Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes
Abstract
1. Introduction
Methods
2. Phytochemical Modulation of Nociception: General Mechanisms
2.1. Molecular Targets and Mechanisms of Action
2.2. Preclinical Animal Models of Pain
2.3. Overview of Clinical Studies
3. Cannabis Terpenes: Prevalence and Pharmacological Properties
3.1. Pharmacological Properties
3.2. Cannabis Terpenes Prevalence
3.2.1. Myrcene
3.2.2. β-Caryophyllene
3.2.3. Limonene
3.2.4. Pinene
3.2.5. Linalool
3.2.6. Humulene
3.3. Acute Versus Chronic Analgesic Profiles of Cannabis Terpenes
3.4. Safety Profile of Cannabis Terpenes
3.5. Limitations and Remedial Strategies
3.6. Comparative Advantage over Conventional Analgesics
4. Discussion
5. Conclusions
6. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BCP | β-caryophyllene |
CB2 | Cannabinoid receptor type 2 |
TRP | Transient receptor potential |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
COX-2 | Cyclooxygenase-2 |
IL-1β | Interleukin 1 beta |
TNF-α | Tumour Necrosis Factor alpha |
ACC | Anterior cingulate cortex |
BNST | Bed nucleus of the stria terminalis |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
Nav | Voltage-gated sodium channel |
Cav | Voltage-gated calcium channel |
Kv | Voltage-gated potassium channel |
TRPV1 | Transient receptor potential vanilloid 1 |
THC | Δ9-Tetrahydrocannabinol |
CBD | Cannabidiol |
CB1 | Cannabinoid receptor type 1 |
RCTs | Randomized controlled trials |
MAPK | Mitogen-activated protein kinase |
PKC | Protein Kinase C |
TRPA1 | Transient Receptor Potential Ankyrin 1 |
GABAA | Gamma-Aminobutyric Acid Type A receptor |
IκBα | Inhibitor of kappa B alpha |
IL-6 | Interleukin-6 |
CD11b | Cluster of differentiation molecule 11B |
Iba-1 | Ionized calcium-binding adapter molecule 1 |
MAGL | Monoacylglycerol lipase |
2-AG | 2-Arachidonoylglycerol |
A2A | Adenosine A2A receptor |
PPAR-γ | Peroxisome Proliferator-Activated Receptor Gamma |
PGC-1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha |
KOR | κ-opioid receptor |
MOR | μ-opioid receptor |
NMDA | N-Methyl-D-Aspartate receptor |
TLR-4 | Toll-like receptor-4 |
CCl4- | Carbon tetrachloride |
SEDDS | Self-emulsifying drug delivery system |
ERK | Extracellular signal-regulated kinase |
JNK | c-Jun N-terminal kinase |
TGF-β1 | Transforming Growth Factor Beta 1 |
GAP-43 | Growth-Associated Protein 43 |
NGF | Nerve Growth Factor |
PGE2 | Prostaglandin E2 |
MK-801 | Dizocilpine maleate |
NO–cGMP | Nitric Oxide–cyclic Guanosine Monophosphate pathway |
GRAS | Generally Recognized As Safe |
FDA | Food and Drug Administration |
References
- Ren, K.; Dubner, R. Interactions between the immune and nervous systems in pain. Nat. Med. 2010, 16, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Su, P.P.; Zhang, L.; He, L.; Zhao, N.; Guan, Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J. Pain Res. 2022, 15, 2223–2248. [Google Scholar] [CrossRef] [PubMed]
- Domenichiello, A.F.; Ramsden, C.E. The silent epidemic of chronic pain in older adults. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 93, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, J.D.; Shafritz, K.M. An Integrative Neuroscience Framework for the Treatment of Chronic Pain: From Cellular Alterations to Behavior. Front. Integr. Neurosci. 2018, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gewandter, J.S.; Geha, P. Brain Imaging Biomarkers for Chronic Pain. Front. Neurol. 2021, 12, 734821. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.R.; Berta, T.; Nedergaard, M. Glia and pain: Is chronic pain a gliopathy? Pain 2013, 154 (Suppl. 1), S10–S28. [Google Scholar] [CrossRef] [PubMed]
- Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [PubMed]
- McCarberg, B.; Peppin, J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. Pain Med. 2019, 20, 2421–2437. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef] [PubMed]
- Kuner, R.; Flor, H. Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 2016, 18, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.V.; Collingridge, G.L.; Kaang, B.K.; Zhuo, M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 2016, 17, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, N.; Sato, K.; Sato, K.; Murakawa, S.; Hamasaki, Y.; Nomura, H.; Amano, T.; Minami, M. Chronic pain-induced neuronal plasticity in the bed nucleus of the stria terminalis causes maladaptive anxiety. Sci. Adv. 2022, 8, eabj5586. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpaa, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Catalisano, G.; Campione, G.M.; Spurio, G.; Galvano, A.N.; di Villalba, C.P.; Giarratano, A.; Alongi, A.; Ippolito, M.; Cortegiani, A. Neuropathic pain, antidepressant drugs, and inflammation: A narrative review. J. Anesth. Analg. Crit. Care 2024, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhuang, X.; Ma, W. Is gabapentin effective and safe in the treatment of chronic pelvic pain in women: A systematic review and meta-analysis. Int. Urogynecol. J. 2022, 33, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Brueckle, M.S.; Thomas, E.T.; Seide, S.E.; Pilz, M.; Gonzalez-Gonzalez, A.I.; Dinh, T.S.; Gerlach, F.M.; Harder, S.; Glasziou, P.P.; Muth, C. Amitriptyline’s anticholinergic adverse drug reactions-A systematic multiple-indication review and meta-analysis. PLoS ONE 2023, 18, e0284168. [Google Scholar] [CrossRef] [PubMed]
- Lunn, M.P.; Hughes, R.A.; Wiffen, P.J. Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia. Cochrane Database Syst. Rev. 2014, 2014, CD007115. [Google Scholar] [CrossRef] [PubMed]
- Amaechi, O.; Huffman, M.M.; Featherstone, K. Pharmacologic Therapy for Acute Pain. Am. Fam. Physicians 2021, 104, 63–72. [Google Scholar]
- Alorfi, N.M. Pharmacological Methods of Pain Management: Narrative Review of Medication Used. Int. J. Gen. Med. 2023, 16, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.K.; Smith, C.M.; Rahmatullah, M.; Nissapatorn, V.; Wilairatana, P.; Spetea, M.; Gueven, N.; Dietis, N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals 2021, 14, 1091. [Google Scholar] [CrossRef] [PubMed]
- Dowell, D.; Ragan, K.R.; Jones, C.M.; Baldwin, G.T.; Chou, R. Prescribing Opioids for Pain—The New CDC Clinical Practice Guideline. N. Engl. J. Med. 2022, 387, 2011–2013. [Google Scholar] [CrossRef] [PubMed]
- Sic, A.; Manzar, A.; Knezevic, N.N. The Role of Phytochemicals in Managing Neuropathic Pain: How Much Progress Have We Made? Nutrients 2024, 16, 4342. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. BioMed Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Sashide, Y.; Toyota, R.; Ito, H. The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential. Molecules 2024, 29, 3957. [Google Scholar] [CrossRef] [PubMed]
- Takayama, Y.; Uta, D.; Furue, H.; Tominaga, M. Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc. Natl. Acad. Sci. USA 2015, 112, 5213–5218. [Google Scholar] [CrossRef] [PubMed]
- Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.M.; Chandra, S.; Gul, S.; ElSohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef] [PubMed]
- Liktor-Busa, E.; Keresztes, A.; LaVigne, J.; Streicher, J.M.; Largent-Milnes, T.M. Analgesic Potential of Terpenes Derived from Cannabis sativa. Pharmacol. Rev. 2021, 73, 98–126. [Google Scholar] [CrossRef] [PubMed]
- Vuckovic, S.; Srebro, D.; Vujovic, K.S.; Vucetic, C.; Prostran, M. Cannabinoids and Pain: New Insights from Old Molecules. Front. Pharmacol. 2018, 9, 1259. [Google Scholar] [CrossRef] [PubMed]
- LaVigne, J.E.; Hecksel, R.; Keresztes, A.; Streicher, J.M. Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity. Sci. Rep. 2021, 11, 8232. [Google Scholar] [CrossRef] [PubMed]
- Ferber, S.G.; Namdar, D.; Hen-Shoval, D.; Eger, G.; Koltai, H.; Shoval, G.; Shbiro, L.; Weller, A. The “Entourage Effect”: Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Curr. Neuropharmacol. 2020, 18, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M. Neurophysiological Mechanisms Underlying the Attenuation of Nociceptive and Pathological Pain by Phytochemicals: Clinical Application as Therapeutic Agents. Prog. Neurobiol. 2024, 11, 1–13. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Chida, R.; Utugi, S.; Sashide, Y.; Takeda, M. Systemic Administration of the Phytochemical, Myricetin, Attenuates the Excitability of Rat Nociceptive Secondary Trigeminal Neurons. Molecules 2025, 30, 1019. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, H.; Heberle, E.; Hilfiger, L.; Lapies, O.; Rodrigue, G.; Charlet, A. TRP channels and monoterpenes: Past and current leads on analgesic properties. Front. Mol. Neurosci. 2022, 15, 945450. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ding, Y.; Guan, H.; Zhou, C.; He, X.; Shao, Y.; Wang, Y.; Wang, N.; Li, B.; Lv, G.; et al. The Pharmacological Effects and Potential Applications of Limonene from Citrus Plants: A Review. Nat. Prod. Commun. 2024, 19, 1–12. [Google Scholar] [CrossRef]
- Kaimoto, T.; Hatakeyama, Y.; Takahashi, K.; Imagawa, T.; Tominaga, M.; Ohta, T. Involvement of transient receptor potential A1 channel in algesic and analgesic actions of the organic compound limonene. Eur. J. Pain 2016, 20, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Seo, S.; Lamichhane, S.; Seo, J.; Hong, J.T.; Cha, H.J.; Yun, J. Limonene has anti-anxiety activity via adenosine A2A receptor-mediated regulation of dopaminergic and GABAergic neuronal function in the striatum. Phytomedicine 2021, 83, 153474. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Song, Y.; Gu, S.M.; Min, H.K.; Hong, J.T.; Cha, H.J.; Yun, J. D-limonene Inhibits Pentylenetetrazole-Induced Seizure via Adenosine A2A Receptor Modulation on GABAergic Neuronal Activity. Int. J. Mol. Sci. 2020, 21, 9277. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, A.A.; Silva, R.O.; Nicolau, L.A.; de Brito, T.V.; de Sousa, D.P.; Barbosa, A.L.; de Freitas, R.M.; Lopes, L.D.; Medeiros, J.R.; Ferreira, P.M. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide. Inflammation 2017, 40, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Santos, A.; Carvalho, A.C.A.; Bechara, M.D.; Guiguer, E.L.; Goulart, R.A.; Vargas Sinatora, R.; Araujo, A.C.; Barbalho, S.M. Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, F.; Xing, Z.; Chen, J.; Peng, C.; Li, D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol. 2022, 13, 1006434. [Google Scholar] [CrossRef] [PubMed]
- Klawitter, J.; Weissenborn, W.; Gvon, I.; Walz, M.; Klawitter, J.; Jackson, M.; Sempio, C.; Joksimovic, S.L.; Shokati, T.; Just, I.; et al. beta-Caryophyllene Inhibits Monoacylglycerol Lipase Activity and Increases 2-Arachidonoyl Glycerol Levels In Vivo: A New Mechanism of Endocannabinoid-Mediated Analgesia? Mol. Pharmacol. 2024, 105, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Peana, A.T.; Rubattu, P.; Piga, G.G.; Fumagalli, S.; Boatto, G.; Pippia, P.; De Montis, M.G. Involvement of adenosine A1 and A2A receptors in (-)-linalool-induced antinociception. Life Sci. 2006, 78, 2471–2474. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, Y.; Xu, D.; Zhang, N.; Chen, Y.; Yang, J.; Sun, L. Beta-Myrcene as a Sedative-Hypnotic Component from Lavender Essential Oil in DL-4-Chlorophenylalanine-Induced-Insomnia Mice. Pharmaceuticals 2024, 17, 1161. [Google Scholar] [CrossRef] [PubMed]
- Irrera, N.; D’Ascola, A.; Pallio, G.; Bitto, A.; Mazzon, E.; Mannino, F.; Squadrito, V.; Arcoraci, V.; Minutoli, L.; Campo, G.M.; et al. beta-Caryophyllene Mitigates Collagen Antibody Induced Arthritis (CAIA) in Mice Through a Cross-Talk between CB2 and PPAR-gamma Receptors. Biomolecules 2019, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.L.; Baner, K.; Westkaemper, R.; Siebert, D.; Rice, K.C.; Steinberg, S.; Ernsberger, P.; Rothman, R.B. Salvinorin A: A potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc. Natl. Acad. Sci. USA 2002, 99, 11934–11939. [Google Scholar] [CrossRef] [PubMed]
- Katsuyama, S.; Mizoguchi, H.; Kuwahata, H.; Komatsu, T.; Nagaoka, K.; Nakamura, H.; Bagetta, G.; Sakurada, T.; Sakurada, S. Involvement of peripheral cannabinoid and opioid receptors in beta-caryophyllene-induced antinociception. Eur. J. Pain 2013, 17, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Peana, A.T.; D’Aquila, P.S.; Chessa, M.L.; Moretti, M.D.; Serra, G.; Pippia, P. (−)-Linalool produces antinociception in two experimental models of pain. Eur. J. Pharmacol. 2003, 460, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.R.Q.; Maia, J.G.S.; Fontes-Junior, E.A.; do Socorro Ferraz Maia, C. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr. Neuropharmacol. 2022, 20, 1073–1092. [Google Scholar] [CrossRef] [PubMed]
- Mandlem, V.K.K.; Rivera, A.; Khan, Z.; Quazi, S.H.; Deba, F. TLR4 induced TRPM2 mediated neuropathic pain. Front. Pharmacol. 2024, 15, 1472771. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Y.; Yang, F.; Chen, J.H.; Ren, G.F. beta-Caryophyllene Ameliorates MSU-Induced Gouty Arthritis and Inflammation Through Inhibiting NLRP3 and NF-kappaB Signal Pathway: In Silico and In Vivo. Front. Pharmacol. 2021, 12, 651305. [Google Scholar] [CrossRef]
- Tian, X.; Liu, H.; Xiang, F.; Xu, L.; Dong, Z. beta-Caryophyllene protects against ischemic stroke by promoting polarization of microglia toward M2 phenotype via the TLR4 pathway. Life Sci. 2019, 237, 116915. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Adamu, A.; Ye, Y.; Gao, F.; Mi, R.; Xue, G.; Wang, Z. (+)-Borneol inhibits neuroinflammation and M1 phenotype polarization of microglia in epileptogenesis through the TLR4-NFkappaB signaling pathway. Front. Neurosci. 2024, 18, 1497102. [Google Scholar] [CrossRef] [PubMed]
- Noroozi, F.; Asle-Rousta, M.; Amini, R.; Sahraeian, Z. Alpha-pinene ameliorates liver fibrosis by suppressing oxidative stress, inflammation, and the TGF-beta/Smad3 signaling pathway. Iran. J. Basic. Med. Sci. 2025, 28, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.N.; Aquino, S.G.; Rossa Junior, C.; Spolidorio, D.M. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1beta, IL-6 and IL-10 on human macrophages. Inflamm. Res. 2014, 63, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Milanos, S.; Elsharif, S.A.; Janzen, D.; Buettner, A.; Villmann, C. Metabolic Products of Linalool and Modulation of GABA(A) Receptors. Front. Chem. 2017, 5, 46. [Google Scholar] [CrossRef] [PubMed]
- Weston-Green, K.; Clunas, H.; Jimenez Naranjo, C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front. Psychiatry 2021, 12, 583211. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Juarez, J.V.; Arrieta, J.; Briones-Aranda, A.; Cruz-Antonio, L.; Lopez-Lorenzo, Y.; Sanchez-Mendoza, M.E. Synergistic Antinociceptive Effect of beta-Caryophyllene Oxide in Combination with Paracetamol, and the Corresponding Gastroprotective Activity. Biomedicines 2024, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Seekins, C.A.; Welborn, A.M.; Schwarz, A.M.; Streicher, J.M. Select terpenes from Cannabis sativa are antinociceptive in mouse models of post-operative pain and fibromyalgia via adenosine A(2a) receptors. Pharmacol. Rep. 2025, 77, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Fari, G.; Megna, M.; Scacco, S.; Ranieri, M.; Raele, M.V.; Chiaia Noya, E.; Macchiarola, D.; Bianchi, F.P.; Carati, D.; Panico, S.; et al. Hemp Seed Oil in Association with beta-Caryophyllene, Myrcene and Ginger Extract as a Nutraceutical Integration in Knee Osteoarthritis: A Double-Blind Prospective Case-Control Study. Medicina 2023, 59, 191. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.C.; Hsu, T.F.; Lai, A.C.; Lin, Y.T.; Lin, C.C. Pain relief assessment by aromatic essential oil massage on outpatients with primary dysmenorrhea: A randomized, double-blind clinical trial. J. Obs. Obstet. Gynaecol. Res. 2012, 38, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Faust, M.; Abbott, S.; Patel, V.; Chang, E.; Clark, J.I.; Stella, N.; Muchowski, P.J. Effects of a cannabidiol/terpene formulation on sleep in individuals with insomnia: A double-blind, placebo-controlled, randomized, crossover study. J. Clin. Sleep. Med. 2025, 21, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.E.; Baillie, J.E. Randomized placebo controlled trial of phytoterpenes in DMSO for the treatment of plantar fasciitis. Sci. Rep. 2024, 14, 17621. [Google Scholar] [CrossRef] [PubMed]
- Ivashkin, V.T.; Kudryavtseva, A.V.; Krasnov, G.S.; Poluektov, Y.M.; Morozova, M.A.; Shifrin, O.S.; Beniashvili, A.G.; Mamieva, Z.A.; Kovaleva, A.L.; Ulyanin, A.I.; et al. Efficacy and safety of a food supplement with standardized menthol, limonene, and gingerol content in patients with irritable bowel syndrome: A double-blind, randomized, placebo-controlled trial. PLoS ONE 2022, 17, e0263880. [Google Scholar] [CrossRef] [PubMed]
- Spindle, T.R.; Zamarripa, C.A.; Russo, E.; Pollak, L.; Bigelow, G.; Ward, A.M.; Tompson, B.; Sempio, C.; Shokati, T.; Klawitter, J.; et al. Vaporized D-limonene selectively mitigates the acute anxiogenic effects of Delta9-tetrahydrocannabinol in healthy adults who intermittently use cannabis. Drug Alcohol Depend. 2024, 257, 111267. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Nuutinen, T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur. J. Med. Chem. 2018, 157, 198–228. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Sun, N.; Hill, J.E. Comprehensive Profiling of Terpenes and Terpenoids in Different Cannabis Strains Using GC × GC-TOFMS. Separations 2023, 10, 500. [Google Scholar] [CrossRef]
- Raz, N.; Eyal, A.M.; Zeitouni, D.B.; Hen-Shoval, D.; Davidson, E.M.; Danieli, A.; Tauber, M.; Ben-Chaim, Y. Selected cannabis terpenes synergize with THC to produce increased CB1 receptor activation. Biochem. Pharmacol. 2023, 212, 115548. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Hosseini, M.; Pereira, D.M. The Chemical Space of Terpenes: Insights from Data Science and AI. Pharmaceuticals 2023, 16, 202. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, T.M.; Ozarowski, M.; Silva, P.J.; Stasiewicz, M.; Alam, R.; Samad, A. Discovery of Terpenes as Novel HCV NS5B Polymerase Inhibitors via Molecular Docking. Pathogens 2023, 12, 842. [Google Scholar] [CrossRef] [PubMed]
- Modinger, Y.; Knaub, K.; Dharsono, T.; Wacker, R.; Meyrat, R.; Land, M.H.; Petraglia, A.L.; Schon, C. Enhanced Oral Bioavailability of beta-Caryophyllene in Healthy Subjects Using the VESIsorb((R)) Formulation Technology, a Novel Self-Emulsifying Drug Delivery System (SEDDS). Molecules 2022, 27, 2860. [Google Scholar] [CrossRef] [PubMed]
- Falk, A.A.; Hagberg, M.T.; Lof, A.E.; Wigaeus-Hjelm, E.M.; Wang, Z.P. Uptake, distribution and elimination of alpha-pinene in man after exposure by inhalation. Scand. J. Work. Environ. Health 1990, 16, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Meesters, R.J.; Duisken, M.; Hollender, J. Study on the cytochrome P450-mediated oxidative metabolism of the terpene alcohol linalool: Indication of biological epoxidation. Xenobiotica 2007, 37, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.L.; Yu, H.L.; Li, D.; Meng, X.L.; Zhou, Z.Y.; Yu, Q.; Zhang, X.Y.; Wang, F.J.; Guo, C. Inhibitory effects of limonin on six human cytochrome P450 enzymes and P-glycoprotein in vitro. Toxicol. In Vitro 2011, 25, 1828–1833. [Google Scholar] [CrossRef] [PubMed]
- Mondal, G.; Dale, O.R.; Wang, Y.H.; Khan, S.I.; Khan, I.A.; Yates, C.R. In Vitro Metabolism and CYP-Modulating Activity of Lavender Oil and Its Major Constituents. Molecules 2023, 28, 755. [Google Scholar] [CrossRef] [PubMed]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-What Are the Potential Health Benefits of This Flavouring and Aroma Agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef] [PubMed]
- Zarybnicky, T.; Bousova, I.; Ambroz, M.; Skalova, L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch. Toxicol. 2018, 92, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Brared Christensson, J.; Andersen, K.E.; Bruze, M.; Johansen, J.D.; Garcia-Bravo, B.; Gimenez Arnau, A.; Goh, C.L.; Nixon, R.; White, I.R. Air-oxidized linalool: A frequent cause of fragrance contact allergy. Contact Dermat. 2012, 67, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B.; Marcu, J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Adv. Pharmacol. 2017, 80, 67–134. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Favela, M.A.; Santos-Ballardo, D.U.; Bergés-Tiznado, M.E.; Ambriz-Pérez, D.L. Nanoformulations applied to the delivery of terpenes. In Phytochemical Nanodelivery Systems as Potential Biopharmaceuticals; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Gonçalves, B.M.F.; Cardoso, D.S.P.; Ferreira, M.-J.U. Overcoming Multidrug Resistance: Flavonoid and Terpenoid Nitrogen-Containing Derivatives as ABC Transporter Modulators. Molecules 2020, 25, 3364. [Google Scholar] [CrossRef] [PubMed]
- Kaspute, G.; Ivaskiene, T.; Ramanavicius, A.; Ramanavicius, S.; Prentice, U. Terpenes and Essential Oils in Pharmaceutics: Applications as Therapeutic Agents and Penetration Enhancers with Advanced Delivery Systems for Improved Stability and Bioavailability. Pharmaceutics 2025, 17, 793. [Google Scholar] [CrossRef] [PubMed]
- El-Kattan, A.F.; Asbill, C.S.; Kim, N.; Michniak, B.B. The effects of terpene enhancers on the percutaneous permeation of drugs with different lipophilicities. Int. J. Pharm. 2001, 215, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Hanus, L.O.; Hod, Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med. Cannabis Cannabinoids 2020, 3, 25–60. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.A.; Wang, M.; Radwan, M.M.; Wanas, A.S.; Majumdar, C.G.; Avula, B.; Wang, Y.H.; Khan, I.A.; Chandra, S.; Lata, H.; et al. Analysis of Terpenes in Cannabis sativa L. Using GC/MS: Method Development, Validation, and Application. Planta Med. 2019, 85, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.M.; Keresztes, A.; Bui, T.; Hecksel, R.J.; Pena, A.; Lent, B.; Gao, Z.G.; Gamez-Rivera, M.; Seekins, C.A.; Chou, K.; et al. Terpenes from Cannabis sativa Induce Antinociception in Mouse Chronic Neuropathic Pain via Activation of Spinal Cord Adenosine A(2A) Receptors. bioRxiv 2023. [Google Scholar] [CrossRef]
- Jansen, C.; Shimoda, L.M.N.; Kawakami, J.K.; Ang, L.; Bacani, A.J.; Baker, J.D.; Badowski, C.; Speck, M.; Stokes, A.J.; Small-Howard, A.L.; et al. Myrcene and terpene regulation of TRPV1. Channels 2019, 13, 344–366. [Google Scholar] [CrossRef] [PubMed]
- Heblinski, M.; Santiago, M.; Fletcher, C.; Stuart, J.; Connor, M.; McGregor, I.S.; Arnold, J.C. Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Actions of Phytocannabinoids or Endocannabinoids on TRPA1 and TRPV1 Channels. Cannabis Cannabinoid Res. 2020, 5, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.S.; Menezes, A.M.; Viana, G.S. Effect of myrcene on nociception in mice. J. Pharm. Pharmacol. 1990, 42, 877–878. [Google Scholar] [CrossRef] [PubMed]
- Alayoubi, M.; Rodrigues, A.; Wu, C.; Whitehouse, E.; Nguyen, J.; Cooper, Z.D.; O’Neill, P.R.; Cahill, C.M. Elucidating interplay between myrcene and cannabinoid receptor 1 receptors to produce antinociception in mouse models of neuropathic pain. Pain 2025. [Google Scholar] [CrossRef] [PubMed]
- McDougall, J.J.; McKenna, M.K. Anti-Inflammatory and Analgesic Properties of the Cannabis Terpene Myrcene in Rat Adjuvant Monoarthritis. Int. J. Mol. Sci. 2022, 23, 7891. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.K.; Gambell, E.; Gibbons, T.; Martin, T.J.; Kaplan, J.S. Sex Differences in the Anxiolytic Properties of Common Cannabis Terpenes, Linalool and beta-Myrcene, in Mice. NeuroSci 2024, 5, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Mudge, E.M.; Brown, P.N.; Murch, S.J. The Terroir of Cannabis: Terpene Metabolomics as a Tool to Understand Cannabis sativa Selections. Planta Med. 2019, 85, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Mazzantini, C.; El Bourji, Z.; Parisio, C.; Davolio, P.L.; Cocchi, A.; Pellegrini-Giampietro, D.E.; Landucci, E. Anti-Inflammatory Properties of Cannabidiol and Beta-Caryophyllene Alone or Combined in an In Vitro Inflammation Model. Pharmaceuticals 2024, 17, 467. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.F.B.; Oliveira, H.B.M.; das Neves Selis, N.; Morbeck, L.L.B.; Santos, T.C.; da Silva, L.S.C.; Viana, J.C.S.; Reis, M.M.; Sampaio, B.A.; Campos, G.B.; et al. beta-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo. Sci. Rep. 2022, 12, 19199. [Google Scholar] [CrossRef] [PubMed]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-beta-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef] [PubMed]
- Klauke, A.L.; Racz, I.; Pradier, B.; Markert, A.; Zimmer, A.M.; Gertsch, J.; Zimmer, A. The cannabinoid CB(2) receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur. Neuropsychopharmacol. 2014, 24, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Aly, E.; Khajah, M.A.; Masocha, W. beta-Caryophyllene, a CB2-Receptor-Selective Phytocannabinoid, Suppresses Mechanical Allodynia in a Mouse Model of Antiretroviral-Induced Neuropathic Pain. Molecules 2020, 25, 106. [Google Scholar] [CrossRef]
- Machado, K.D.C.; Islam, M.T.; Ali, E.S.; Rouf, R.; Uddin, S.J.; Dev, S.; Shilpi, J.A.; Shill, M.C.; Reza, H.M.; Das, A.K.; et al. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother. Res. 2018, 32, 2376–2388. [Google Scholar] [CrossRef] [PubMed]
- da Silva Oliveira, G.L.; da Silva, J.; Dos Santos, C.L.d.S.A.P.; Feitosa, C.M.; de Castro Almeida, F.R. Anticonvulsant, Anxiolytic and Antidepressant Properties of the beta-caryophyllene in Swiss Mice: Involvement of Benzodiazepine-GABAAergic, Serotonergic and Nitrergic Systems. Curr. Mol. Pharmacol. 2021, 14, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Gertsch, J.; Pertwee, R.G.; Di Marzo, V. Phytocannabinoids beyond cannabis plant—DO they exist? Br. J. Pharmacol. 2010, 160, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.D.; McKernan, K.; Pauli, C.; Roe, J.; Torres, A.; Gaudino, R. Genomic characterization of the complete terpene synthase gene family from Cannabis sativa. PLoS ONE 2019, 14, e0222363. [Google Scholar] [CrossRef] [PubMed]
- Kathem, S.H.; Nasrawi, Y.S.; Mutlag, S.H.; Nauli, S.M. Limonene Exerts Anti-Inflammatory Effect on LPS-Induced Jejunal Injury in Mice by Inhibiting NF-kappaB/AP-1 Pathway. Biomolecules 2024, 14, 334. [Google Scholar] [CrossRef] [PubMed]
- Razazi, A.; Kakanezhadi, A.; Raisi, A.; Pedram, B.; Dezfoulian, O.; Davoodi, F. D-limonene inhibits peritoneal adhesion formation in rats via anti-inflammatory, anti-angiogenic, and antioxidative effects. Inflammopharmacology 2024, 32, 1077–1089. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Filho, H.G.; Pereira, E.W.M.; Heimfarth, L.; Souza Monteiro, B.; Santos Passos, F.R.; Siqueira-Lima, P.; Gandhi, S.R.; Viana Dos Santos, M.R.; Guedes da Silva Almeida, J.R.; Picot, L.; et al. Limonene, a food additive, and its active metabolite perillyl alcohol improve regeneration and attenuate neuropathic pain after peripheral nerve injury: Evidence for IL-1beta, TNF-alpha, GAP, NGF and ERK involvement. Int. Immunopharmacol. 2020, 86, 106766. [Google Scholar] [CrossRef] [PubMed]
- Casano, S.; Grassi, G.; Martini, V.; Michelozzi, M. Variations in terpene profiles of different strains of Cannabis sativa L. Acta Hortic. 2011, 925, 115–121. [Google Scholar] [CrossRef]
- Gautam, M.; Gabrani, R. Comparative analysis of alpha-pinene alone and combined with temozolomide in human glioblastoma cells. Nat. Prod. Res. 2024, 38, 3657–3662. [Google Scholar] [CrossRef] [PubMed]
- Rafie, F.; Kooshki, R.; Abbasnejad, M.; Rahbar, I.; Raoof, M.; Nekouei, A.H. alpha-Pinene Influence on Pulpal Pain-Induced Learning and Memory Impairment in Rats Via Modulation of the GABAA Receptor. Adv. Biomed. Res. 2022, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Sousa, O.V.; Silverio, M.S.; Del-Vechio-Vieira, G.; Matheus, F.C.; Yamamoto, C.H.; Alves, M.S. Antinociceptive and anti-inflammatory effects of the essential oil from Eremanthus erythropappus leaves. J. Pharm. Pharmacol. 2008, 60, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Jafarian, S.; Majnooni, M.B.; Farzaei, M.H.; Mohammadi-Noori, E.; Khan, H. Anti-nociceptive and anti-inflammatory activities of the essential oil isolated from Cupressus arizonica Greene fruits. Korean J. Pain. 2022, 35, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Kushnarenko, S.V.; Ozek, G.; Kirpotina, L.N.; Sinharoy, P.; Utegenova, G.A.; Abidkulova, K.T.; Ozek, T.; Baser, K.H.; Kovrizhina, A.R.; et al. Modulation of Human Neutrophil Responses by the Essential Oils from Ferula akitschkensis and Their Constituents. J. Agric. Food Chem. 2016, 64, 7156–7170. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.T.; He, Y.H.; Lo, Y.H.; Chiang, Y.T.; Wang, S.Y.; Bezirganoglu, I.; Kumar, K.J.S. Essential Oil from Glossogyne tenuifolia Inhibits Lipopolysaccharide-Induced Inflammation-Associated Genes in Macro-Phage Cells via Suppression of NF-kappaB Signaling Pathway. Plants 2023, 12, 1241. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.S.; Abrantes Coelho, G.L.; Saraiva Fontes Loula, Y.K.; Saraiva Landim, B.L.; Fernandes Lima, C.N.; Tavares de Sousa Machado, S.; Pereira Lopes, M.J.; Soares Gomes, A.D.; Martins da Costa, J.G.; Alencar de Menezes, I.R.; et al. Hypoglycemic, Hypolipidemic, and Anti-Inflammatory Effects of Beta-Pinene in Diabetic Rats. Evid.-Based Complement. Altern. Med. 2022, 2022, 8173307. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, K.; Zalaghi, M.; Shehnizad, E.G.; Salari, G.; Baghdezfoli, F.; Ebrahimifar, A. The effects of alpha-pinene on inflammatory responses and oxidative stress in the formalin test. Brain Res. Bull. 2023, 203, 110774. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Ocampo, L.M.; Aguirre-Hernandez, E.; Lopez-Camacho, P.Y.; Cardenas-Vazquez, R.; Dorazco-Gonzalez, A.; Basurto-Islas, G. Acetylcholinesterase inhibition and antioxidant activity properties of Petiveria alliacea L. J. Ethnopharmacol. 2022, 292, 115239. [Google Scholar] [CrossRef] [PubMed]
- Eldufani, J.; Blaise, G. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications. Alzheimer’s Dement. 2019, 5, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Nam, E.S.; Lee, Y.; Kang, H.J. Effects of Lavender on Anxiety, Depression, and Physiological Parameters: Systematic Review and Meta-Analysis. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 2021, 15, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Donelli, D.; Antonelli, M.; Bellinazzi, C.; Gensini, G.F.; Firenzuoli, F. Effects of lavender on anxiety: A systematic review and meta-analysis. Phytomedicine 2019, 65, 153099. [Google Scholar] [CrossRef] [PubMed]
- Brum, L.F.; Elisabetsky, E.; Souza, D. Effects of linalool on [(3)H]MK801 and [(3)H] muscimol binding in mouse cortical membranes. Phytother. Res. 2001, 15, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Narusuye, K.; Kawai, F.; Matsuzaki, K.; Miyachi, E. Linalool suppresses voltage-gated currents in sensory neurons and cerebellar Purkinje cells. J. Neural. Transm. 2005, 112, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Batista, P.A.; Werner, M.F.; Oliveira, E.C.; Burgos, L.; Pereira, P.; Brum, L.F.; Santos, A.R. Evidence for the involvement of ionotropic glutamatergic receptors on the antinociceptive effect of (−)-linalool in mice. Neurosci. Lett. 2008, 440, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Phuong, T.N.T.; Jang, S.H.; Rijal, S.; Jung, W.K.; Kim, J.; Park, S.J.; Han, S.K. GABA- and Glycine-Mimetic Responses of Linalool on the Substantia Gelatinosa of the Trigeminal Subnucleus Caudalis in Juvenile Mice: Pain Management through Linalool-Mediated Inhibitory Neurotransmission. Am. J. Chin. Med. 2021, 49, 1437–1448. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.E.; Abduldaium, Y.S.; Younis, N.S. Ameliorative Effect of Linalool in Cisplatin-Induced Nephrotoxicity: The Role of HMGB1/TLR4/NF-kappaB and Nrf2/HO1 Pathways. Biomolecules 2020, 10, 1488. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Kustrin, E.; Gegechkori, V.; Morton, D.W. Anxiolytic Terpenoids and Aromatherapy for Anxiety and Depression. Adv. Exp. Med. Biol. 2020, 1260, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, S.; Yamaguchi, R.; Ishikawa, S.; Sakurai, T.; Kajiya, K.; Kanmura, Y.; Kuwaki, T.; Kashiwadani, H. Odour-induced analgesia mediated by hypothalamic orexin neurons in mice. Sci. Rep. 2016, 6, 37129. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Takahashi, K.; Ohta, T. Inhibitory effects of linalool, an essential oil component of lavender, on nociceptive TRPA1 and voltage-gated Ca2+ channels in mouse sensory neurons. Biochem. Biophys. Rep. 2023, 34, 101468. [Google Scholar] [CrossRef] [PubMed]
- Berliocchi, L.; Russo, R.; Levato, A.; Fratto, V.; Bagetta, G.; Sakurada, S.; Sakurada, T.; Mercuri, N.B.; Corasaniti, M.T. (−)-Linalool attenuates allodynia in neuropathic pain induced by spinal nerve ligation in c57/bl6 mice. Int. Rev. Neurobiol. 2009, 85, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Yap, W.S.; Dolzhenko, A.V.; Jalal, Z.; Hadi, M.A.; Khan, T.M. Efficacy and safety of lavender essential oil (Silexan) capsules among patients suffering from anxiety disorders: A network meta-analysis. Sci. Rep. 2019, 9, 18042. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, A.; Mahmodi, M.A.; Nobakht, Z. Effect of aromatherapy massage with lavender essential oil on pain in patients with osteoarthritis of the knee: A randomized controlled clinical trial. Complement. Ther. Clin. Pract. 2016, 25, 75–80. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Shin, Y.K.; Seol, G.H. Alleviating effect of lavender (Lavandula angustifolia) and its major components on postherpetic pain: A randomized blinded controlled trial. BMC Complement. Med. Ther. 2024, 24, 54. [Google Scholar] [CrossRef] [PubMed]
- Pistelli, L.; Ferri, B.; Cioni, P.L.; Koziara, M.; Agacka, M.; Skomra, U. Aroma profile and bitter acid characterization of hop cones (Humulus lupulus L.) of five healthy and infected Polish cultivars. Ind. Crops Prod. 2018, 124, 653–662. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Yeo, D.; Hwang, S.J.; Song, Y.S.; Lee, H.J. Humulene Inhibits Acute Gastric Mucosal Injury by Enhancing Mucosal Integrity. Antioxidants 2021, 10, 761. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, B.G.; Silva, A.S.; Souza, G.E.; Figueiredo, J.G.; Cunha, F.Q.; Lahlou, S.; da Silva, J.K.; Maia, J.G.; Sousa, P.J. Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Loud. J. Ethnopharmacol. 2011, 138, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Basting, R.T.; Spindola, H.M.; Sousa, I.M.O.; Queiroz, N.C.A.; Trigo, J.R.; de Carvalho, J.E.; Foglio, M.A. Pterodon pubescens and Cordia verbenacea association promotes a synergistic response in antinociceptive model and improves the anti-inflammatory results in animal models. Biomed. Pharmacother. 2019, 112, 108693. [Google Scholar] [CrossRef] [PubMed]
- Martim, J.K.P.; Maranho, L.T.; Costa-Casagrande, T.A. Review: Role of the chemical compounds present in the essential oil and in the extract of Cordia verbenacea DC as an anti-inflammatory, antimicrobial and healing product. J. Ethnopharmacol. 2021, 265, 113300. [Google Scholar] [CrossRef] [PubMed]
- Hougee, S.; Faber, J.; Sanders, A.; Berg, W.B.; Garssen, J.; Smit, H.F.; Hoijer, M.A. Selective inhibition of COX-2 by a standardized CO2 extract of Humulus lupulus in vitro and its activity in a mouse model of zymosan-induced arthritis. Planta Med. 2006, 72, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Fiorenzani, P.; Lamponi, S.; Magnani, A.; Ceccarelli, I.; Aloisi, A.M. In vitro and in vivo characterization of the new analgesic combination Beta-caryophyllene and docosahexaenoic Acid. Evid. Based Complement. Altern. Med. 2014, 2014, 596312. [Google Scholar] [CrossRef] [PubMed]
- Campelo, L.M.; de Almeida, A.A.; de Freitas, R.L.; Cerqueira, G.S.; de Sousa, G.F.; Saldanha, G.B.; Feitosa, C.M.; de Freitas, R.M. Antioxidant and antinociceptive effects of Citrus limon essential oil in mice. J. Biomed. Biotechnol. 2011, 2011, 678673. [Google Scholar] [CrossRef]
- Russo, E.B. The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain. Front. Plant Sci. 2018, 9, 1969. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, D.; Levy, R.; Carroll, B. Toxicological Evaluation of beta-Caryophyllene Oil: Subchronic Toxicity in Rats. Int. J. Toxicol. 2016, 35, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Gavliakova, S.; Buday, T.; Shetthalli, V.M.; Plevkova, J. Analysis of pathomechanisms involved in side effects of menthol treatment in respiratory diseases. Open J. Mol. Integr. Physiol. 2013, 3, 21–26. [Google Scholar] [CrossRef]
- Hermanowicz, K.; Oleksy, D.; Doman, K.; Nowak, J.; Cioch, M.J.; Najdek, A.; Komada, D.; Kaczmarska, U.; Woźniak, A.; Mycyk, M. Therapeutic Potential of 1,8-Cineole in Respiratory Diseases with a Focus on Asthma, Sinusitis, and Upper Respiratory Tract Infections: A Comprehensive Review. J. Educ. Health Sport 2025, 78, 57692. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Mysliveckova, Z.; Szotakova, B.; Spicakova, A.; Lnenickova, K.; Ambroz, M.; Kubicek, V.; Krasulova, K.; Anzenbacher, P.; Skalova, L. The inhibitory effects of beta-caryophyllene, beta-caryophyllene oxide and alpha-humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro. Chem. Biol. Interact. 2017, 278, 123–128. [Google Scholar] [CrossRef] [PubMed]
Terpenes (Class) | Chemotype Prevalence | Experimental Outcomes | Mechanisms | Potential Uses | Refs |
---|---|---|---|---|---|
BCP (S) | CBD-rich strains | Antinociception in formalin, writhing, neuropathy, arthritis; allodynia prevention; synergy with morphine/paracetamol | CB2 agonist, β-endorphin release; ↓MAGL, ↓COX-2, ↓IL-6, ↓TLR4, ↑PPAR-γ, ↓NF-κB; microglia M2 polarization, ERK/JNK modulation | Multi-target analgesic, opioid-sparing | [28,42,45,47,51,52,58,98,99,100,140] |
Myrcene (M) | Indica-dominant | ↓Writhing, ↓edema/arthritis, ↑hot plate latency; sedative–anxiolytic in mice | TRPV1 modulation, peripheral opioid pathways, COX-2 inhibition, local CB2, Nav and Cav interaction; ↓p38 MAPK, ↓glutamate release, ↓PGE2 | Inflammatory/arthritic pain, sedative adjunct | [78,89,90,91,93,94] |
Limonene (M) | Sativa-type | Sciatic nerve protection, antioxidant; ↓allodynia, ↓cytokines, ↓peritoneal adhesions | NF-κB/TNF-α/IL-1β inhibition; A2A-dependent; TRPA1 modulation, GABAA modulation, NO–cGMP pathway modulation | Neuropathy, post-surgical adhesions, visceral inflammation | [36,37,105,106,107,141] |
Pinene (M) | Common to all chemovars | ↓Formalin and hot plate pain, ↓edema; improved neuropathic hyperalgesia | ↓NF-κB, ↓PGE2; GABAA modulation, AChE inhibition, possible TRPV1 and opioid pathways | Anti-inflammatory analgesic, cognitive support | [109,110,111,112,113,115,116] |
Linalool (M) | Indica-dominant | Antinociception (writhing, hot plate, glutamate); ↓neuropathic allodynia, ↓cisplatin hyperalgesia | NMDA and voltage-gated Na+/Ca2+ blockade; ↑A1/A2A, ↓TRPA1, opioid, and ↓TLR4, ↓microglial activation/↓IL-6, ↓AMPA/kainate, GABAA modulation | Inflammatory/neuropathic pain, anxiolytic | [43,48,57,59,121,122,123,124,125,127,128,129] |
Humulene (S) | With BCP-rich strains | ↓Edema, ↓hyperalgesia, anti-arthritic, gastroprotective | COX-2 and NF-κB inhibition, cytokine suppression; ↓IL-1β, ↓TNF-α, ERK/JNK modulation | Topical anti-inflammatories, arthritis | [134,135,136,137,138,139] |
Terpenes | Clinical Effects | Mechanisms | Potential Uses | Refs |
---|---|---|---|---|
BCP | ↓pain and ↑function in knee osteoarthritis (n = 38); ↓intensity/duration of dysmenorrhoea (n = 48); ↑deep sleep in primary insomnia (n = 125) | Presumed CB2 activation ± β-endorphin release (not measured) | Osteoarthritis, dysmenorrhoea, sleep disorders comorbid with pain | [60,61,62] |
Myrcene | ↓pain, ↑ function vs. control (n = 38) | Hypothesized peripheral opioid-like action (not clinically tested) | Nutraceutical support in osteoarthritis | [60] |
Limonene | ≥85% pain reduction in plantar fasciitis (n = 62); ↓IBS symptoms (n = 56); attenuation of THC-induced anxiety/paranoia (n = 20 HV) | Topical anti-inflammatory; A2A modulation; cutaneous TRPA1 involvement | Musculoskeletal pain, IBS, psycho-emotional modulator in cannabis therapy | [63,64,65] |
Linalool | ↓pain in knee OA after lavender oil massage (n = 90); ↓post-herpetic pain (n = 524); benefit reported in dysmenorrhoea (n = 48) | GABA potentiation; NMDA modulation; peripheral opioid pathways | Aromatherapy for chronic musculoskeletal pain, cutaneous neuropathic disorders | [61,131,132] |
Pinene | rapid uptake and clearance (n = 8) | – | Candidate for future trials (bronchodilation, memory) | [74] |
Humulene | no clinical pain studies available | – | Topical anti-inflammatory candidate | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfieri, A.; Di Franco, S.; Maffei, V.; Sansone, P.; Pace, M.C.; Passavanti, M.B.; Fiore, M. Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes. Pharmaceuticals 2025, 18, 1100. https://doi.org/10.3390/ph18081100
Alfieri A, Di Franco S, Maffei V, Sansone P, Pace MC, Passavanti MB, Fiore M. Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes. Pharmaceuticals. 2025; 18(8):1100. https://doi.org/10.3390/ph18081100
Chicago/Turabian StyleAlfieri, Aniello, Sveva Di Franco, Vincenzo Maffei, Pasquale Sansone, Maria Caterina Pace, Maria Beatrice Passavanti, and Marco Fiore. 2025. "Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes" Pharmaceuticals 18, no. 8: 1100. https://doi.org/10.3390/ph18081100
APA StyleAlfieri, A., Di Franco, S., Maffei, V., Sansone, P., Pace, M. C., Passavanti, M. B., & Fiore, M. (2025). Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes. Pharmaceuticals, 18(8), 1100. https://doi.org/10.3390/ph18081100