcrops, providing a novel approach for high-precision geological modeling and exploration. Full article
Show Figures

Figure 1

25 pages, 315 KiB  
Review
Motion Capture Technologies for Athletic Performance Enhancement and Injury Risk Assessment: A Review for Multi-Sport Organizations
by Bahman Adlou, Christopher Wilburn and Wendi Weimar
Sensors 2025, 25(14), 4384; https://doi.org/10.3390/s25144384 - 13 Jul 2025
Viewed by 584
Abstract
Background: Motion capture (MoCap) technologies have transformed athlete monitoring, yet athletic departments face complex decisions when selecting systems for multiple sports. Methods: We conducted a narrative review of peer-reviewed studies (2015–2025) examining optical marker-based, inertial measurement unit (IMU) systems, including Global Navigation Satellite [...] Read more.
Background: Motion capture (MoCap) technologies have transformed athlete monitoring, yet athletic departments face complex decisions when selecting systems for multiple sports. Methods: We conducted a narrative review of peer-reviewed studies (2015–2025) examining optical marker-based, inertial measurement unit (IMU) systems, including Global Navigation Satellite System (GNSS)-integrated systems, and markerless computer vision systems. Studies were evaluated for validated accuracy metrics across indoor court, aquatic, and outdoor field environments. Results: Optical systems maintain sub-millimeter accuracy in controlled environments but face field limitations. IMU systems demonstrate an angular accuracy of 2–8° depending on movement complexity. Markerless systems show variable accuracy (sagittal: 3–15°, transverse: 3–57°). Environmental factors substantially impact system performance, with aquatic settings introducing an additional orientation error of 2° versus terrestrial applications. Outdoor environments challenge GNSS-based tracking (±0.3–3 m positional accuracy). Critical gaps include limited gender-specific validation and insufficient long-term reliability data. Conclusions: This review proposes a tiered implementation framework combining foundation-level team monitoring with specialized assessment tools. This evidence-based approach guides the selection of technology aligned with organizational priorities, sport-specific requirements, and resource constraints. Full article
(This article belongs to the Special Issue Sensors Technology for Sports Biomechanics Applications)
23 pages, 10215 KiB  
Article
A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018
by Jiahui Fan, Yunjun Yao, Yajie Li, Lu Liu, Zijing Xie, Xiaotong Zhang, Yixi Kan, Luna Zhang, Fei Qiu, Jingya Qu and Dingqi Shi
Forests 2025, 16(7), 1157; https://doi.org/10.3390/f16071157 - 13 Jul 2025
Viewed by 236
Abstract
Accurate terrestrial evapotranspiration (ET) estimation is crucial for understanding land–atmosphere interactions, evaluating ecosystem functions, and supporting water resource management, particularly across climatically diverse regions. To address the limitations of traditional ET models, we propose a simple yet robust Sigmoid-RH model that characterizes the [...] Read more.
Accurate terrestrial evapotranspiration (ET) estimation is crucial for understanding land–atmosphere interactions, evaluating ecosystem functions, and supporting water resource management, particularly across climatically diverse regions. To address the limitations of traditional ET models, we propose a simple yet robust Sigmoid-RH model that characterizes the nonlinear relationship between relative humidity and ET. Unlike conventional approaches such as the Penman–Monteith or Priestley–Taylor models, the Sigmoid-RH model requires fewer inputs and is better suited for large-scale applications where data availability is limited. In this study, we applied the Sigmoid-RH model to estimate ET over mainland China from 2001 to 2018 by using satellite remote sensing and meteorological reanalysis data. Key driving inputs included air temperature (Ta), net radiation (Rn), relative humidity (RH), and the normalized difference vegetation index (NDVI), all of which are readily available from public datasets. Validation at 20 flux tower sites showed strong performance, with R-square (R2) ranging from 0.26 to 0.93, Root Mean Squard Error (RMSE) from 0.5 to 1.3 mm/day, and Kling-Gupta efficiency (KGE) from 0.16 to 0.91. The model performed best in mixed forests (KGE = 0.90) and weakest in shrublands (KGE = 0.27). Spatially, ET shows a clear increasing trend from northwest to southeast, closely aligned with climatic zones, with national mean annual ET of 560 mm/yr, ranging from less than 200 mm/yr in arid zones to over 1100 mm/yr in the humid south. Seasonally, ET peaked in summer due to monsoonal rainfall and vegetation growth, and was lowest in winter. Temporally, ET declined from 2001 to 2009 but increased from 2009 to 2018, influenced by changes in precipitation and NDVI. These findings confirm the applicability of the Sigmoid-RH model and highlight the importance of hydrothermal conditions and vegetation dynamics in regulating ET. By improving the accuracy and scalability of ET estimation, this model can provide practical implications for drought early warning systems, forest ecosystem management, and agricultural irrigation planning under changing climate conditions. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

17 pages, 2103 KiB  
Article
Optimizing Time-Sensitive Traffic Scheduling in Low-Earth-Orbit Satellite Networks
by Wei Liu, Nan Xiao, Bo Liu, Yuxian Zhang and Taoyong Li
Sensors 2025, 25(14), 4327; https://doi.org/10.3390/s25144327 - 10 Jul 2025
Viewed by 237
Abstract
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and [...] Read more.
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and bandwidth competition contribute to the instability of these links. As a result, providing reliable quality of service (QoS) for time-sensitive flows (TSFs) in LEO satellite networks becomes a challenging task. Traditional terrestrial time-sensitive networking methods, which depend on fixed paths and static priority scheduling, are ill-equipped to handle the dynamic nature and resource constraints typical of satellite environments. This often leads to congestion, packet loss, and excessive latency, especially for high-priority TSFs. This study addresses the primary challenges faced by time-sensitive satellite networks and introduces a management framework based on software-defined networking (SDN) tailored for LEO satellites. An advanced queue management and scheduling system, influenced by terrestrial time-sensitive networking approaches, is developed. By incorporating differentiated forwarding strategies and priority-based classification, the proposed method improves the efficiency of transmitting time-sensitive traffic at multiple levels. To assess the scheme’s performance, simulations under various workloads are conducted, and the results reveal that it significantly boosts network throughput, reduces packet loss, and maintains low latency, thus optimizing the performance of time-sensitive traffic in LEO satellite networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
Optimization of RIS-Assisted 6G NTN Architectures for High-Mobility UAV Communication Scenarios
by Muhammad Shoaib Ayub, Muhammad Saadi and Insoo Koo
Drones 2025, 9(7), 486; https://doi.org/10.3390/drones9070486 - 10 Jul 2025
Viewed by 392
Abstract
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, [...] Read more.
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, and rapid network reconfiguration, making them ideal candidates for RIS-based signal optimization. However, the high mobility of UAVs and their three-dimensional trajectory dynamics introduce unique challenges in maintaining robust, low-latency links and seamless handovers. This paper presents a comprehensive performance analysis of RIS-assisted UAV-based NTNs, focusing on optimizing RIS phase shifts to maximize the signal-to-interference-plus-noise ratio (SINR), throughput, energy efficiency, and reliability under UAV mobility constraints. A joint optimization framework is proposed that accounts for UAV path loss, aerial shadowing, interference, and user mobility patterns, tailored specifically for aerial communication networks. Extensive simulations are conducted across various UAV operation scenarios, including urban air corridors, rural surveillance routes, drone swarms, emergency response, and aerial delivery systems. The results reveal that RIS deployment significantly enhances the SINR and throughput while navigating energy and latency trade-offs in real time. These findings offer vital insights for deploying RIS-enhanced aerial networks in 6G, supporting mission-critical drone applications and next-generation autonomous systems. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

20 pages, 7285 KiB  
Article
Study on Groundwater Storage Changes in Henan Province Based on GRACE and GLDAS
by Haijun Xu and Dongpeng Liu
Sustainability 2025, 17(14), 6316; https://doi.org/10.3390/su17146316 - 9 Jul 2025
Viewed by 308
Abstract
As a major agricultural center in China, Henan Province is highly dependent on groundwater resources for its socioeconomic development. However, under the triple pressure of intensive agricultural irrigation, surging industrial water demand, and accelerating urbanization, the sustainable use of groundwater resources has become [...] Read more.
As a major agricultural center in China, Henan Province is highly dependent on groundwater resources for its socioeconomic development. However, under the triple pressure of intensive agricultural irrigation, surging industrial water demand, and accelerating urbanization, the sustainable use of groundwater resources has become a key issue for regional development. This paper utilizes GRACE satellite data and the Global Land Data Assimilation System (GLDAS) assimilation model from 2003 to 2023 to invert alterations in terrestrial water storage (TWS) and groundwater storage (GWS) in Henan Province. We examine the factors influencing these changes and compare the spherical harmonic coefficient (SH) data with Mascon data, integrating precipitation and soil moisture data. Using the GRACE Mascon data as a reference, GWS in Henan Province exhibited a stable trend from January 2003 to October 2010, with a rate of −0.060 cm/month. From October 2010 to June 2020, GWS demonstrated a declining trend, with a rate of −0.121 cm/month. Conversely, from June 2020 to December 2023, GWS revealed a significant upward trend, with a rate of 0.255 cm/month. The TWS and GWS of the inverse performances of the Centre for Space Research (CSR) SH data and the CRS Mascon data exhibited a similar trend, albeit with differing values. Additionally, the precipitation data, soil moisture, and GLDAS data demonstrated significant seasonal variations, with a lag of approximately two months between changes in precipitation and GWS. Declining GWS could be related to climatic and anthropogenic factors. The changes in groundwater in Henan Province studied in this paper can provide a reference for the sustainable utilization of groundwater resources in the region. Full article
Show Figures

Figure 1

50 pages, 28354 KiB  
Article
Mobile Mapping Approach to Apply Innovative Approaches for Real Estate Asset Management: A Case Study
by Giorgio P. M. Vassena
Appl. Sci. 2025, 15(14), 7638; https://doi.org/10.3390/app15147638 - 8 Jul 2025
Viewed by 501
Abstract
Technological development has strongly impacted all processes related to the design, construction, and management of real estate assets. In fact, the introduction of the BIM approach has required the application of three-dimensional survey technologies, and in particular the use of LiDAR instruments, both [...] Read more.
Technological development has strongly impacted all processes related to the design, construction, and management of real estate assets. In fact, the introduction of the BIM approach has required the application of three-dimensional survey technologies, and in particular the use of LiDAR instruments, both in their static (TLS—terrestrial laser scanner) and dynamic (iMMS—indoor mobile mapping system) implementations. Operators and developers of LiDAR technologies, for the implementation of scan-to-BIM procedures, initially placed particular care on the 3D surveying accuracy obtainable from such tools. The incorporation of RGB sensors into these instruments has progressively expanded LiDAR-based applications from essential topographic surveying to geospatial applications, where the emphasis is no longer on the accurate three-dimensional reconstruction of buildings but on the capability to create three-dimensional image-based visualizations, such as virtual tours, which allow the recognition of assets located in every area of the buildings. Although much has been written about obtaining the best possible accuracy for extensive asset surveying of large-scale building complexes using iMMS systems, it is now essential to develop and define suitable procedures for controlling such kinds of surveying, targeted at specific geospatial applications. We especially address the design, field acquisition, quality control, and mass data management techniques that might be used in such complex environments. This work aims to contribute by defining the technical specifications for the implementation of geospatial mapping of vast asset survey activities involving significant building sites utilizing iMMS instrumentation. Three-dimensional models can also facilitate virtual tours, enable local measurements inside rooms, and particularly support the subsequent integration of self-locating image-based technologies that can efficiently perform field updates of surveyed databases. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop