Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,304)

Search Parameters:
Keywords = terpene compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2769 KiB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Viewed by 101
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

16 pages, 3226 KiB  
Article
Sustainable Agronomical Practices Affect Essential Oil Composition of Tanacetum balsamita L.
by Martina Grattacaso, Alessandra Bonetti, Sara Di Lonardo and Luigi Paolo D’Acqui
Plants 2025, 14(15), 2406; https://doi.org/10.3390/plants14152406 - 3 Aug 2025
Viewed by 243
Abstract
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination [...] Read more.
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination (bioinoculants + compost), and a control. At each harvest, essential oil was extracted from fresh leaves via stem-flow distillation and analyzed using gas chromatography coupled with single quadrupole mass spectrometry. Twenty to twenty-four compounds were identified. Based on the dominant terpene derivative, the results indicated that Tanacetum balsamita L. cultivated in Italy belongs to “camphor” chemotype, a pharmacologically active compound known for its antimicrobial, anti-inflammatory, and analgesic properties. Moreover, three compounds, α-, β-phellandrene and myrtenol, were identified as typical of Tanacetum balsamita L. cultivated in Italy. Treatment effects were significant for some compounds (camphor, borneol, terpinen-4-ol, α-terpineol, dehydro sabinene ketone, and 3-thujanol), and the interaction between treatment and year was significant for a few compounds (borneol, terpinen-4-ol, dehydro sabinene ketone, 1,8-cineol, and 3-thujanol). These results emphasize the need to account for seasonal variation and underline the necessity of a deeper understanding of how experimental factors interact with them, especially in long-term essential oil studies. Full article
(This article belongs to the Special Issue Chemical Analysis, Bioactivity, and Application of Essential Oils)
Show Figures

Figure 1

19 pages, 4690 KiB  
Article
Immune-Redox Biomarker Responses to Short- and Long-Term Exposure to Naturally Emitted Compounds from Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa): In Vivo Study
by Hui Ma, Jiyoon Yang, Chang-Deuk Eom, Johny Bajgai, Md. Habibur Rahman, Thu Thao Pham, Haiyang Zhang, Won-Joung Hwang, Seong Hoon Goh, Bomi Kim, Cheol-Su Kim, Keon-Ho Kim and Kyu-Jae Lee
Toxics 2025, 13(8), 650; https://doi.org/10.3390/toxics13080650 - 31 Jul 2025
Viewed by 243
Abstract
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert [...] Read more.
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert diverse health effects ranging from mild respiratory irritation to severe outcomes, such as formaldehyde-induced carcinogenicity. The temporal dynamics of VOC emissions were investigated, and the toxicological and physiological effects of the VOCs emitted by two types of natural wood, Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa), were evaluated. Using female C57BL/6 mice as an animal model, the exposure setups included phytoncides, formaldehyde, and intact wood samples over short- and long-term durations. The exposure effects were assessed using oxidative stress markers, antioxidant enzyme activity, hepatic and renal biomarkers, and inflammatory cytokine profiles. Long-term exposure to Korean Red Pine and Japanese Cypress wood VOCs did not induce significant pathological changes. Japanese Cypress exhibited more distinct benefits, including enhanced oxidative stress mitigation, reduced systemic toxicity, and lower pro-inflammatory cytokine levels compared to the negative control group, attributable to its more favorable VOC emission profile. These findings highlight the potential health and environmental benefits of natural wood VOCs and offer valuable insights for optimizing timber use, improving indoor air quality, and informing public health policies. Full article
Show Figures

Figure 1

22 pages, 5646 KiB  
Article
Preparation and Characterization of D-Carvone-Doped Chitosan–Gelatin Bifunctional (Antioxidant and Antibacterial Properties) Film and Its Application in Xinjiang Ramen
by Cong Zhang, Kai Jiang, Yilin Lin, Rui Cui and Hong Wu
Foods 2025, 14(15), 2645; https://doi.org/10.3390/foods14152645 - 28 Jul 2025
Viewed by 338
Abstract
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films [...] Read more.
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films was systematically investigated. The results showed that adding 1% D-carvone increased the water contact angle by 28%, increased the elongation at break by 35%, and decreased the WVTR by 18%. FTIR and SEM confirmed that ≤2% D-carvone uniformly bonded with the substrate through hydrogen bonds, and the film was dense and non-porous. In addition, the DPPH scavenging rate of the 1–2% D-carvone composite film increased to about 30–40%, and the ABTS+ scavenging rate increased to about 35–40%; the antibacterial effect on Escherichia coli and Staphylococcus aureus increased by more than 70%. However, when the addition amount was too high (exceeding 2%), the composite film became agglomerated, microporous, and phase-separated, affecting the film performance, and due to its own taste, it reduced the sensory quality of the noodles. Comprehensively, the composites showed better performance when the content of D-carvone was 1–2% and also the best effect for freshness preservation in Xinjiang ramen. This study provides a broad application prospect for natural terpene compound-based composite films in the field of high-moisture, multi-fat food preservation, and provides a theoretical basis and practical guidance for the development of efficient and safe food packaging materials. In the future, the composite film can be further optimized, and the effect of flavor can be further explored to meet the needs of different food preservation methods. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

29 pages, 1550 KiB  
Review
Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes
by Aniello Alfieri, Sveva Di Franco, Vincenzo Maffei, Pasquale Sansone, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Pharmaceuticals 2025, 18(8), 1100; https://doi.org/10.3390/ph18081100 - 24 Jul 2025
Viewed by 693
Abstract
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for [...] Read more.
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for their aromatic qualities, terpenes such as myrcene, β-caryophyllene (BCP), limonene, pinene, linalool, and humulene have demonstrated a broad spectrum of biological activities. Beyond their observable analgesic, anti-inflammatory, and anxiolytic outcomes, these compounds exert their actions through distinct molecular mechanisms. These include the activation of cannabinoid receptor type 2 (CB2), the modulation of transient receptor potential (TRP) and adenosine receptors, and the inhibition of pro-inflammatory signalling pathways such as Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Cyclooxygenase-2 (COX-2). This narrative review synthesizes the current preclinical and emerging clinical data on terpene-mediated analgesia, highlighting both monoterpenes and sesquiterpenes, and discusses their potential for synergistic interaction with cannabinoids, the so-called entourage effect. Although preclinical findings are promising, clinical translation is limited by methodological variability, the lack of standardized formulations, and insufficient pharmacokinetic characterization. Further human studies are essential to clarify their therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

22 pages, 3522 KiB  
Article
Seasonal Variation in Volatile Profiles of Lemon Catnip (Nepeta cataria var. citriodora) Essential Oil and Hydrolate
by Milica Aćimović, Biljana Lončar, Milica Rat, Mirjana Cvetković, Jovana Stanković Jeremić, Milada Pezo and Lato Pezo
Horticulturae 2025, 11(7), 862; https://doi.org/10.3390/horticulturae11070862 - 21 Jul 2025
Viewed by 392
Abstract
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks [...] Read more.
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks nepetalactones and is rich in terpene alcohols, such as nerol and geraniol, making it a promising substitute for lemon balm. Despite its diverse applications, little attention has been paid to the valorization of byproducts from essential oil distillation, such as hydrolates and their secondary recovery oils. This study aimed to thoroughly analyze the volatile compound profiles of the essential oil from Lemon catnip and the recovery oil derived from its hydrolate over three consecutive growing seasons, with particular emphasis on how temperature and precipitation influence the major volatile constituents. The essential oil was obtained via semi-industrial steam distillation, producing hydrolate as a byproduct, which was then further processed using a Likens–Nickerson apparatus to extract the recovery oil, also known as secondary oil. Both essential and recovery oils were predominantly composed of terpene alcohols, with nerol (47.5–52.3% in essential oils; 43.5–54.3% in recovery oils) and geraniol (25.2–27.9% in essential oils; 29.4–32.6% in recovery oils) as the primary components. While sesquiterpene hydrocarbons were mostly confined to the essential oil, the recovery oil was distinguished by a higher presence of monooxygenated and more hydrophilic terpenes. Over the three-year period, elevated temperatures led to increased levels of geraniol, geranial, neral, and citronellal in both oils, whereas cooler conditions favored the accumulation of nerol and linalool, especially in the recovery oils. Higher precipitation was associated with elevated concentrations of nerol and linalool but decreased levels of geraniol, geranial, and neral, possibly due to dilution or degradation processes. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

27 pages, 2644 KiB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 358
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

20 pages, 2144 KiB  
Article
Effects of Crop Load Management on Berry and Wine Composition of Marselan Grapes
by Jianrong Kai, Jing Zhang, Caiyan Wang, Fang Wang, Xiangyu Sun, Tingting Ma, Qian Ge and Zehua Xu
Horticulturae 2025, 11(7), 851; https://doi.org/10.3390/horticulturae11070851 - 18 Jul 2025
Viewed by 389
Abstract
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the [...] Read more.
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the number of clusters per shoot. Marselan grapes from the Gezi Mountain vineyard, located at the eastern foot of Helan Mountain in the Qingtongxia region of Ningxia, were selected as the research material to conduct a combination experiment with four levels of shoot density and three levels of cluster density. The analysis of the berry and wine chemical composition was combined with a wine sensory evaluation to determine the optimal crop load levels. Crop load regulation significantly affected both the grape berry composition and the basic physicochemical properties of the resulting wine. Low crop loads improved metrics such as the berry weight and soluble solids content. A low shoot density facilitated the accumulation of organic acids, flavonols, and hydroxybenzoic acids in wine. Moderate crop loads were conducive to anthocyanin synthesis—the total individual anthocyanins content in the 10–20 shoots per meter of the canopy treatment group ranged from 116% to 490% of the control group—whereas excessive crop loads hindered its accumulation. Crop load management significantly influenced the aroma composition of wine by regulating the content of sugars, nitrogen sources, and organic acids in grape berries, thereby promoting the synthesis of esters and the accumulation of key aromatic compounds, such as terpenes. This process optimized pleasant flavors, including fruity and floral aromas. In contrast, wines from the high crop load and control treatments contained lower levels of these aroma compounds. Compounds such as ethyl caprylate and β-damascenone were identified as potential quality markers. Overall, the wine produced from vines with a crop load of 30 clusters (15 shoots per meter of canopy, 2 clusters per shoot) received the highest sensory scores. Appropriate crop load management is therefore critical to improving the chemical composition of Marselan wine. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

22 pages, 3103 KiB  
Article
Genomic and Metabolomic Analysis of the Endophytic Fungus Alternaria alstroemeriae S6 Isolated from Veronica acinifolia: Identification of Anti-Bacterial Properties and Production of Succinic Acid
by Farkhod Eshboev, Alex X. Gao, Akhror Abdurashidov, Kamila Mardieva, Asadali Baymirzaev, Mirzatimur Musakhanov, Elvira Yusupova, Shengying Lin, Meixia Yang, Tina T. X. Dong, Shamansur Sagdullaev, Shakhnoz Azimova and Karl W. K. Tsim
Antibiotics 2025, 14(7), 713; https://doi.org/10.3390/antibiotics14070713 - 16 Jul 2025
Viewed by 432
Abstract
Background: Endophytic fungi are prolific sources of bioactive metabolites with potential in pharmaceutical and biotechnological applications. Methods: Here, the endophytic fungus, Alternaria alstroemeriae S6, was isolated from Veronica acinifolia (speedwell), and conducted its anti-microbial activities, whole-genome sequencing and metabolome analysis. Results: The ethyl [...] Read more.
Background: Endophytic fungi are prolific sources of bioactive metabolites with potential in pharmaceutical and biotechnological applications. Methods: Here, the endophytic fungus, Alternaria alstroemeriae S6, was isolated from Veronica acinifolia (speedwell), and conducted its anti-microbial activities, whole-genome sequencing and metabolome analysis. Results: The ethyl acetate extract of this fungus exhibited strong anti-bacterial activity and the inhibition zones, induced by the fungal extract at 20 mg/mL, reached 16.25 ± 0.5 mm and 26.5 ± 0.5 mm against Gram-positive and Gram-negative bacteria. To unravel the biosynthetic potential for anti-bacterial compounds, whole-genome sequencing was conducted on A. alstroemeriae S6, resulting in a high-quality assembly of 42.93 Mb encoding 13,885 protein-coding genes. Comprehensive functional genome annotation analyses, including gene ontology (GO) terms, clusters of orthologous groups (COGs), Kyoto encyclopedia of genes and genomes (KEGG), carbohydrate-active enzymes (CAZymes), and antibiotics and secondary metabolites analysis shell (antiSMASH) analyses, were performed. According to the antiSMASH analysis, 58 biosynthetic gene clusters (BGCs), including 16 non-ribosomal peptide synthetases (NRPSs), 21 terpene synthases, 12 polyketide synthetases (PKSs), and 9 hybrids, were identified. In addition, succinic acid was identified as the major metabolite within the fungal extract, while 20 minor bioactive compounds were identified through LC-MS/MS-based molecular networking on a GNPS database. Conclusions: These findings support the biotechnological potential of A. alstroemeriae S6 as an alternative producer of succinic acid, as well as novel anti-bacterial agents. Full article
(This article belongs to the Section Fungi and Their Metabolites)
Show Figures

Graphical abstract

16 pages, 1700 KiB  
Article
Characterization of Antioxidant and Antimicrobial Activity, Phenolic Compound Profile, and VOCs of Agresto from Different Winegrape Varieties
by Luisa Pozzo, Andrea Raffaelli, Teresa Grande, Stefania Frassinetti, Vincenzo Longo, Francesca Venturi, Chiara Sanmartin, Giuseppe Ferroni, Guido Flamini and Annita Toffanin
Processes 2025, 13(7), 2174; https://doi.org/10.3390/pr13072174 - 8 Jul 2025
Viewed by 304
Abstract
Agresto is the unfermented juice traditionally obtained from boiled unripe grapes, typically using fruit that would otherwise be discarded, and enriched with spices, herbs, and fruit. In this study, the phenolic profile, antioxidant and antibacterial activity, and volatile organic compounds (VOCs) of Agresto [...] Read more.
Agresto is the unfermented juice traditionally obtained from boiled unripe grapes, typically using fruit that would otherwise be discarded, and enriched with spices, herbs, and fruit. In this study, the phenolic profile, antioxidant and antibacterial activity, and volatile organic compounds (VOCs) of Agresto produced from two grape varieties (Sangiovese, and Vermentino) harvested in Mount Amiata (Tuscany) were evaluated. Agresto from Vermentino showed a higher total phenolic content (TPC), 1.31 mg GAE/mL, as well as a greater total flavonoid and flavonol content and FRAP activity compared to Agresto from Sangiovese. The highest ORAC value was observed in Agresto from Vermentino, 41.01 mg TE/mL, compared to that from Sangiovese. TPC, flavonols, apocarotenes, sulfur derivatives, and non-terpene derivatives were positively correlated with antimicrobial activity against E. coli, FRAP, and ORAC. Overall, our results showed that grape variety significantly influences the chemical composition of Agresto, particularly in terms of both VOCs and phenolic compounds. The observed variations in phenolic composition also affected the antioxidant and antimicrobial activity of Agresto. These experimental findings clearly suggest the utmost importance of identifying the optimal chemical profile of “unripe grapes” used as raw material for Agresto production, considering both variety and the specific ripening degree achievable through vine green harvesting. Full article
Show Figures

Graphical abstract

25 pages, 3312 KiB  
Article
In Silico Evaluation of Terpene Interactions with Inflammatory Enzymes: A Blind Docking Study Targeting Arachidonic Acid Metabolism
by Djeni Cherneva, Kaloyan Mihalev, Ivelin Iliev, Nadya Agova, Galina Yaneva, Tsonka Dimitrova and Svetlana Georgieva
Appl. Sci. 2025, 15(13), 7536; https://doi.org/10.3390/app15137536 - 4 Jul 2025
Viewed by 302
Abstract
Terpenes represent a structurally diverse class of natural compounds with increasing scientific interest due to their potential anti-inflammatory properties. This study investigates the in silico binding behavior of six plant-derived terpenes—α-pinene, β-pinene, menthol, camphor, limonene, and linalool—against four key enzymes in the arachidonic [...] Read more.
Terpenes represent a structurally diverse class of natural compounds with increasing scientific interest due to their potential anti-inflammatory properties. This study investigates the in silico binding behavior of six plant-derived terpenes—α-pinene, β-pinene, menthol, camphor, limonene, and linalool—against four key enzymes in the arachidonic acid (AA) metabolic pathway: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and phospholipase A2 (PLA2). AA serves as a reference for binding energy comparison. Blind rigid-body molecular docking is performed using AutoDock 4.2 and the Lamarckian Genetic Algorithm, with 100 runs per ligand–enzyme pair and the energy-based selection of optimal poses. The analysis includes binding energy (ΔG), inhibition constants (Ki), root-mean-square deviation (RMSD), and residue-level interactions. Several terpenes exhibit favorable binding energies and inhibition constants across the evaluated enzymes. For COX-1 and COX-2, menthol and camphor show low Ki values, indicating stable binding. Menthol and limonene also show the strongest affinities for PLA2, exceeding AA. The focus is on compounds with potential to modulate arachidonic acid metabolism. In this context, β-pinene engages the catalytic site of PLA2, linalool forms multiple contacts within key regions of 5-LOX, and menthol, α-pinene, and β-pinene align with functionally important regions in both COX isoforms. These targeted interactions suggest that the highlighted compounds may selectively interfere with enzymatic activity in inflammation-related pathways. By modulating key steps in AA metabolism, these terpenes may influence the biosynthesis of pro-inflammatory mediators, offering a promising avenue for the development of safer, plant-derived anti-inflammatory agents. The findings lay the groundwork for further experimental validation and the structure-based optimization of terpene-derived modulators. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

19 pages, 1341 KiB  
Review
Antioxidant and Anti-Inflammatory Effects of Traditional Medicinal Plants for Urolithiasis: A Scoping Review
by Brenda Pacheco-Hernández, Teresa Ayora-Talavera, Julia Cano-Sosa, Lilia G. Noriega, Neith Aracely Pacheco-López, Juan M. Vargas-Morales, Isabel Medina-Vera, Martha Guevara-Cruz, Rodolfo Chim-Aké, Ana Ligia Gutiérrez-Solis, Roberto Lugo and Azalia Avila-Nava
Plants 2025, 14(13), 2032; https://doi.org/10.3390/plants14132032 - 2 Jul 2025
Viewed by 770
Abstract
Urolithiasis (UL) is the presence of stones in the kidneys or urinary tract; its prevalence has increased worldwide. Thus, strategies have been sought to reduce it and one of them is the use of medicinal plants due to their accessibility, low cost, and [...] Read more.
Urolithiasis (UL) is the presence of stones in the kidneys or urinary tract; its prevalence has increased worldwide. Thus, strategies have been sought to reduce it and one of them is the use of medicinal plants due to their accessibility, low cost, and cultural traditions. Studies on traditional medicinal plants in UL mainly documented results of litholytic and urinary parameters. Although, stone formation is related to oxidative stress and inflammation, and only a few studies are focused on these types of biomarkers. Thus, the aim of the present review was to summarize studies showing the antioxidant and anti-inflammatory effects of traditional medicinal plants used in UL management. We performed a scoping review; the database sources used were MEDLINE/PubMed, Google Scholar, SpringerLink, Scielo and Redalyc. From a total of 184 studies screened, six were included from China (2), India (3), and Corea (1). These studies have shown the antioxidant and anti-inflammatory effects of traditional medicinal plants, including Glechoma longituba (G. longituba), Bergenia ligulate (B. ligulate), Lygodium japonicum (L. japonicum), Citrus limon (C. limon), Xanthium strumarium (X. strumarium) and Tribulus terrestris (T. terrestris). They have also described their molecular mechanism of antioxidant and anti-inflammatory effects through the activation of antioxidant genes induced by Nrf2 or by suppressing the inflammatory gene expression by the inhibition of NFκ-B. These effects could be modulated by their bioactive compounds, such as polyphenols, flavonoids, tannins, saponins, and terpenes, present in these plants. This review summarizes the antioxidant and anti-inflammatory effects of traditional medicinal plants and highlights their molecular mechanisms of action and main bioactive compounds. This evidence may be used in biotechnology and synthetic biology areas for the development of new products from plant-derived compounds to reduce the high recurrence rates of UL. Full article
Show Figures

Figure 1

19 pages, 1722 KiB  
Review
Guayusa (Ilex guayusa Loes.) Ancestral Plant of Ecuador: History, Traditional Uses, Chemistry, Biological Activity, and Potential Industrial Uses
by Paco Noriega, Erick Moreno, Ana Falcón, Vanessa Quishpe and Patricia del Carmen Noriega
Molecules 2025, 30(13), 2837; https://doi.org/10.3390/molecules30132837 - 2 Jul 2025
Viewed by 944
Abstract
One of the medicinal plants used in Ecuador that has the best prospects for industrialization is guayusa (Ilex guayusa Loes.). This review shows the potential of the species, analyzing the ethnobotanical aspects, ancestral uses, secondary metabolites, and research. The plant has been [...] Read more.
One of the medicinal plants used in Ecuador that has the best prospects for industrialization is guayusa (Ilex guayusa Loes.). This review shows the potential of the species, analyzing the ethnobotanical aspects, ancestral uses, secondary metabolites, and research. The plant has been consumed for thousands of years by the high Amazonian peoples of Ecuador and currently forms part of the gardens of ancestral peoples and mestizo settlers. The most relevant secondary metabolites that have been investigated are xanthine alkaloids, terpenes, and phenolic compounds, while from the pharmacological point of view, the following uses stand out: physical and mental stimulants, analgesic, antioxidant, antimicrobial, anti-inflammatory, anti-diabetic, and phytohormonal. The goal of this review is to make known the benefits of guayusa, with the purpose of representing a resource that will provide benefits to the Amazonian inhabitants in the future. Full article
Show Figures

Graphical abstract

18 pages, 675 KiB  
Article
Effects of Hyperbaric Micro-Oxygenation on the Color, Volatile Composition, and Sensory Profile of Vitis vinifera L. cv. Monastrell Grape Must
by Antonio José Pérez-López, Luis Noguera-Artiaga, Patricia Navarro, Pablo Mompean, Alejandro Van Lieshout and José Ramón Acosta-Motos
Fermentation 2025, 11(7), 380; https://doi.org/10.3390/fermentation11070380 - 30 Jun 2025
Viewed by 517
Abstract
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. [...] Read more.
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. Grape clusters were manually harvested and fermented under controlled conditions, applying micro-oxygenation treatments at two fermentation stages (day 3 and day 13) within a hyperbaric chamber. Physicochemical analyses, CIELab color measurements, visible reflectance spectra, GC-FID volatile profiling, and descriptive sensory analysis were performed. Micro-oxygenated samples (M1_MOX and M2_MOX) showed significant increases in lightness (L*), redness (a*), chroma (C*), and reflectance in the 520–620 nm range, indicating enhanced extraction and stabilization of phenolic pigments. Volatile analysis revealed that these samples also contained higher concentrations of key esters and terpenes associated with fruity and floral notes. Sensory evaluation confirmed these findings, with MOX-treated wines displaying greater aromatic intensity, flavor persistence, and varietal character. Control samples (M1_CON and M2_CON) exhibited lower color saturation and volatile compound content, along with diminished sensory quality. These results suggest that hyperbaric micro-oxygenation is an effective strategy for improving color intensity and aromatic complexity during red wine fermentation under controlled, non-thermal conditions. Full article
Show Figures

Figure 1

24 pages, 2105 KiB  
Article
Process Development for GMP-Grade Full Extract Cannabis Oil: Towards Standardized Medicinal Use
by Maria do Céu Costa, Ana Patrícia Gomes, Iva Vinhas, Joana Rosa, Filipe Pereira, Sara Moniz, Elsa M. Gonçalves, Miguel Pestana, Mafalda Silva, Luís Monteiro Rodrigues, Anthony DeMeo, Logan Marynissen, António Marques da Costa, Patrícia Rijo and Michael Sassano
Pharmaceutics 2025, 17(7), 848; https://doi.org/10.3390/pharmaceutics17070848 - 28 Jun 2025
Viewed by 1829
Abstract
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were [...] Read more.
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were studied to characterize the extraction and purification processes, ensuring the maximum retention of cannabinoids and minimization of other secondary metabolites. The industrial process used deep-cooled ethanol for selective extraction. Results: Taking into consideration that decarboxylation occurs in the process, the cannabinoid profile composition was preserved from the herbal substance to the herbal preparations, with wiped-film distillation under deep vacuum conditions below 0.2 mbar, as a final purification step. The profiles of the terpenes and cannabinoids in crude and purified Full-spectrum Extract Cannabis Oil (FECO) were analyzed at different stages to evaluate compositional changes that occurred throughout processing. Subjective intensity and acceptance ratings were received for taste, color, overall appearance, smell, and mouthfeel of FECO preparations. Conclusions: According to sensory analysis, purified FECO was more accepted than crude FECO, which had a stronger and more polarizing taste, and received higher ratings for color and overall acceptance. In contrast, a full cannabis extract in the market resulted in lower acceptance due to taste imbalance. The purification process effectively removed non-cannabinoids, improving sensory quality while maintaining therapeutic potency. Terpene markers of the flower were remarkably preserved in SOMAÍ’s preparations’ fingerprint, highlighting a major qualitative profile reproducibility and the opportunity for their previous separation and/or controlled reintroduction. The study underscores the importance of monitoring the extraction and purification processes to optimize the cannabinoid content and sensory characteristics in cannabis preparations. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Portugal)
Show Figures

Graphical abstract

Back to TopTop