Comparative Metabolite Profiling of Antarctic and Korean Mosses: Insights into Adaptation Mechanisms of Antarctic Moss Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Sampling
2.2. Sample Preparation in Laboratory
2.3. Determination of Total Phenolic and Total Flavonoid Content
2.4. In Vitro Antioxidant Activities
2.5. Instrumental Analysis
2.6. Phylogenetic Analysis
2.7. Data Analyses
3. Results and Discussions
3.1. Biological Properties of the Moss Samples
3.2. Observed Compound Classes in the Moss Samples Using High-Resolution Mass Spectrometry
3.2.1. Carbohydrate Contents of Moss Samples
3.2.2. Fatty Acid Abundances of Moss Samples
3.2.3. Secondary Metabolites (Flavonoids, Terpenoids, Benzenoids and Others) Present in Different Moss Samples
3.3. Biochemical Diversity of Metabolite Features Between Moss Species
3.4. Relationships Between Metabolite Profiles and Phylogeny of Mosses
4. Conclusions
- Secondary metabolite enrichment. Antarctic mosses exhibited significantly higher concentrations of stress-protective compounds, including flavonoids, terpenoids, and polyphenolic acids, which collectively enhance antioxidant capacity and environmental stress tolerance. This metabolic enrichment represents a fundamental evolutionary strategy for survival in harsh Antarctic conditions.
- Membrane composition optimization. Antarctic species displayed altered lipid profiles characterized by increased unsaturated fatty acids and very-long-chain fatty acids, facilitating membrane fluidity maintenance under freezing temperatures and ensuring cellular integrity in extreme cold.
- Phylogenetic-metabolic correlation. Metabolite profiles generally aligned with phylogenetic relationships, suggesting that biochemical adaptations reflect both evolutionary heritage and habitat-specific selective pressures, with Antarctic species having evolved specialized metabolic pathways for extreme environmental survival.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Sandt, V.S.T.; Stieperaere, H.; Guisez, Y.; Verbelen, J.-P.; Vissenberg, K. XET Activity Is Found Near Sites of Growth and Cell Elongation in Bryophytes and Some Green Algae: New Insights into the Evolution of Primary Cell Wall Elongation. Ann. Bot. 2007, 99, 39–51. [Google Scholar] [CrossRef] [PubMed]
- TOWNSEND, C.C. Bryophyte Biology. Nature 1964, 203, 1002–1003. [Google Scholar] [CrossRef]
- Liu, S.; Li, T.; Fang, S.; Zhang, P.; Yi, D.; Cong, B.; Zhang, Z.; Zhao, L. Metabolic Profiling and Gene Expression Analyses Provide Insights into Cold Adaptation of an Antarctic Moss Pohlia Nutans. Front. Plant Sci. 2022, 13, 1006991. [Google Scholar] [CrossRef]
- Li, C.; Liu, S.; Zhang, W.; Chen, K.; Zhang, P. Transcriptional Profiling and Physiological Analysis Reveal the Critical Roles of ROS-Scavenging System in the Antarctic Moss Pohlia Nutans under Ultraviolet-B Radiation. Plant Physiol. Biochem. 2019, 134, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, S.; Li, C.; Zhang, P.; Zhang, P. Transcriptome Sequencing of Antarctic Moss under Salt Stress Emphasizes the Important Roles of the ROS-Scavenging System. Gene 2019, 696, 122–134. [Google Scholar] [CrossRef]
- Liu, S.; Fang, S.; Liu, C.; Zhao, L.; Cong, B.; Zhang, Z. Transcriptomics Integrated with Metabolomics Reveal the Effects of Ultraviolet-B Radiation on Flavonoid Biosynthesis in Antarctic Moss. Front. Plant Sci. 2021, 12, 788377. [Google Scholar] [CrossRef]
- Turetsky, M.R. The Role of Bryophytes in Carbon and Nitrogen Cycling. Bryologist 2003, 106, 395–409. [Google Scholar] [CrossRef]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Phytochemical and Biological Studies of Bryophytes. Phytochemistry 2013, 91, 52–80. [Google Scholar] [CrossRef]
- Convey, P.; Peck, L.S. Antarctic Environmental Change and Biological Responses. Sci. Adv. 2019, 5, eaaz0888. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lang, S.I.; Soudzilovskaia, N.A.; During, H.J. Comparative Cryptogam Ecology: A Review of Bryophyte and Lichen Traits That Drive Biogeochemistry. Ann. Bot. 2007, 99, 987–1001. [Google Scholar] [CrossRef]
- Xiong, L.; Schumaker, K.S.; Zhu, J.-K. Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell 2002, 14, S165–S183. [Google Scholar] [CrossRef] [PubMed]
- Naznin, M.; Alam, M.B.; Alam, R.; Islam, S.; Rakhmat, S.; Lee, S.-H.; Kim, S. Metabolite Profiling of Nymphaea Rubra (Burm. f.) Flower Extracts Using Cyclic Ion Mobility–Mass Spectrometry and Their Associated Biological Activities. Food Chem. 2023, 404, 134544. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-J.; Naznin, M.; Alam, M.B.; Javed, A.; Alshammari, F.H.; Kim, S.; Lee, S.-H. Optimization of the Extraction Conditions of Nypa Fruticans Wurmb. Using Response Surface Methodology and Artificial Neural Network. Food Chem. 2022, 381, 132086. [Google Scholar] [CrossRef]
- Alam, M.B.; Naznin, M.; Islam, S.; Alshammari, F.H.; Choi, H.-J.; Song, B.-R.; Kim, S.; Lee, S.-H. High Resolution Mass Spectroscopy-Based Secondary Metabolite Profiling of Nymphaea Nouchali (Burm. f) Stem Attenuates Oxidative Stress via Regulation of MAPK/Nrf2/HO-1/ROS Pathway. Antioxidants 2021, 10, 719. [Google Scholar] [CrossRef]
- Naznin, M.; Alam, R.; Alam, M.B.; Jung, M.; Lee, S.; Kim, S. Biological Activities, Identification, Method Development, and Validation for Analysis of Polyphenolic Compounds in Nymphaea Rubra Flowers and Leaves by UHPLC-Q-cIM-TOF-MS and UHPLC-TQ-MS. Phytochem. Anal. 2024, 35, 799–816. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for Inferring Very Large Phylogenies by Using the Neighbor-Joining Method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Zahra, F.T.; Min, K.; Lee, J.; Jung, M.; Lee, H.; Kim, S. Non-targeted Metabolite Profiling Reveals Biochemical Diversity of Three East Asian Mosses. Bull. Korean Chem. Soc. 2025, 46, 641–653. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global Metabolomics Data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and Using Diversity Indices: Insights for Ecological Applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef]
- Colliandre, L.; Le Guilloux, V.; Bourg, S.; Morin-Allory, L. Visual Characterization and Diversity Quantification of Chemical Libraries: 2. Analysis and Selection of Size-Independent, Subspace-Specific Diversity Indices. J. Chem. Inf. Model. 2012, 52, 327–342. [Google Scholar] [CrossRef]
- Alam, M.; Ju, M.-K.; Lee, S.-H. DNA Protecting Activities of Nymphaea nouchali (Burm. f) Flower Extract Attenuate t-BHP-Induced Oxidative Stress Cell Death through Nrf2-Mediated Induction of Heme Oxygenase-1 Expression by Activating MAP-Kinases. Int. J. Mol. Sci. 2017, 18, 2069. [Google Scholar] [CrossRef] [PubMed]
- Babenko, L.M.; Smirnov, O.E.; Romanenko, K.O.; Trunova, O.K.; Kosakivska, I.V. Phenolic Compounds in Plants: Biogenesis and Functions. Ukr. Biochem. J. 2019, 91, 5–18. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and Phenolic Acids: Role and Biochemical Activity in Plants and Human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Bhattarai, H.D.; Paudel, B.; Lee, H.S.; Lee, Y.K.; Yim, J.H. Antioxidant Activity of Sanionia Uncinata, a Polar Moss Species from King George Island, Antarctica. Phyther. Res. 2008, 22, 1635–1639. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, G.G.; Kumaraswamy, M. Antioxidant Activities of Terpenoids from Thuidium tamariscellum (C. Muell.) Bosch. and Sande-Lac. a Moss. Pharmacogn. J. 2018, 10, 645–649. [Google Scholar] [CrossRef]
- Pizarro, M.; Contreras, R.A.; Köhler, H.; Zúñiga, G.E. Desiccation Tolerance in the Antarctic Moss Sanionia Uncinata. Biol. Res. 2019, 52, 46. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Alencar, A.; Evangelista, H.; Mazzei, J.; Felzenszwalb, I. Photoprotective and Toxicological Activities of Extracts from the Antarctic Moss Sanionia Uncinata. Pharmacogn. Mag. 2015, 11, 38–43. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int. J. Mol. Sci. 2022, 23, 5716. [Google Scholar] [CrossRef] [PubMed]
- Gürel, F.; Öztürk, Z.N.; Uçarlı, C.; Rosellini, D. Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops. Front. Plant Sci. 2016, 7, 1137. [Google Scholar] [CrossRef] [PubMed]
- Trouvelot, S.; Héloir, M.-C.; Poinssot, B.; Gauthier, A.; Paris, F.; Guillier, C.; Combier, M.; Trdá, L.; Daire, X.; Adrian, M. Carbohydrates in Plant Immunity and Plant Protection: Roles and Potential Application as Foliar Sprays. Front. Plant Sci. 2014, 5, 592. [Google Scholar] [CrossRef] [PubMed]
- Rütten, D.; Santarius, K.A. Relationship between Frost Tolerance and Sugar Concentration of Various Bryophytes in Summer and Winter. Oecologia 1992, 91, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gupta, R.; Pandey, R. Exogenous Application of Rutin and Gallic Acid Regulate Antioxidants and Alleviate Reactive Oxygen Generation in Oryza Sativa L. Physiol. Mol. Biol. Plants 2017, 23, 301–309. [Google Scholar] [CrossRef]
- Beike, A.K.; Jaeger, C.; Zink, F.; Decker, E.L.; Reski, R. High Contents of Very Long-Chain Polyunsaturated Fatty Acids in Different Moss Species. Plant Cell Rep. 2014, 33, 245–254. [Google Scholar] [CrossRef]
- Batsale, M.; Bahammou, D.; Fouillen, L.; Mongrand, S.; Joubès, J.; Domergue, F. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses. Cells 2021, 10, 1284. [Google Scholar] [CrossRef]
- Zhang, S.; Bao, Q.; Huang, Y.; Han, N. Exogenous Plant Hormones Alleviate As Stress by Regulating Antioxidant Defense System in Oryza sativa L. Environ. Sci. Pollut. Res. 2023, 30, 6454–6465. [Google Scholar] [CrossRef]
- Ozfidan-Konakci, C.; Yildiztugay, E.; Alp, F.N.; Kucukoduk, M.; Turkan, I. Naringenin Induces Tolerance to Salt/Osmotic Stress through the Regulation of Nitrogen Metabolism, Cellular Redox and ROS Scavenging Capacity in Bean Plants. Plant Physiol. Biochem. 2020, 157, 264–275. [Google Scholar] [CrossRef]
- Barrero-Gil, J.; Huertas, R.; Rambla, J.L.; Granell, A.; Salinas, J. Tomato Plants Increase Their Tolerance to Low Temperature in a Chilling Acclimation Process Entailing Comprehensive Transcriptional and Metabolic Adjustments. Plant. Cell Environ. 2016, 39, 2303–2318. [Google Scholar] [CrossRef]
- Su, S.-Y.; Hsieh, C.-L. Anti-Inflammatory Effects of Chinese Medicinal Herbs on Cerebral Ischemia. Chin. Med. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadian, A.; Sanavy, S.A.M.M.; Ghanati, F.; Gresshoff, P.M. Morphological and Physiological Response of Soybean Treated with the Microsymbiont Bradyrhizobium Japonicum Pre-Incubated with Genistein. S. Afr. J. Bot. 2012, 79, 9–18. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Minguet, E.G.; Alabadí, D.; Blázquez, M.A. Gibberellin Implication in Plant Growth and Stress Responses. In Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications; Tran, L.-S.P., Pal, S., Eds.; Springer: New York, NY, USA, 2014; Volume 10, pp. 119–161. ISBN 978-1-4939-0490-7. [Google Scholar]
- Gunaherath, G.M.K.B.; Gunatilaka, A.A.L. Plant Steroids: Occurrence, Biological Significance, and Their Analysis. In Encyclopedia of Analytical Chemistry; Wiley: New York, NY, USA, 2020; pp. 1–31. ISBN 9780470027318. [Google Scholar]
- Misztal, P.K.; Hewitt, C.N.; Wildt, J.; Blande, J.D.; Eller, A.S.D.; Fares, S.; Gentner, D.R.; Gilman, J.B.; Graus, M.; Greenberg, J.; et al. Atmospheric Benzenoid Emissions from Plants Rival Those from Fossil Fuels. Sci. Rep. 2015, 5, 12064. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.; Barreiro, M.; Ferreira, I. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef] [PubMed]
- Bi, B.; Wang, K.; Zhang, H.; Wang, Y.; Fei, H.; Pan, R.; Han, F. Plants Use Rhizosphere Metabolites to Regulate Soil Microbial Diversity. Land Degrad. Dev. 2021, 32, 5267–5280. [Google Scholar] [CrossRef]
- Peters, K.; Gorzolka, K.; Bruelheide, H.; Neumann, S. Seasonal Variation of Secondary Metabolites in Nine Different Bryophytes. Ecol. Evol. 2018, 8, 9105–9117. [Google Scholar] [CrossRef]
- Russo, C.A.d.M.; Selvatti, A.P. Bootstrap and Rogue Identification Tests for Phylogenetic Analyses. Mol. Biol. Evol. 2018, 35, 2327–2333. [Google Scholar] [CrossRef]
- Ojha, K.K.; Mishra, S.; Singh, V.K. Computational Molecular Phylogeny: Concepts and Applications. In Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 67–89. ISBN 9780323897754. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naznin, M.; Mahmood, R.A.; Alam, M.B.; Shin, K.H.; Min, K.; Lee, S.-H.; Lee, H.; Kim, S. Comparative Metabolite Profiling of Antarctic and Korean Mosses: Insights into Adaptation Mechanisms of Antarctic Moss Species. Plants 2025, 14, 2148. https://doi.org/10.3390/plants14142148
Naznin M, Mahmood RA, Alam MB, Shin KH, Min K, Lee S-H, Lee H, Kim S. Comparative Metabolite Profiling of Antarctic and Korean Mosses: Insights into Adaptation Mechanisms of Antarctic Moss Species. Plants. 2025; 14(14):2148. https://doi.org/10.3390/plants14142148
Chicago/Turabian StyleNaznin, Marufa, Raisul Awal Mahmood, Md Badrul Alam, Kil Ho Shin, Kyungwon Min, Sang-Han Lee, Hyoungseok Lee, and Sunghwan Kim. 2025. "Comparative Metabolite Profiling of Antarctic and Korean Mosses: Insights into Adaptation Mechanisms of Antarctic Moss Species" Plants 14, no. 14: 2148. https://doi.org/10.3390/plants14142148
APA StyleNaznin, M., Mahmood, R. A., Alam, M. B., Shin, K. H., Min, K., Lee, S.-H., Lee, H., & Kim, S. (2025). Comparative Metabolite Profiling of Antarctic and Korean Mosses: Insights into Adaptation Mechanisms of Antarctic Moss Species. Plants, 14(14), 2148. https://doi.org/10.3390/plants14142148