Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (441)

Search Parameters:
Keywords = terpenoid phenolic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4193 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Activity, and Anticancer Potential of Wild Ganoderma lucidum Extracts from High-Altitude Regions of Nepal
by Ishor Thapa, Ashmita Pandey, Sunil Tiwari and Suvash Chandra Awal
Curr. Issues Mol. Biol. 2025, 47(8), 624; https://doi.org/10.3390/cimb47080624 - 5 Aug 2025
Abstract
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition [...] Read more.
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and bioactivity. Acetone yielded the highest crude extract (5.01%), while ethanol extract exhibited the highest total phenolic (376.5 ± 9.3 mg PG/g) and flavonoid content (30.3 ± 0.5 mg QE/g). Methanol extract was richest in lycopene (0.07 ± 0.00 mg/g) and β-carotene (0.45 ± 0.02 mg/g). Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide radical scavenging activity, along with high reducing power. All extracts showed dose-dependent cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that high-altitude ecological conditions may influence its bioactive metabolite profile. Full article
Show Figures

Graphical abstract

41 pages, 2975 KiB  
Review
Algal Metabolites as Novel Therapeutics Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Review
by Ibraheem Borie M. Ibraheem, Reem Mohammed Alharbi, Neveen Abdel-Raouf, Nouf Mohammad Al-Enazi, Khawla Ibrahim Alsamhary and Hager Mohammed Ali
Pharmaceutics 2025, 17(8), 989; https://doi.org/10.3390/pharmaceutics17080989 (registering DOI) - 30 Jul 2025
Viewed by 285
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as a “superbug”, and its resistance mechanisms, including target modification, drug inactivation, efflux pumps, biofilm formation, and quorum sensing. The limitations of conventional antibiotics (e.g., β-lactams, vancomycin, macrolides) are discussed, alongside the promise of algal-derived compounds such as fatty acids, pigments, polysaccharides, terpenoids, and phenolic compounds. These metabolites exhibit potent anti-MRSA activity by disrupting cell division (via FtsZ inhibition), destabilizing membranes, and inhibiting protein synthesis and metabolic pathways, effectively countering multiple resistance mechanisms. Leveraging advances in algal biotechnology, this review highlights the untapped potential of marine algae to drive innovative, sustainable therapeutic strategies against antibiotic resistance. Full article
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Phytoconstituent Detection, Antioxidant, and Antimicrobial Potentials of Moringa oleifera Lam. Hexane Extract Against Selected WHO ESKAPE Pathogens
by Kokoette Bassey and Malebelo Mabowe
Horticulturae 2025, 11(8), 869; https://doi.org/10.3390/horticulturae11080869 - 23 Jul 2025
Viewed by 416
Abstract
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin [...] Read more.
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin layer chromatography bioautography and dot blot assays, because fewer studies have been conducted using seed samples from this country. The results obtained indicated that the best oil extract yield (24.04%) was obtained for hexane from 60.10 g of powdered seeds. The yield of the other extracts ranged from 6.2 to 9.5%. Positive test results were obtained for terpenoids, steroids, alkaloids, flavonoids, phenols, and tannins, with potentially good antioxidant properties for scavenging free radicals from 2,2-diphenyl-1-picrylhydrazyl (DPPH) and good antimicrobial activity against Acinetobacter baumannii (BAA 747), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 27853), and Pseudomonas aeruginosa (ATCC 27853), with the best zone of inhibition of 314.2 mm2 obtained for oil extracted with hexane, followed by dichloromethane, methanol, and acetone oil extracts, respectively. The best minimum inhibitory concentration (MIC) of 0.032 mg/mL against P. aeruginosa was recorded for the hexane oil, compared with ciprofloxacin, which had an MIC of 0.0039 mg/mL against the same pathogen. The identification of the in-oil compounds proposed to mitigate inhibitory activity against the test microbes was carried out through GC-MS analysis matching our results with the GC-MS library. These compounds included ursane-3,16-diol, azetidin-2-one, 1-benzyl-4à-methyl, dibutyl phthalate, 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 1H-pyrrole-2,5-dione, 3-ethyl-4-methyl, octopamine rhodoxanthin, 29,30-dinorgammacerane-3,22-diol, 21,21-dimethy, cholan-24-oic acid, 3,7-dioxo, and benzyl alcohol. These are in addition to the stability-indicating marker compounds like oleic acid (54.9%), 9-Octadecenoic acid (z)-, methyl ester (23.3%), n-hexadecanoic acid (9.68%), among others observed over a five year period. Full article
Show Figures

Figure 1

48 pages, 2454 KiB  
Review
How Can Plant-Derived Natural Products and Plant Biotechnology Help Against Emerging Viruses?
by Gergana Zahmanova, Katerina Takova, Valeria Tonova, Ivan Minkov, Momchil Barbolov, Neda Nedeva, Deyana Vankova, Diana Ivanova, Yoana Kiselova-Kaneva and Georgi L. Lukov
Int. J. Mol. Sci. 2025, 26(15), 7046; https://doi.org/10.3390/ijms26157046 - 22 Jul 2025
Viewed by 1665
Abstract
Infectious diseases have been treated using plants and their compounds for thousands of years. This knowledge has enabled modern techniques to identify specific antiviral remedies and to understand their molecular mechanism of action. Numerous active phytochemicals, such as alkaloids, terpenoids, polyphenols (phenolic acids, [...] Read more.
Infectious diseases have been treated using plants and their compounds for thousands of years. This knowledge has enabled modern techniques to identify specific antiviral remedies and to understand their molecular mechanism of action. Numerous active phytochemicals, such as alkaloids, terpenoids, polyphenols (phenolic acids, flavonoids, stilbenes, and lignans), coumarins, thiophenes, saponins, furyl compounds, small proteins, and peptides, are promising options for treating and preventing viral infections. It has been shown that plant-derived products can prevent or inhibit viral entry into and replication by host cells. Biotechnological advances have made it possible to engineer plants with an increased capacity for the production and accumulation of natural antiviral compounds. Plants can also be engineered to produce various types of antivirals (cytokines, antibodies, vaccines, and lectins). This study summarizes the current understanding of the antiviral activity of specific plant-derived metabolites, emphasizing their mechanisms of action and exploring the enormous potential of plants as biological factories. Full article
(This article belongs to the Special Issue Molecular Insights in Antivirals and Vaccines)
Show Figures

Figure 1

24 pages, 1349 KiB  
Review
Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations
by Adnan Amin and SeonJoo Park
Plants 2025, 14(14), 2234; https://doi.org/10.3390/plants14142234 - 19 Jul 2025
Viewed by 530
Abstract
This review highlights the critical role of chemotaxonomy in the identification, authentication, and discovery of bioactive compounds in medicinal plants. By analyzing secondary metabolites using techniques like UV spectroscopy, FTIR, HPLC, GC-MS, NMR, LC-MS-Qtof, and MALDI-TOF MS, chemotaxonomy ensures accurate plant identification, supporting [...] Read more.
This review highlights the critical role of chemotaxonomy in the identification, authentication, and discovery of bioactive compounds in medicinal plants. By analyzing secondary metabolites using techniques like UV spectroscopy, FTIR, HPLC, GC-MS, NMR, LC-MS-Qtof, and MALDI-TOF MS, chemotaxonomy ensures accurate plant identification, supporting the safe and effective use of plants in herbal medicine. Key secondary metabolites used in chemotaxonomic identification include alkaloids, flavonoids, terpenoids, phenolics, tannins, and plant peptides. Chemotaxonomy also facilitates the discovery of novel compounds with therapeutic potential, contributing to drug development. The integration of chemotaxonomy with genomics and proteomics allows a deeper understanding of plant biosynthesis and the mechanisms behind bioactive compound production. However, challenges due to variability in metabolite profiles and the lack of standardized methods remain, and future research should focus on developing global databases, improving standardization, and incorporating artificial intelligence and machine learning to enhance plant identification and bioactive compound discovery. The integration of chemotaxonomy with personalized medicine offers the potential to tailor plant-based therapies to individual genetic profiles, advancing targeted treatments. This review underscores chemotaxonomy’s importance in bridging traditional knowledge and modern science, offering sustainable solutions for medicinal plant use and drug development. Full article
(This article belongs to the Special Issue Plant Phylogeny, Taxonomy and Evolution)
Show Figures

Figure 1

19 pages, 746 KiB  
Review
Endophytic Bioactive Compounds for Wound Healing: A Review of Biological Activities and Therapeutic Potential
by Octavio Calvo-Gomez, Farkhod Eshboev, Kamilla Mullaiarova and Dilfuza Egamberdieva
Microorganisms 2025, 13(7), 1691; https://doi.org/10.3390/microorganisms13071691 - 18 Jul 2025
Viewed by 895
Abstract
Endophytic microorganisms inhabiting plant tissues constitute a unique and largely untapped reservoir of bioactive metabolites, including phenolics, terpenoids, alkaloids, polysaccharides, and anthraquinones, among others. This review focuses on the potential of these compounds to modulate the complex processes of wound repair, such as [...] Read more.
Endophytic microorganisms inhabiting plant tissues constitute a unique and largely untapped reservoir of bioactive metabolites, including phenolics, terpenoids, alkaloids, polysaccharides, and anthraquinones, among others. This review focuses on the potential of these compounds to modulate the complex processes of wound repair, such as hemostasis, inflammation, proliferation, and remodeling. Uniquely, this review delineates the specific mechanisms supported not only by indirect evidence but by primary research directly linking endophytic metabolites to wound repair. We synthesized and evaluated evidence from 18 studies, of which over 75% directly assessed wound healing effects through in vitro and in vivo models. Metabolites from endophytic microorganisms promoted wound contraction, suppressed biofilm formation by key pathogens (e.g., MRSA, P. aeruginosa), and accelerated tissue re-epithelialization in animal models. Other compounds demonstrated >99% wound closure in rats, while several extracts showed anti-inflammatory and cytocompatible profiles. Nevertheless, the majority of studies applied unstandardized methods and used crude extracts, hindering precise structure–activity assessment. The originality of this review lies in drawing attention to direct evidence for wound healing from diverse endophytic sources and systematically identifying gaps between preclinical promise and clinical translation, positioning endophytes as a sustainable platform for next-generation wound therapeutics. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

30 pages, 2664 KiB  
Article
Comparative Phytochemical Analysis and Antimicrobial Properties of Ethanol and Macerated Extracts from Aerial and Root Parts of Achillea nobilis
by Aiman Berdgaleeva, Zere Zhalimova, Akzharkyn Saginbazarova, Gulbanu Tulegenova, Dana Zharylkassynova, Aliya Bazargaliyeva, Zhaidargul Kuanbay, Svetlana Sakhanova, Akmaral Ramazanova, Akzhamal Bilkenova and Aigul Sartayeva
Molecules 2025, 30(14), 2957; https://doi.org/10.3390/molecules30142957 - 14 Jul 2025
Viewed by 389
Abstract
Achillea nobilis represents a species of considerable medicinal importance within the Asteraceae family, historically employed in Central Asia and various Eurasian territories for the management of inflammatory, microbial, and gastrointestinal ailments. Notwithstanding its extensive ethnopharmacological significance, the phytochemical profile and pharmacological attributes of [...] Read more.
Achillea nobilis represents a species of considerable medicinal importance within the Asteraceae family, historically employed in Central Asia and various Eurasian territories for the management of inflammatory, microbial, and gastrointestinal ailments. Notwithstanding its extensive ethnopharmacological significance, the phytochemical profile and pharmacological attributes of its various anatomical components have not been comprehensively investigated. This research endeavor sought to delineate the phytochemical constituents and evaluate the antimicrobial efficacy of ethanol extracts derived from both the aerial and root segments of A. nobilis. Qualitative phytochemical analysis and GC–MS characterization unveiled a diverse array of bioactive compounds, encompassing flavonoids, phenolic compounds, organic acids, lactones, alcohols, and heterocyclic derivatives. In particular, the aerial oil extract exhibited the presence of terpenoids, fatty acids and their esters, sterols, hydrocarbons, and minor organosilicon and cyclobutanone derivatives, with notable compounds such as linoleic acid (8.08%), 6-tetradecyne (14.99%), isopropyl linoleate (14.64%), and E,Z-1,3,12-nonadecatriene (22.25%). In vitro antimicrobial activity was assessed against eight clinically relevant microbial strains employing the broth microdilution technique. The aerial ethanol extract exhibited pronounced antimicrobial properties, particularly against MRSA and C. albicans, with MICs ranging from 0.5 to 2 mg/mL, whereas the root ethanol extract displayed MICs of 1 to 3 mg/mL. Additionally, the aerial oil extract showed moderate inhibitory activity, with MIC values ranging from 1.5 to 3 mg/mL, demonstrating effectiveness particularly against C. albicans, C. neoformans, and MRSA. These findings underscore the therapeutic potential of A. nobilis, particularly its aerial component, as a viable natural source of antimicrobial agents. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

25 pages, 4620 KiB  
Review
Network Pharmacology as a Tool to Investigate the Antioxidant and Anti-Inflammatory Potential of Plant Secondary Metabolites—A Review and Perspectives
by Anna Merecz-Sadowska, Arkadiusz Sadowski, Hanna Zielińska-Bliźniewska, Karolina Zajdel and Radosław Zajdel
Int. J. Mol. Sci. 2025, 26(14), 6678; https://doi.org/10.3390/ijms26146678 - 11 Jul 2025
Viewed by 405
Abstract
Plant secondary metabolites possess significant antioxidant and anti-inflammatory properties, but their complex polypharmacological mechanisms remain poorly understood. Network pharmacology has emerged as a powerful systems-level approach for investigating multi-target interactions of natural products. This review systematically analyzes network pharmacology applications in elucidating the [...] Read more.
Plant secondary metabolites possess significant antioxidant and anti-inflammatory properties, but their complex polypharmacological mechanisms remain poorly understood. Network pharmacology has emerged as a powerful systems-level approach for investigating multi-target interactions of natural products. This review systematically analyzes network pharmacology applications in elucidating the antioxidant and anti-inflammatory mechanisms of plant metabolites, evaluating concordance between computational predictions and experimental validation. A comprehensive literature search was conducted across major databases (2015–2025), focusing on network pharmacology studies with experimental validation. Analysis revealed remarkable convergence toward common molecular mechanisms, despite diverse chemical structures. For antioxidant activities, the Nrf2/KEAP1/ARE pathway emerged as the most frequently validated mechanism, along with PI3K/AKT, MAPK, and NF-κB signaling. Anti-inflammatory mechanisms consistently involved NF-κB, MAPK, and PI3K/AKT pathways. Key targets, including AKT1, TNF-α, COX-2, NFKB1, and RELA, were repeatedly identified. Flavonoids, phenolic acids, and terpenoids dominated as bioactive compounds. Molecular docking studies supported predicted interactions, with experimental validation showing good concordance for pathway modulation and cytokine regulation. Network pharmacology provides a valuable framework for investigating the complex bioactivities of plant metabolites. The convergence toward common regulatory hubs suggests that natural compounds achieve protective effects by modulating central nodes that integrate redox balance and inflammatory responses. Despite limitations, including database dependency, integrating network pharmacology with experimental validation accelerates mechanistic understanding in natural-product drug discovery. Full article
Show Figures

Figure 1

15 pages, 1475 KiB  
Article
Comparative Metabolite Profiling of Antarctic and Korean Mosses: Insights into Adaptation Mechanisms of Antarctic Moss Species
by Marufa Naznin, Raisul Awal Mahmood, Md Badrul Alam, Kil Ho Shin, Kyungwon Min, Sang-Han Lee, Hyoungseok Lee and Sunghwan Kim
Plants 2025, 14(14), 2148; https://doi.org/10.3390/plants14142148 - 11 Jul 2025
Viewed by 529
Abstract
This study investigates the relationship between secondary metabolites and stress tolerance in moss species, with a specific emphasis on comparing Antarctic and Korean mosses. Analyses of total phenolic content (TPC) and total flavonoid content (TFC) revealed that Antarctic mosses contain these compounds at [...] Read more.
This study investigates the relationship between secondary metabolites and stress tolerance in moss species, with a specific emphasis on comparing Antarctic and Korean mosses. Analyses of total phenolic content (TPC) and total flavonoid content (TFC) revealed that Antarctic mosses contain these compounds at significantly higher levels compared to the Korean mosses. These findings are consistent with greater antioxidant activities observed in Antarctic mosses through DPPH and ABTS•+ radical scavenging assays. In this study, a total of 620 metabolites were identified from the moss samples. The results showed that Antarctic mosses exhibited a high number and diversity of compounds including terpenoids, flavonoids, lipids, and other classes. Additionally, Antarctic mosses had fewer lipids with carbon chain lengths below 18 and a higher content of unsaturated lipids, indicating adaptations to maintain membrane fluidity under cold stress. The phylogenetic relationships suggested a correlation between metabolite profiles and genetic adaptations between these species. This research highlights the complex biochemical strategies that mosses, particularly those in Antarctic regions, employ to adapt the environmental stressors. The high abundance of secondary metabolites in Antarctic mosses not only serves as a defense mechanism against oxidative stress but also suggests their potential applications in various biotechnological aspects. This study reveals new avenues for exploring the ecological roles and potential uses of these resilient plant species. Full article
Show Figures

Figure 1

21 pages, 1484 KiB  
Review
White Mulberry Plant Extracts in Cardiovascular Prevention: An Update
by Valentina Trimarco, Paola Gallo, Seyedali Ghazihosseini, Alessia Izzo, Paola Ida Rozza, Alessandra Spinelli, Stefano Cristiano, Carlo De Rosa, Felicia Rozza and Carmine Morisco
Nutrients 2025, 17(14), 2262; https://doi.org/10.3390/nu17142262 - 9 Jul 2025
Cited by 1 | Viewed by 624
Abstract
This review examines the principal preclinical and clinical findings assessing the effects of White Mulberry (Morus Alba Linn) plant extract supplementation currently available. Since it is one of the most cultivated species of mulberry tree, it has caught the eye of [...] Read more.
This review examines the principal preclinical and clinical findings assessing the effects of White Mulberry (Morus Alba Linn) plant extract supplementation currently available. Since it is one of the most cultivated species of mulberry tree, it has caught the eye of researchers for its rich phytochemical profile as well as multi-purpose usages. The leaves, fruits, and other parts of the White Mulberry plant take on the role of valuable sources of bioactive compounds, including flavonoids, phenolic acids, terpenoids, and alkaloids. These secondary metabolites have a wide range of health benefits, such as antioxidant, anti-inflammatory, and antidiabetic properties. Commonly used as dietary supplements, White Mulberry plant extracts have shown their great capacity in improving metabolic profile, decreasing the cardiovascular risk, and supporting overall health. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

19 pages, 3265 KiB  
Article
Biofortified Calcium Phosphate Nanoparticles Elicit Secondary Metabolite Production in Carob Callus via Biosynthetic Pathway Activation
by Doaa E. Elsherif, Fatmah A. Safhi, Mai A. El-Esawy, Alaa T. Mohammed, Osama A. Alaziz, Prasanta K. Subudhi and Abdelghany S. Shaban
Plants 2025, 14(14), 2093; https://doi.org/10.3390/plants14142093 - 8 Jul 2025
Viewed by 352
Abstract
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate [...] Read more.
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate nanoparticles, which refer to CaP-NPs that have been enriched with bioactive compounds via green synthesis using Jania rubens extract, thereby enhancing their functional properties as elicitors in carob callus. CaP-NPs were green-synthesized using Jania rubens extract and applied to 7-week-old callus cultures at 0, 25, 50, and 75 mg/L concentrations. At the optimal concentration (50 mg/L), CaP-NPs increased callus fresh weight by 23.9% and dry weight by 35.1%. At 50 mg/L CaP-NPs, phenolic content increased by 95.7%, flavonoids by 34.4%, tannins by 131.8%, and terpenoids by 211.9% compared to controls. Total antioxidant capacity rose by 76.2%, while oxidative stress markers malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased by 34.8% and 14.1%, respectively. Gene expression analysis revealed upregulation of PAL (4-fold), CHI (3.15-fold), FLS (1.16-fold), MVK (8.3-fold), and TA (3.24-fold) at 50 mg/L CaP-NPs. Higher doses (75 mg/L) induced oxidative damage, demonstrating a hormetic threshold. These findings indicate that CaP-NPs effectively enhance secondary metabolite production in carob callus by modulating biosynthetic pathways and redox balance, offering a scalable, eco-friendly approach for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

25 pages, 1560 KiB  
Article
Phytochemical Screening and Biological Activities of Lippia multiflora Moldenke
by Dorcas Tlhapi, Ntsoaki Malebo, Idah Tichaidza Manduna, Monizi Mawunu and Ramakwala Christinah Chokwe
Molecules 2025, 30(13), 2882; https://doi.org/10.3390/molecules30132882 - 7 Jul 2025
Viewed by 426
Abstract
Lippia multiflora Moldenke is widely used in Angola, on the African continent, and beyond for the treatment of many health conditions such as hypertension, enteritis, colds, gastrointestinal disturbances, stomachaches, jaundice, coughs, fevers, nausea, bronchial inflammation, conjunctivitis, malaria, and venereal diseases. However, there is [...] Read more.
Lippia multiflora Moldenke is widely used in Angola, on the African continent, and beyond for the treatment of many health conditions such as hypertension, enteritis, colds, gastrointestinal disturbances, stomachaches, jaundice, coughs, fevers, nausea, bronchial inflammation, conjunctivitis, malaria, and venereal diseases. However, there is limited literature about the active compounds linked with the reported biological activities. This study aims to assess the chemical profiles, antioxidant properties, and the cytotoxicity effects of the roots, stem bark, and leaves of L. multiflora. Chemical characterization of the crude extracts was assessed through quantification of total phenolic and flavonoid contents followed by Q exactive plus orbitrap™ ultra-high-performance liquid chromatography-mass spectrometer (UHPLC-MS) screening. The correlation between the extracts and the correlation between the compounds were studied using the multivariate analysis. Principal component analysis (PCA) loading scores and principal component analysis (PCA) biplots and correlation plots were used to connect specific compounds with observed biological activities. The antioxidant activities of the crude extracts were carried out in vitro using DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and reducing power assays, while the in vitro toxicology of the crude extracts was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A total of twenty constituents were characterized and identified using the UHPLC–Q/Orbitrap/MS. The methanol leaf extract showed the highest antioxidant activity in the DPPH free radical scavenging activity (IC50 = 0.559 ± 0.269 μg/mL); however, the stem bark extract had the highest reducing power (IC0.5 = 0.029 ± 0.026 μg/mL). High phenolic and flavonoid content was found in the dichloromethane leaf extract (32.100 ± 1.780 mg GAE/g) and stem bark extract (624.153 ± 29.442 mg QE/g), respectively. The results show the stem bark, methanol leaf, and dichloromethane leaf extracts were well-tolerated by the Vero cell line at concentrations up to 50 µg/mL. However, at 100 µg/mL onward, some toxicity was observed in the root, methanol leaf, and dichloromethane leaf extracts. The UHPLC–Q/Orbitrap/MS profiles showed the presence of terpenoids (n = 5), flavonoids (n = 5), phenols (n = 4), alkaloids (n = 3), coumarins (n = 1), fatty acids (n = 1), and organic acids (n = 1). According to several studies, these secondary metabolites have been reported and proven to be the most abundant for antioxidant potential. The identified flavonoids (catechin, quercitrin, and (−)-epigallocatechin) and phenolic compound (6-gingerol) can significantly contribute to the antioxidant properties of different plant parts of L. multiflora. The research findings obtained in this study provide a complete phytochemical profile of various parts of L. multiflora that are responsible for the antioxidant activity using UHPLC–Q/Orbitrap/MS analysis. Furthermore, the results obtained in this study contribute to the scientific information or data on the therapeutic properties of Lippia multiflora and provide a basis for further assessment of its potential as a natural remedy. Full article
Show Figures

Graphical abstract

22 pages, 2703 KiB  
Review
Chemical Composition and Biological Activities of Psilocybe Mushrooms: Gaps and Perspectives
by Mateus A. Luz, Hellen V. S. Guedes, Antônio B. M. Bisneto, Raquel A. de Jesus, Taynah P. Galdino, Lucas C. Oliveira, Victor Ignacio Afonso, Marcus Vinícius L. Fook, Antônio G. B. Lima, Suedina M. de L. Silva and Maria C. M. Torres
Pharmaceuticals 2025, 18(7), 989; https://doi.org/10.3390/ph18070989 - 1 Jul 2025
Viewed by 1111
Abstract
The Psilocybe genus is known for producing tryptamine alkaloids, specifically the compounds psilocybin and psilocin, which have shown antidepressant and anxiolytic potential. The presence of these alkaloids makes Psilocybe mushrooms promising sources of molecules with potential applications in the treatment of mental disorders. [...] Read more.
The Psilocybe genus is known for producing tryptamine alkaloids, specifically the compounds psilocybin and psilocin, which have shown antidepressant and anxiolytic potential. The presence of these alkaloids makes Psilocybe mushrooms promising sources of molecules with potential applications in the treatment of mental disorders. To explore this, a bibliographic study was conducted with the aim of synthesizing published data regarding the biological properties and chemical composition of Psilocybe mushrooms. Searches were performed on indexing platforms, and the articles found were processed using StArt software. These articles were then classified by score and selected based on inclusion and exclusion criteria. This survey yielded a total of 74 articles, and among them, 66 works showed the presence of psilocybin and/or psilocin alkaloids, indicating the psychoactivity of the mushrooms, and 4 works demonstrated the antimicrobial and antioxidant activities of the extract from certain species of the genus. Additionally, 37 chemical compounds were identified across the genus, 23 of which are alkaloids. Data regarding the temporal and chemical stability of these compounds were also observed, which could help optimize the handling of materials that contain indole alkaloids. Therefore, it is evident that species of this genus remain underexplored in terms of chemical diversity; only compounds classified as alkaloids, terpenoids and phenolic compounds were found, and, in total, only 36 compounds in a study range time of 67 years. Furthermore, most studies focused primarily on evaluating the tryptamine alkaloids responsible for the psychoactivity of the mushrooms, without any study focusing on demonstrating the biological activity of isolated compounds against any pathological factor, except for studies relating the whole extract to larvicidal, antimicrobial and antioxidant potential. So, this review provides a general overview of the molecules isolated from the genus and their biological activities and also suggests that researchers working with these mushroom species could focus their efforts on isolating new compounds and evaluating other types of biological activities that can improve the knowledge of mushrooms’ alternative applications. Full article
(This article belongs to the Special Issue Psychedelics: A New Drug Candidate for Treating Mental Illness)
Show Figures

Figure 1

43 pages, 1513 KiB  
Communication
The Biocontrol and Growth-Promoting Potential of Penicillium spp. and Trichoderma spp. in Sustainable Agriculture
by Wenli Sun, Mohamad Hesam Shahrajabian and Lijie Guan
Plants 2025, 14(13), 2007; https://doi.org/10.3390/plants14132007 - 30 Jun 2025
Viewed by 460
Abstract
Plant-growth-promoting fungi (PGPF) play a central role in promoting sustainable agriculture by improving plant growth and resilience. The aim of this literature review is to survey the impacts of Trichoderma spp. and Penicillium spp. on various agricultural and horticultural plants. The information provided [...] Read more.
Plant-growth-promoting fungi (PGPF) play a central role in promoting sustainable agriculture by improving plant growth and resilience. The aim of this literature review is to survey the impacts of Trichoderma spp. and Penicillium spp. on various agricultural and horticultural plants. The information provided in this manuscript was obtained from randomized control experiments, review articles, and analytical studies and observations gathered from numerous literature sources such as Scopus, Google Scholar, PubMed, and Science Direct. The keywords used were the common and Latin names of various agricultural and horticultural species, fungal endophytes, plant-growth-promoting fungi, Trichoderma, Penicillium, microbial biostimulants, and biotic and abiotic stresses. Endophytic fungi refer to fungi that live in plant tissues throughout part of or the entire life cycle by starting a mutually beneficial symbiotic relationship with its host without any negative effects. They are also capable of producing compounds and a variety of bioactive components such as terpenoids, steroids, flavonoids, alkaloids, and phenolic components. Penicillium is extensively known for its production of secondary metabolites, its impact as a bioinoculant to help with crop productivity, and its effectiveness in sustainable crop production. The plant-growth-promotion effects of Trichoderma spp. are related to better absorption of mineral nutrients, enhanced morphological growth, better reproductive potential and yield, and better induction of disease resistance. Both Penicillium spp. and Trichoderma spp. are effective, affordable, safe, and eco-friendly biocontrol agents for various plant species, and they can be considered economically important microorganisms for both agricultural and horticultural sciences. The present review article aims to present the most up-to-date results and findings regarding the practical applications of two important types of PGPF, namely Penicillium spp., and Trichoderma spp., in agricultural and horticultural species, considering the mechanisms of actions of these species of fungi. Full article
Show Figures

Figure 1

21 pages, 2428 KiB  
Article
Optimizing Valerianella locusta L. Growth and Metabolism by Combining Red and Blue LED Light: Insights into Plant Physiology, Biochemistry, and Nutraceutical Value
by Sonia Monterisi, Carmen Rebollo Vicioso, Monica Yorlady Alzate Zuluaga, Sofia Melchior, Biancamaria Senizza, Gokhan Zengin, Roberto Fattorini, Umberto Lanza, Talita de Oliveira Caretta, Lara Manzocco, Luigi Lucini, Stefano Cesco and Youry Pii
Plants 2025, 14(12), 1887; https://doi.org/10.3390/plants14121887 - 19 Jun 2025
Viewed by 508
Abstract
Environmental and health concerns have increased the demand for ready-to-eat vegetables rich in bioactive compounds. This study explores the impact of red and blue (R:B) LED light on the metabolic responses of lamb’s lettuce (Valerianella locusta L.), focusing on sugars, organic acids, [...] Read more.
Environmental and health concerns have increased the demand for ready-to-eat vegetables rich in bioactive compounds. This study explores the impact of red and blue (R:B) LED light on the metabolic responses of lamb’s lettuce (Valerianella locusta L.), focusing on sugars, organic acids, total phenolics, antioxidant activity, and enzyme inhibition. Post-harvest analyses were also conducted to assess shelf-life and microbiological characteristics of the product. The R:B LED treatment significantly enhanced plant growth, with a 133% and 68% increase in shoot fresh and dry weights, respectively, and a 21% increase in leaf area compared to controls (white LED light). Biochemical profiling revealed substantial increases in fructose (255%), sucrose (169%), citric acid (350%), and malic acid (868%) under R:B LED light. Additionally, phenolic content increased by 30%, alongside a notable modulation of 258 secondary metabolites, including flavonoid glycosides, alkaloids, and terpenoids. These biochemical changes contributed to a marked improvement in antioxidant capacity (12–45% across multiple assays) and a 300% increase in α-glucosidase inhibition, suggesting potential antidiabetic properties. Furthermore, post-harvest analysis revealed comparable shelf-life and microbiological safety between R:B and white LED-grown samples. The research highlights the potential of LED light to enhance plant biochemical responses and improve crop quality without affecting post-harvest quality, paving the way for sustainable agricultural innovations. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

Back to TopTop