Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = tensile strain capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 13962 KB  
Article
Axial Compression and Uplift Performance of Continuous Helix Screw Piles
by Ahmed Mneina, Mohamed Hesham El Naggar and Osama Drbe
Buildings 2025, 15(19), 3620; https://doi.org/10.3390/buildings15193620 - 9 Oct 2025
Viewed by 214
Abstract
This study investigates the axial performance of continuous helix screw piles compared to helical piles through full-scale compression and tension load testing in layered soils. Twenty-three piles were installed and tested. The results demonstrate that screw piles can achieve considerable axial capacity with [...] Read more.
This study investigates the axial performance of continuous helix screw piles compared to helical piles through full-scale compression and tension load testing in layered soils. Twenty-three piles were installed and tested. The results demonstrate that screw piles can achieve considerable axial capacity with lower installation torque than helical piles, particularly under tensile loading. The capacity-torque relationship for screw piles was more consistent across both compression and tension, likely due to reduced soil disturbance from the smaller helix projection. Strain gauge measurements indicated that screw piles act primarily as friction piles with the threaded shaft carrying most of the load, especially in stiff clay. On the other hand, the smooth portion of the pile shaft contributed only marginally to resistance in compression and none in tension. The calculated capacity based on theoretical equations aligned well with field results in compression, with screw piles best represented by cylindrical shear failure in sand and a combination of cylindrical shear and individual bearing failure in clay. However, there is greater variability between calculated and measured uplift capacity, possibly due to soil disturbance effects. Additionally, the commonly used helix spacing ratio (S/D) was found to be less applicable to screw piles in predicting failure mode due to their smaller shaft-to-helix diameter difference. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
Show Figures

Figure 1

21 pages, 11774 KB  
Article
Research on the Mechanical Properties of Mechanically Connected Splices of Prestressing Screw Bars Under Monotonic and Cyclic Loads
by Liangyu Lei, Yue Ma, Bo Xie, Jing Bai, Mei Hu and Zhezhuo Guo
Buildings 2025, 15(19), 3614; https://doi.org/10.3390/buildings15193614 - 9 Oct 2025
Viewed by 162
Abstract
The mechanical properties of screw-thread steel bars used for prestressing concrete and their threaded ribs’ bearing mechanism have not been quantitatively studied, in contrast to the extensive qualitative research on ordinary steel mechanical connection splices. A quantitative investigation was conducted under various design [...] Read more.
The mechanical properties of screw-thread steel bars used for prestressing concrete and their threaded ribs’ bearing mechanism have not been quantitatively studied, in contrast to the extensive qualitative research on ordinary steel mechanical connection splices. A quantitative investigation was conducted under various design parameters and working conditions to examine the mechanical connection splices of screw-thread steel bars used for prestressing concrete. The splices’ connection performance and their threaded ribs’ bearing mechanism were also examined. Analyzing the force on the threads of the splices under monotonic tensile loading allowed for the theoretical computation of the axial force coefficients for threaded ribs. The validated revised three-dimensional numerical model of splices is based on the findings of the theoretical calculations. Afterwards, rigorous numerical simulations of monotonic tensile loading, repeated tensile and compressive loading with high stress, and repeated tensile and compressive loading with large strain were performed on 45 splices with varying nominal rebar diameters, coupler outer diameters and lengths, and thread rib spacings. The results show that rebar pullout and rebar fracture are the two main ways in which splices might fail. After cyclic loading, the splices’ ultimate bearing capacity changed by 0.83% to 2.81%, and their ductility changed by 2.13% to 4.75% compared to after monotonic tensile loading. Although the splice load-carrying capacity and plastic deformation capacity were reduced by 2.11%~7.48% and 3.98%~25.78%, respectively, when the thread rib spacing was increased from the specified value to 0.6~0.8 times the nominal diameter of the rebar, the splice connection performance was still able to meet the requirements for class I splices. Approximately half of the splices’ load-bearing capability is provided by the 1–2 turns of threads close to the coupler ends; after cyclic loading, their stress rises by between 4.52% and 12.63% relative to monotonic tension. Stresses in all threaded ribs of the splices are increased by 5.49% to 27.76% as the distance between the threaded ribs increases to 1.0 and 1.2 times the nominal diameter of the rebar, which reduces the splice’s load-bearing capacity. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 2216 KB  
Article
Three-Dimensional Dual-Network Gel-Immobilized Mycelial Pellets: A Robust Bio-Carrier with Enhanced Shear Resistance and Biomass Retention for Sustainable Removal of SMX
by Qingyu Zhang, Haijuan Guo, Jingyan Zhang and Fang Ma
Sustainability 2025, 17(19), 8765; https://doi.org/10.3390/su17198765 - 30 Sep 2025
Viewed by 259
Abstract
Fungal mycelial pellets (MPs) exhibit high biomass-loading capacity; however, their application in wastewater treatment is constrained by structural fragility and the risk of environmental dispersion. To overcome these limitations, a dual-crosslinked polyvinyl alcohol–alginate gel (10% PVA, 2% sodium alginate) embedding strategy was developed [...] Read more.
Fungal mycelial pellets (MPs) exhibit high biomass-loading capacity; however, their application in wastewater treatment is constrained by structural fragility and the risk of environmental dispersion. To overcome these limitations, a dual-crosslinked polyvinyl alcohol–alginate gel (10% PVA, 2% sodium alginate) embedding strategy was developed and stabilized using 2% CaCl2 and saturated boric acid. This encapsulation enhanced the tensile strength of MPs by 499% (310.4 vs. 62.1 kPa) and improved their settling velocity by 2.3-fold (1.12 vs. 0.49 cm/s), which was critical for stability under turbulent bioreactor conditions. Following encapsulation, the specific oxygen uptake rates (SOURs) of three fungal strains (F557, Y3, and F507) decreased by 30.3%, 54.8%, and 48.3%, respectively, while maintaining metabolic functionality. SEM revealed tight adhesion between the gel layer and both surface and internal hyphae, with the preservation of porous channels conducive to microbial colonization. In sequential-batch reactors treating sulfamethoxazole (SMX)-contaminated wastewater, gel-encapsulated MPs combined with acclimated sludge consistently achieved 72–75% SMX removal efficiency over six cycles, outperforming uncoated MPs (efficiency decreased from 81.2% to 58.7%) and pure gel–sludge composites (34–39%). The gel coating inhibited hyphal dispersion by over 90% and resisted mechanical disintegration under 24 h agitation. This approach offers a scalable and environmentally sustainable means of enhancing MPs’ operational stability in continuous-flow systems while mitigating fungal dissemination risks. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

24 pages, 11426 KB  
Article
Structural Behaviour of Slab-on-Grade Constructed Using High-Ductility Fiber-Reinforced Cement Composite: Experimental and Analytical Investigation
by Su-Tae Kang, Nilam Adsul and Bang Yeon Lee
Fibers 2025, 13(10), 133; https://doi.org/10.3390/fib13100133 - 29 Sep 2025
Viewed by 167
Abstract
This study investigated the structural behavior of slab-on-grade (SOG) specimens constructed using two materials: conventional concrete reinforced with steel mesh and high-ductility fiber-reinforced cement composites (HDFRCC) containing 1.2% polyethylene (PE) fiber without steel reinforcement. The compressive strengths of conventional concrete and HDFRCC were [...] Read more.
This study investigated the structural behavior of slab-on-grade (SOG) specimens constructed using two materials: conventional concrete reinforced with steel mesh and high-ductility fiber-reinforced cement composites (HDFRCC) containing 1.2% polyethylene (PE) fiber without steel reinforcement. The compressive strengths of conventional concrete and HDFRCC were 37 MPa and 54 MPa, respectively. The average flexural tensile strength of HDFRCC was 3.9 MPa at first cracking and 9.7 MPa at peak load. Punching shear tests were performed under three loading configurations: internal (center), edge, and corner loading. Crack patterns and load–displacement responses were analyzed for both material types. Under center loading, the experimentally measured load-bearing capacities were 174.52 kN for conventional concrete and 380.82 kN for HDFRCC, with both materials exhibiting reduced capacities under edge and corner loading. Analytical predictions demonstrated close agreement with the experimental results for conventional concrete but significantly underestimated the load capacity of HDFRCC SOG. This discrepancy is attributed to the strain-hardening and crack-bridging mechanisms inherent in HDFRCC, which contribute to enhanced strength beyond conventional analytical predictions. In terms of failure mode, the conventional concrete SOG exhibited the expected flexural failure. In contrast, the HDFRCC SOG experienced either flexural failure or a combination of flexural and punching failure, in contradiction to the analytical prediction of exclusive punching shear failure. These findings indicate that the punching shear resistance of the HDFRCC SOG is substantially higher than predicted. Full article
Show Figures

Figure 1

15 pages, 5070 KB  
Article
The Effects of Deep Cryogenic Treatment with Regard to the Mechanical Properties and Microstructural Evolution of Al-Mg Alloys with Different Grain Sizes
by Wei Liu, Luxiang Zhang, Erli Xia, Jing Luo, Yiran Tian, Wentao Cai and Yuqing Gong
Materials 2025, 18(19), 4518; https://doi.org/10.3390/ma18194518 - 28 Sep 2025
Viewed by 310
Abstract
The tension behaviors of Al-Mg alloys were tested, and the influences of deep cryogenic treatment (DCT) and grain size on their tensile properties were explored. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the evolution [...] Read more.
The tension behaviors of Al-Mg alloys were tested, and the influences of deep cryogenic treatment (DCT) and grain size on their tensile properties were explored. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the evolution of the microstructure. It was concluded that the alloys with fine grain (FG) had a higher strain hardening capacity and strength, however, the alloys with coarse grain (CG) exhibited better plasticity. This can be explained by the alloy with fine grains having a higher density of grain boundary, which can hinder the motion of the dislocation; therefore, the deformation resistance was improved. For alloys with coarse grains, the dislocation has more freedom to move and is easier to rearrange, which is beneficial to the plasticity. Moreover, when given deep cryogenic treatment, the strength and plasticity of the alloys can be slightly improved, which can be attributed to the microplastic deformation that occurs during cryogenic treatment that can induce internal stress, as cold-induced internal stress is conductive in achieving a finer grain and higher density of dislocation. Full article
Show Figures

Figure 1

17 pages, 4189 KB  
Article
Effect of Fiber Characteristics on Cracking Resistance Properties of Stone Mastic Asphalt (SMA) Mixture
by Kai Yang, Wenyuan Huang, Mutian Sun, Zhixian Zheng and Hongwei Lin
Polymers 2025, 17(19), 2623; https://doi.org/10.3390/polym17192623 - 28 Sep 2025
Viewed by 287
Abstract
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection [...] Read more.
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection in practice. This study systematically evaluated the influence of four representative fiber types on the anti-cracking performance of Stone Mastic Asphalt (SMA) mixture, combining mechanical testing and microstructural analysis. The fibers included lignin fiber (LF); polyester fiber (PF); chopped basalt fiber (CBF) with lengths of 3 mm, 6 mm, 9 mm; and flocculent basalt fiber (FBF). Key mechanical tests assessed specific cracking behaviors: three-point bending (low-temperature cracking), indirect tensile (tensile cracking), pre-cracked semi-circular bending (crack propagation), overlay (reflective cracking), and four-point bending (fatigue resistance) tests. A scanning electron microscopy (SEM) test characterized fiber morphology and fiber–asphalt interface interactions, revealing microstructural mechanisms underlying performance improvements. The results showed that all fibers improved anti-cracking performance, but their efficacy varied with fiber type, appearance, and length. PF exhibited the best low-temperature cracking resistance, with a 26.8% increase in bending strength and a 16.6% increase in maximum bending strain. For tensile and crack propagation resistance, 6 mm CBF and FBF outperformed the other fibers, with fracture energy increases of up to 53.2% (6 mm CBF) and CTindex improvements of 72.8% (FBF). FBF optimized reflective cracking resistance, increasing the loading cycles by 48.0%, while 6 mm CBF achieved the most significant fatigue life improvement (36.9%) by balancing rigidity and deformation. Additionally, SEM analysis confirmed that effective fiber dispersion and strong fiber–asphalt bonding were critical for enhancing stress transfer and inhibiting crack initiation/propagation. These findings provide quantitative insights into the relationship between fiber characteristics (type, morphology, length) and anti-cracking performance, offering practical guidance for rational fiber selection to improve pavement durability. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Graphical abstract

20 pages, 16544 KB  
Article
Investigation on Static Performance of Piers Assembled with Steel Cap Beams and Single Concrete Columns
by Chong Shen, Qingtian Su, Sizhe Wang and Fawas. O. Matanmi
Buildings 2025, 15(19), 3476; https://doi.org/10.3390/buildings15193476 - 26 Sep 2025
Viewed by 219
Abstract
To reduce the weight of prefabricated cap beams, a new type of hybrid pier with a steel cap beam and single concrete column with an innovative flange–rebar–ultra-high-performance concrete (UHPC) connection structure is proposed in this paper. Focusing on the static performance of hybrid [...] Read more.
To reduce the weight of prefabricated cap beams, a new type of hybrid pier with a steel cap beam and single concrete column with an innovative flange–rebar–ultra-high-performance concrete (UHPC) connection structure is proposed in this paper. Focusing on the static performance of hybrid piers, a specimen with a geometric similarity ratio of 1:4 was fabricated for testing. The results showed that the ultimate load-bearing capacity reached 960 kN, and the failure mode was characterized by an obvious overall vertical displacement of 70.2 mm at the cantilever end, accompanied by local buckling in the webs between transversal diaphragms and ribs. Due to the varying-thickness design, longitudinal strains were comparable between the middle section (thin plates) and the root section (thick plates) of the cantilever beam, showing a trend of an initial increase followed by a decrease from the end of the cantilever beam to the road centerline. Meanwhile, the cross-sections of the connection joint and concrete column transformed from overall compression to eccentric compression during the test. At the ultimate state, their steel structures remained elastic, with no obvious damage in the concrete or UHPC, verifying good load-bearing capacity. Furthermore, the finite element analysis showed the new connection joint and construction method of hinged-to-rigid could reduce the column top concrete compressive stress by 18–54%, tensile stress by 11–68%, and steel cap beam Mises stress by 10%. Finally, based on the experimental and numerical studies, the safety reserve coefficient of the new hybrid pier was over 2.7. Full article
Show Figures

Figure 1

17 pages, 8633 KB  
Article
Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing
by Peng Zhang, Dehao Liu, Linfu Zhang, Kang Liu, Jie Zhang, Yuxiao Si, Gang Chen and Qiang Zhu
Metals 2025, 15(9), 1037; https://doi.org/10.3390/met15091037 - 19 Sep 2025
Viewed by 286
Abstract
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% [...] Read more.
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% thickness reduction) followed by annealing, combined with multiscale characterization techniques (EBSD/TEM) and mechanical tests. The results reveal that the as-rolled microstructure was characterized by the presence of strong Brass, Goss/Brass, and S textures, along with the formation of high-density dislocation walls (DDWs) and dislocation cells (DCs). As the annealing temperature increased, recrystallized grains preferentially nucleated at grain boundaries with higher stress concentrations and dislocation densities. The grain size decreased from 120.33 μm in the as-rolled state to 10.26 μm after annealing at 1000 °C. Low-angle grain boundaries (LAGBs) progressively transformed into high-angle grain boundaries (HAGBs), while the fraction of Σ3 twin boundaries initially decreased and subsequently increased, reaching a maximum of 43.7% after annealing at 1000 °C. At annealing temperatures exceeding 800 °C, deformed grains became equiaxed, with partial retention of primary texture components observed. After annealing at 1000 °C, the yield strength and tensile strength decreased compared to the as-rolled state, while the elongation significantly increased from 17.2% to 69.8% Simultaneously, the yield ratio decreased by 53%, and the strain-hardening capacity was enhanced. Ultimately, a constitutive model integrating the influences of dislocation mean free path and twin boundary obstruction was developed, providing microscopic explanations for the inverse relationship between strength and recrystallization fraction. Full article
(This article belongs to the Special Issue Sheet Metal Forming Processes)
Show Figures

Figure 1

21 pages, 5307 KB  
Article
High-Performance Cementitious Composites with Tensile Strain Capacity Up to 18%
by Zongcai Deng and Wenzhe Li
J. Compos. Sci. 2025, 9(9), 502; https://doi.org/10.3390/jcs9090502 - 17 Sep 2025
Viewed by 601
Abstract
At present, the ductility of engineered cementitious composites (ECC) is not sufficient to achieve compatibility with steel, which limits the application of ECC in composite structures. To prepare ECC with ultra-high tensile strain, tensile tests on eighteen types of ECC with different mix [...] Read more.
At present, the ductility of engineered cementitious composites (ECC) is not sufficient to achieve compatibility with steel, which limits the application of ECC in composite structures. To prepare ECC with ultra-high tensile strain, tensile tests on eighteen types of ECC with different mix ratios were carried out. The effect of cementitious material composition, sand/binder ratio, and fiber hybridization on tensile properties was analyzed. Meanwhile, three types of ECC were developed and defined as ultra-high tensile property cementitious composites (UHTCC). UHTCC exhibits the characteristic of oversaturated cracking and obvious strain hardening during the tensile process. The tensile strain of UHTCC was up to 18.3% with an average tensile strength of 9.9 MPa. Meanwhile, UHTCC shows ultra-high flexural toughness and high compressive strength. In addition, the hybridization of PE fibers and macro-PP fibers has been proved to be beneficial to improve tensile strain capacity, with the cost of fibers decreased by 24.3%. To explore the causes of UHTCC’s ultra-high tensile strain, the state of the matrix and fibers after the tensile test was observed by scanning electron microscope. In addition, the cracking process of UHTCC was analyzed by comparing average crack spacing with the theoretical value. Further, a four-stage tensile constitutive model was proposed. And the new constitutive model has been verified to be applicable to three different types of UHTCC. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

26 pages, 9364 KB  
Article
Shear–Flexural Performance of Steel Fiber-Reinforced Concrete Composite Beams: Experimental Investigation and Modeling
by Qing Zhi, Zihui Xu, Weimin Chen, Huaxin Zhang, Sha Liu and Zhijun Yuan
Materials 2025, 18(18), 4322; https://doi.org/10.3390/ma18184322 - 15 Sep 2025
Viewed by 522
Abstract
Steel fiber-reinforced concrete (SFRC) exhibits superior tensile and flexural strengths, crack resistance, compressive toughness, and ductility. These characteristics make SFRC attractive for precast beam joints, shear-critical regions without stirrups, and retrofitted overlays, thereby enabling composite members. However, the shear and flexural responses of [...] Read more.
Steel fiber-reinforced concrete (SFRC) exhibits superior tensile and flexural strengths, crack resistance, compressive toughness, and ductility. These characteristics make SFRC attractive for precast beam joints, shear-critical regions without stirrups, and retrofitted overlays, thereby enabling composite members. However, the shear and flexural responses of such members often differ from monolithically cast elements. To clarify these effects, nine composite specimens and one cast-in-place control were tested under four-point bending. Key parameters, including load-bearing capacity, failure evolution, and failure modes, were documented, together with load–deformation behavior, reinforcement strains, and concrete deformations. Results showed that horizontal joints reduced shear resistance and altered crack propagation compared to monolithic beams. Incorporating 1.0% hooked-end steel fibers improved both shear and flexural performance. SFRC above the joint was more effective for shear, while SFRC in both zones improved flexure. The fully SFRC specimen without stirrups achieved 63% higher shear capacity than its NC counterpart, with ductility rising from 2.2 to 3.1. A 1.0% fiber dosage provided shear resistance equivalent to D8@200 stirrups, confirming the potential of SFRC to reduce transverse reinforcement. Analytical models, including a fiber beam–column element and strut-and-tie approach, showed reasonable agreement with experiments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 4716 KB  
Article
Experimental Study of the Effectiveness of Strengthening Reinforced Concrete Slabs with Thermally Prestressed Reinforcement
by Yannik Schwarz, David Sanio and Peter Mark
CivilEng 2025, 6(3), 49; https://doi.org/10.3390/civileng6030049 - 13 Sep 2025
Viewed by 592
Abstract
Conventional strengthening measures for existing structures are usually not effective for the self-weight, which accounts for around 70% of the total load in reinforced concrete structures. Therefore, their effect on the overall load-bearing capacity is low. A self-weight-effective alternative for flexural strengthening is [...] Read more.
Conventional strengthening measures for existing structures are usually not effective for the self-weight, which accounts for around 70% of the total load in reinforced concrete structures. Therefore, their effect on the overall load-bearing capacity is low. A self-weight-effective alternative for flexural strengthening is the thermal prestressing of additional reinforcement installed on the structure. In this method, reinforcing bars are slotted into the tensile zone, embedded in filler material, and tempered from the outside. They are thermally stretched, and once cooling starts, the bond with the hardened filler prevents re-deformation. The induced prestressing force counteracts dead loads and relieves the tensile zone, making the additional bars effective for the self-weight. In this paper, the effectiveness of the strengthening method is experimentally investigated in the serviceability and the ultimate limit states. Experiments involve strengthening a reinforced concrete beam under load by a thermally prestressed additional bar. Moreover, two reference tests are made to evaluate the method. An unstrengthened beam characterizes the lower capacity limit. Another beam with the same reinforcement amount as the strengthened one, but completely installed at casting, serves as the upper benchmark. All beams are loaded until bending failure. The strengthening method is assessed by means of the load-bearing behavior, deflection, crack development, and the strains in the initial as well as the added reinforcement. The results demonstrate the effectiveness of the strengthening method. The thermally prestressed bar achieves an effective pre-strain of approximately. 0.4‰ by heating at about 70 °C. The induced prestressing force and associated compression reduce tensile cracks by approx. 45% and increase stiffness. The strengthened beam reaches the maximum load of the upper benchmark, but with about 33% less deflection. The filler, which also expands thermally, generates an additional prestressing force that is effective up to about 20% of the load capacity. Beyond this, the filler begins to crack and its effect decreases, but the pre-strain in the reinforcing bar remains until maximum load. Full article
Show Figures

Figure 1

23 pages, 51566 KB  
Article
Experimental Investigations of Dynamic Response and Fatigue Damage Characteristics of Granite Under Multi-Level Cyclic Impacts
by Jiaming Yang, Diyuan Li, Zida Liu, Peng Xiao and Quanqi Zhu
Appl. Sci. 2025, 15(18), 9995; https://doi.org/10.3390/app15189995 - 12 Sep 2025
Viewed by 345
Abstract
Dynamic fatigue of rocks under repeated cyclic impact is a nonconservative property, as surrounding rocks in real environments subjects them to variable impact disturbances, and the degree of damage varies under different energy level loads. To evaluate the dynamic response and fatigue damage [...] Read more.
Dynamic fatigue of rocks under repeated cyclic impact is a nonconservative property, as surrounding rocks in real environments subjects them to variable impact disturbances, and the degree of damage varies under different energy level loads. To evaluate the dynamic response and fatigue damage characteristics of rocks under multi-level cyclic impacts, uniaxial cyclic impact tests were carried out on granite with various stress paths and energy levels using a modified split Hopkinson pressure bar. Dynamic deformation characteristics of specimens under different loading modes were investigated by introducing the deformation modulus of the loading stage. Evolution of macroscopic cracks during the impact process was investigated based on high-speed camera images, and the microscopic structure of damaged specimens was examined using SEM. In addition, cumulative energy dissipation was used to assess the damage of rocks. Results show that the deformation modulus of the loading stage, dynamic peak stress and strain of specimens increase with the impact energy, and the deformation modulus of the loading stage decreases as the damage level increases. Propagation rate of tensile cracks in rock was correlated with participation time of the higher energy level, which observed the following sequence: linearly decreasing > same > linearly increasing energy level, and cyclic loading of nonlinear energy level produced more tensile cracks and rock spalling than the same energy level. Compared with cyclic impacts of the same energy level, multi-level impacts form more microcracks and fatigue striations. The cumulative rate of specimen damage under the same energy change rate is as follows: linear decreasing > same > linear increasing loading. This provides a new case study for evaluating the dynamic damage, crushing efficiency and load-bearing capacity of rocks in real engineering environments. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 5270 KB  
Article
Design Theory and Experimental Study of Strengthening Reinforced Concrete Beams Using Prestressed Carbon Fiber Sheets
by Zejun Zhang, Yu Qin, Guanxu Long, Yao Ran, Yanhua Guan, Yan Wang, Renjuan Sun and Yuanshun Qian
Buildings 2025, 15(17), 3126; https://doi.org/10.3390/buildings15173126 - 1 Sep 2025
Viewed by 556
Abstract
To improve the design theory of prestressed carbon fiber sheet reinforcement and enrich its practical application, a corresponding theoretical analysis and experimental study were carried out. According to the ductile failure condition of reinforced concrete (RC) beams and the plane cross-section assumption, the [...] Read more.
To improve the design theory of prestressed carbon fiber sheet reinforcement and enrich its practical application, a corresponding theoretical analysis and experimental study were carried out. According to the ductile failure condition of reinforced concrete (RC) beams and the plane cross-section assumption, the initial tensile strain control range of carbon fiber sheets with different reinforcement layers was analyzed. Based on the requirement of improving the flexural capacity of beams, a calculation method for reinforcement layers and the initial tensile strain of carbon fiber sheets was proposed. According to the requirements of the practice of prestressed carbon fiber sheet reinforcement, a design process for strengthening RC beams with prestressed carbon fiber sheets was proposed. Through the proposed design method and design process, the design and practice of prestressed carbon fiber sheet reinforcement of RC beams were carried out, and a four-point bending test was carried out on a reinforced beam. The results showed that the failure mode of RC beams after reinforcement was plastic failure, which met the designed bearing capacity requirement. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 9783 KB  
Article
The Dynamic Mechanical Properties of High Strength and High Ductility Concrete Under a Corrosion Environment
by Jie Yang, Sijie Han, Qixin Cao, Xin Zhao, Xinyang Yu and Jintao Liu
Buildings 2025, 15(17), 2983; https://doi.org/10.3390/buildings15172983 - 22 Aug 2025
Viewed by 506
Abstract
High strength and high ductility concrete (HSHDC) exhibit exceptional compressive strength (up to 90 MPa) and remarkable tensile ductility (ultimate tensile strain reaching 6%), making them highly resilient under impact loading. To elucidate the influence of strain rate and wet–dry cycling of salt [...] Read more.
High strength and high ductility concrete (HSHDC) exhibit exceptional compressive strength (up to 90 MPa) and remarkable tensile ductility (ultimate tensile strain reaching 6%), making them highly resilient under impact loading. To elucidate the influence of strain rate and wet–dry cycling of salt spray on the dynamic compressive response of HSHDC, a series of tests was conducted using a 75 mm split Hopkinson pressure bar (SHPB) system on specimens exposed to cyclic corrosion for periods ranging from 0 to 180 days. The alternating seasonal corrosion environment was reproduced by using a programmable walk-in environmental chamber. Subsequently, both uniaxial compression and SHPB tests were employed to evaluate the post-corrosion dynamic compressive properties of HSHDC. Experimental findings reveal that corrosive exposure significantly alters both the static and dynamic compressive mechanical behavior and constitutive characteristics of HSHDC, warranting careful consideration in long-term structural integrity assessments. As corrosion duration increases, the quasi-static and dynamic compressive strengths of HSHDC exhibit an initial enhancement followed by a gradual decline, with stress reaching its peak at 120 days of corrosion under all strain rates. All specimens demonstrated pronounced strain-rate sensitivity, with the dynamic increase factor (DIF) being minimally influenced by the extent of corrosion under dynamic strain rates (112.6–272.0 s−1). Furthermore, the peak energy-consumption capacity of HSHDC was modulated by both the duration of corrosion and the applied strain rate. Full article
(This article belongs to the Special Issue Properties and Applications of Sustainable Construction Materials)
Show Figures

Figure 1

14 pages, 5358 KB  
Article
Mechanical Properties of EGC Incorporating Ternary Precursors
by Pingping He, Long Wang, Xin Yu, Yusong Liu, Lin Fan and Chen Chen
Buildings 2025, 15(16), 2919; https://doi.org/10.3390/buildings15162919 - 18 Aug 2025
Viewed by 359
Abstract
This study investigates the composition–property relationships in ternary engineered geopolymer composites (EGCs) using a simplex centroid design method to optimize the synergy between ground granulated blast furnace slag (GGBS), fly ash (FA), and metakaolin (MK). Mechanical testing revealed that compressive strength (>85 MPa) [...] Read more.
This study investigates the composition–property relationships in ternary engineered geopolymer composites (EGCs) using a simplex centroid design method to optimize the synergy between ground granulated blast furnace slag (GGBS), fly ash (FA), and metakaolin (MK). Mechanical testing revealed that compressive strength (>85 MPa) peaked at 75% GGBS/25% MK, demonstrating MK’s dominant role in enhancing densification, while flexural strength showed a negative correlation with GGBS content but consistent improvement with MK addition. Strain-hardening behavior was most pronounced in 75% GGBS/25% MK and 83% GGBS/8% FA/8% MK mixtures, with the latter achieving optimal precursor synergy. Fiber dispersion uniformity showed a strong linear correlation (R2 = 0.98) with tensile strain capacity, confirming its critical role in strain-hardening performance. Mercury intrusion porosimetry analysis demonstrated that the G83F8M8 mixture exhibited the lowest porosity (<10%) and finest pore size distribution (50–100 nm dominant), directly linking pore refinement to superior mechanical properties. Full article
Show Figures

Figure 1

Back to TopTop