Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens
2.2. Microscopic Observation
2.3. Hardness Test and Uniaxial Tensile Test
3. Results and Discussion
3.1. Microstructures
3.2. Mechanical Property
3.3. Flow Stress Size Effect Model
4. Conclusions
- (1)
- Annealing above 800 °C induces significant recrystallization in FeCoNiCrTi0.2 HEAs. The degree of recrystallization increases with temperature, homogenizing grain size distribution and reducing the average grain size from 120.33 μm (as-rolled) to 10.26 μm (1000 °C).
- (2)
- The as-rolled texture is dominated by S, Brass, and Goss/Brass components. Annealing reduces texture intensity and enhances random orientations, although a weak residual texture persists. Recrystallization replaces LAGBs with HAGBs, while Σ3 and Σ9 annealing twins form in recrystallized regions.
- (3)
- Hardness and yield ratio decrease markedly with recrystallization, whereas ductility and strain-hardening capacity improve significantly. Optimal strength–ductility combinations can be achieved by tailoring annealing conditions.
- (4)
- A dislocation mean free path-based model, integrating twin boundary hindrance and recrystallization effects, accurately predicts tensile flow stress behavior. This model provides a theoretical framework for optimizing the processing routes and engineering applications of FeCoNiCrTi0.2 HEA.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloy. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887. [Google Scholar] [CrossRef]
- Lu, Y.P.; Dong, Y.; Jiang, H.; Wang, Z.J.; Cao, Z.Q.; Guo, S.; Wang, T.M.; Li, T.G.; Liaw, P.K. Promising properties and future trend of eutectic high entropy alloys. Scr. Mater. 2020, 187, 202–209. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Akhlaghi, P.; Amirjan, M.; Parvin, N. The effect of processing parameters and heat-treatment on the microstructure and mechanical properties of PM CoCrFeMnNiTi0.1 high-entropy alloy. Mater. Chem. Phys. 2021, 257, 123722. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhou, J.H.; Liu, Y.F.; Lu, C.Y.; Shi, L.; Zheng, W.J.; Jin, W.Y.; Gao, Z.L.; Yang, J.G.; He, Y.M. Microstructural evolution and mechanical characterization for the AlCoCrFeNi2.1 eutectic high-entropy alloy under different temperatures. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1881–1892. [Google Scholar] [CrossRef]
- Stepanov, N.; Tikhonovsky, M.; Yurchenko, N.; Zyabkin, D.; Klimova, M.; Zherebtsov, S.; Efimov, A.; Salishchev, G. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 2015, 59, 8. [Google Scholar] [CrossRef]
- Gao, N.; Lu, D.H.; Zhao, Y.Y.; Liu, X.W.; Liu, G.H.; Wu, Y.; Liu, G.; Fan, Z.T.; Lu, Z.P.; George, E.P. Strengthening of a CrMnFeCoNi High-Entropy Alloy by Carbide Precipitation. J. Alloys Compd. 2019, 792, 1028–1035. [Google Scholar] [CrossRef]
- Wang, Z.W.; Baker, I.; Cai, Z.H.; Chen, S.; Poplawsky, J.D.; Guo, W. The Effect of Interstitial Carbon on the Mechanical Properties and Dislocation Substructure Evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 High Entropy Alloys. Acta Mater. 2016, 120, 228–239. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743. [Google Scholar] [CrossRef]
- Shabani, A.; Toroghinejad, M.R.; Aminaei, M. Effect of prior cold deformation on recrystallization behavior of a multi-phase FeCrCuMnNi high entropy alloy. Mater. Chem. Phys. 2021, 272, 124991. [Google Scholar] [CrossRef]
- Li, R.; Song, X.L.; Duan, Z.X.; Hao, Z.K.; Yang, Y.; Han, Y.; Ran, X.; Liu, Y. Improving the high-temperature ductility of γ-TiAl matrix composites by incorporation of AlCoCrFeNi high entropy alloy particles. J. Alloys Compd. 2025, 1012, 178515. [Google Scholar] [CrossRef]
- Schmidt, S.; Sathiaraj, G.D.; Kumar, S.S.; Sulkowski, B.; Suwas, S.; Jaschinski, J.; Gu, A.B.; Skrotzki, W. Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy. Mater. Chem. Phys. 2021, 270, 124830. [Google Scholar] [CrossRef]
- Pérez, P.; Medina, J.; Vega, M.F.; Garcés, G.; Adeva, P. Control of the microstructure in a Al5Co15Cr30Fe25Ni25 high entropy alloy through thermo-mechanical and thermal treatments. Metals 2023, 13, 180. [Google Scholar] [CrossRef]
- Haase, C.; Barrales-Mora, L.A. Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Mater. 2018, 150, 88–103. [Google Scholar] [CrossRef]
- Saha, J.; Ummethala, G.; Malladi, S.R.K.; Bhattacharjee, P.P. Severe warm-rolling mediated microstructure and texture of equiatomic CoCrFeMnNi high entropy alloy: A comparison with cold-rolling. Intermetallics 2021, 129, 107029. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, Z.C.; Zhao, H.W.; Ren, L.Q. Refinement strengthening, second phase strengthening and spinodal microstructure-induced strength-ductility trade-off in a high-entropy alloy. Mater. Sci. Eng. A 2022, 847, 143343. [Google Scholar] [CrossRef]
- Hou, J.X.; Qiao, J.W.; Lian, J.H.; Liaw, P.K. Revealing the relationship between microstructures, textures, and mechanical behaviors of cold-rolled Al0.1CoCrFeNi high-entropy alloys. Mater. Sci. Eng. A 2021, 804, 140752. [Google Scholar] [CrossRef]
- Bhattacharjee, P.P.; Sathiaraj, G.D.; Zaid, M.; Gatti, J.R.; Lee, C.; Tsai, C.W.; Yeh, J.W. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 2014, 587, 544–552. [Google Scholar] [CrossRef]
- Tsai, C.W.; Tsai, M.H.; Tsai, K.Y.; Chang, S.Y.; Yeh, J.W.; Yeh, A.C. Microstructure and tensile properties of Al0.5CoCrCuFeNi alloys produced by simple rolling and annealing. Mater. Sci. Technol. 2015, 31, 1178–1183. [Google Scholar] [CrossRef]
- Liang, X.P.; Kang, L.; Li, H.Z.; Wang, R.X.; Wu, Q.B.; Liu, B. Effect of annealing temperature on anisotropy of mechanical properties in powder metallurgy FeCoCrNiN0.07 high-entropy alloy sheets. Mater. Sci. Eng. A 2021, 823, 141585. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, Q.; Chen, S.R.; Yao, S.J.; Wang, H.; Zhao, L.; Zhang, P.; Wang, C.J. Influence of heat treatment on the texture, microstructure and tensile deformation behaviours of cold rolled FeCoNiCr sheets. Mater. Sci. Eng. A 2022, 848, 143412. [Google Scholar] [CrossRef]
- Lozinko, A.; Gholizadeh, R.; Zhang, Y.; Klement, U.; Tsuji, N.; Mishin, O.V.; Guo, S. Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Sci. Eng. A 2022, 833, 142558. [Google Scholar] [CrossRef]
- Sousa, G.H.; Zepon, G.; Mazzer, E.M. Microstructure evolution and strengthening by cold rolling of CrMnFeCoNi high-entropy alloy processed by spray forming. Mater. Sci. Eng. A 2020, 793, 139814. [Google Scholar] [CrossRef]
- Guo, T.; Li, J.S.; Wang, J.; Wang, W.Y.; Liu, Y.; Luo, X.M.; Kou, H.C.; Beaugnon, E. Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing. Mater. Sci. Eng. A 2018, 729, 141–148. [Google Scholar] [CrossRef]
- Hua, L.; Du, Y.C.; Qian, D.S.; Sun, M.L.; Wang, F. Influence of Prior Cold Rolling on Bainite Transformation of High Carbon Bearing Steel. Metall. Mater. Trans. A 2025, 56, 640–654. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, D.; Han, B.; Wang, J.; Feng, R.; Yang, T.; Zhao, C.; Zhao, Y.L.; Guo, W.; Shimizu, Y.; et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Mater. 2019, 165, 228–240. [Google Scholar] [CrossRef]
- Cui, P.; Ma, Y.M.; Zhang, L.J.; Zhang, M.D.; Fan, J.T.; Dong, W.Q.; Yu, P.F.; Li, G.; Liu, R.P. Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system. Mater. Sci. Eng. A 2018, 737, 198–204. [Google Scholar] [CrossRef]
- Lv, Y.; Song, P.; Wang, Y.; Zhao, X.; Gao, W.; Zhang, J.; Lei, Y.; Chen, J. Improving Mechanical Properties of Fe-Mn-Co-Cr High-Entropy Alloy via Annealing After Cold Rolling. Materials 2024, 17, 676. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Y.; Sun, Y.G.; Yu, H.P.; Huang, Y.J.; Su, S.; Ning, Z.L.; Cheng, Z.J.; Fu, W.J.; Sun, J.F.; Liaw, P.K. Microstructure evolution and mechanical behavior of a CoCrFeNiMn0.75Cu0.25 high-entropy alloy by thermo-mechanical treatment. Mater. Sci. Eng. A 2022, 860, 144274. [Google Scholar] [CrossRef]
- Reddy, S.R.; Ahmed, M.Z.; Sathiaraj, G.D.; Bhattacharjee, P.P. Effect of strain path on microstructure and texture formation in cold-rolled and annealed FCC equiatomic CoCrFeMnNi high entropy alloy. Intermetallics 2017, 87, 94–103. [Google Scholar] [CrossRef]
- Yin, F.X.; Sakurai, A.; Son, X.Y. Determination of spatial grain size with the area-weighted grain area distribution of the planar sections in polycrystalline materials. Metall. Mater. Trans. A 2006, 37, 3707–3714. [Google Scholar] [CrossRef]
- Elkatatny, S.; Gepreel, M.A.H.; Hamada, A.; Nakamura, K.; Yamanaka, K.; Chiba, A. Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy. Mater. Sci. Eng. A 2019, 759, 380–390. [Google Scholar] [CrossRef]
- Guo, B.Q.; Ray, R.K.; Yoshida, S.; Bai, Y.; Tsuji, N. In-situ observations of static recrystallization and texture formation in a cold-rolled CoCrFeMnNi high entropy alloy. Scr. Mater. 2022, 215, 114706. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Bhattacharjee, P.P. Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy. Mater. Charact. 2015, 109, 189–197. [Google Scholar] [CrossRef]
- Bracke, L.; Verbeken, K.; Kestens, L.; Penning, J. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater. 2009, 57, 1512–1524. [Google Scholar] [CrossRef]
- Liu, H.X.; He, Y.X.; Li, M.Y.; Wu, Y.H.; Li, S.L.; Liu, X.D.; Zhi, H.H.; Wang, H.F. Promoting strength-ductility synergy through sequential martensitic transformation in a hierarchical heterostructured eutectic high-entropy alloy. Int. J. Plast. 2025, 190, 104374. [Google Scholar] [CrossRef]
- Klimova, M.; Zherebtsov, S.; Stepanov, N.; Salishchev, G.; Haase, C.; Molodov, D.A. Microstructure and texture evolution of a high manganese TWIP steel during cryo-rolling. Mater. Charact. 2017, 132, 20–30. [Google Scholar] [CrossRef]
- Zhou, P.; Liang, Z.Y.; Liu, R.D.; Huang, M.X. Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Mater. 2016, 111, 96–107. [Google Scholar] [CrossRef]
- Jones, A.R.; Ralph, B.; Hansen, N. Subgrain coalescence and the nucleation of recrystallization at grain boundaries in aluminium. Proc. R. Soc. A Math. Phys. Sci. 1997, 368, 345–357. [Google Scholar]
- Zhang, X.X.; Lv, Y.; Hashimoto, T.; Nilsson, J.O.; Zhou, X.R. Intergranular corrosion of AA6082 Al–Mg–Si alloy extrusion: The influence of trace Cu and grain boundary misorientation. J. Alloys Compd. 2020, 853, 157288. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.H.; Zhou, H.L.; Jiang, Y.; Liu, P. Static recrystallized annealing treatment-induced strength-ductility trade-off in cold-rolled Co36Fe36Cr18Ni10 multi-principal alloy. Mater. Charact. 2021, 179, 111254. [Google Scholar] [CrossRef]
- Bay, B.; Hansen, N.; Hughes, D.A.; Wilsdorf, D.K. Overview No-96—Evolution of fcc deformation structures in polyslip. Acta Mater. 1992, 40, 205–219. [Google Scholar] [CrossRef]
- Li, C.Y.; Lu, Y.; Li, X.L.; Zhao, Z.X.; Kou, S.Z. Microstructures and properties of Fe1.25CoNi1.25CrxAl0.25 high-entropy alloys after cold-rolling and annealing. J. Non-Cryst. Solids 2021, 570, 121023. [Google Scholar] [CrossRef]
- Mehranpour, M.S.; Shahmir, H.; Nili-ahmadabadi, M. Microstructure and excess free volume of severely cold shape rolled CoCrFeNiMn high entropy alloy. J. Alloys Compd. 2020, 840, 155672. [Google Scholar] [CrossRef]
- Fullman, R.L.; Fisher, J.C. Formation of annealing twins during grain growth. Trans. AIME 1951, 22, 1350–1355. [Google Scholar] [CrossRef]
- Gu, J.; Ni, S.; Liu, Y.; Song, M. Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Mater. Sci. Eng. A 2019, 755, 289–294. [Google Scholar] [CrossRef]
- Gu, J.; Song, M.; Ni, S.; Guo, S.F.; He, Y.H. Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass. Mater. Des. 2013, 47, 706–710. [Google Scholar] [CrossRef]
- Zhou, J.; Liao, H.C.; Chen, H.; Huang, A.J. Effects Of Hot-Forging and Subsequent Annealing on Microstructure and Mechanical Behaviors of Fe35Ni35Cr20Mn10 High-Entropy Alloy. Mater. Charact. 2021, 178, 111251. [Google Scholar] [CrossRef]
- Joo, S.H.; Kato, H.; Jang, M.J.; Moon, J.; Tsai, C.W.; Yeh, J.W.; Kim, H.S. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 2017, 689, 122–133. [Google Scholar] [CrossRef]
- Slone, C.E.; Miao, J.; George, E.P.; Mills, M.J. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures. Acta Mater. 2019, 165, 496–507. [Google Scholar] [CrossRef]
- Sunkari, U.; Reddy, S.R.; Rathod, B.D.S.; Satheesh Kumar, S.S.; Saha, R.; Chatterjee, S.; Bhattacharjee, P.P. Heterogeneous precipitation mediated heterogeneous nanostructure enhances strength-ductility synergy in severely cryo-rolled and annealed CoCrFeNi2.1Nb0.2 high entropy alloy. Sci. Rep. 2020, 10, 6056. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.H.; Xu, X.; Dye, D.; Rivera-Díaz-del-Castillo, P.E.J. Microstructural evolution and strain-hardening in TWIP Ti alloys. Acta Mater. 2020, 183, 155–164. [Google Scholar] [CrossRef]
- Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014, 81, 428–441. [Google Scholar] [CrossRef]
- Barlat, F.; Glazov, M.V.; Brema, J.C.; Lege, D.J. A simple model for dislocation behavior, strain and strain rate hardening evolution in deforming aluminum alloys. Int. J. Plast. 2002, 18, 919–939. [Google Scholar] [CrossRef]
- Staker, M.R.; Holt, D.L. The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 °C. Acta Metall. Sin. 1972, 20, 569–579. [Google Scholar] [CrossRef]
- Kocks, U.F.; Mecking, H. Physics and phenomenology of strain hardening: The FCC case Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Wang, X.; Huang, W.; Huang, M.X. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater. 2015, 88, 170–179. [Google Scholar] [CrossRef]
- He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196. [Google Scholar] [CrossRef]
- Bouaziz, O.; Guelton, N. Modelling of TWIP effect on work-hardening. Mater. Sci. Eng. A 2001, 319–321, 246–249. [Google Scholar] [CrossRef]
- Kang, J.H.; Ingendahl, T.; Bleck, W. A constitutive model for the tensile behaviour of TWIP steels: Composition and temperature dependencies. Mater. Des. 2016, 90, 340–349. [Google Scholar] [CrossRef]
- Olson, G.B.; Cohen, M. Kinetics of strain-induced martensitic nucleation. Metall. Mater. Trans. A 1975, 6, 791–795. [Google Scholar] [CrossRef]
- Zhang, T.W.; Ma, S.G.; Zhao, D.; Wu, Y.C.; Zhang, Y.; Wang, Z.H.; Qiao, J.W. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling. Int. J. Plast. 2020, 124, 226–246. [Google Scholar] [CrossRef]
- Steinmetz, D.R.; Jäpel, T.; Wietbrock, B.; Eisenlohr, P.; Gutierrez-Urrutia, I.; Saeed–Akbari, A.; Hickel, T.; Roters, F.; Raabe, D. Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Mater. 2013, 61, 494–510. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.Q.; Dong, Z.H.; Li, W.; Huang, S.; Meng, D.Q.; Lai, X.C.; Liu, T.W. Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys. Acta Mater. 2018, 149, 388–396. [Google Scholar] [CrossRef]
- Meyers, M.A.; Vöhringer, O.; Lubarda, V.A. The onset of twinning in metals: A constitutive description. Acta Mater. 2001, 49, 4025. [Google Scholar] [CrossRef]
- Kubin, L.P.; Estrin, Y. Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect. Acta Metall. Mater. 1990, 38, 697–708. [Google Scholar] [CrossRef]
- Wang, C.J.; Xue, S.X.; Chen, G.; Zhang, P. Constitutive model based on dislocation density and ductile fracture of Monel 400 thin sheet under tension. Met. Mater. Int. 2017, 23, 264–271. [Google Scholar] [CrossRef]












| Temperature | Σ3 | Σ9 | Σ27a | Σ27b |
|---|---|---|---|---|
| 25 °C | 54.5% ± 3.4% | 0.87% ± 0.23 | 0.15% ± 0.09% | 0.05% ± 0.02% |
| 700 °C | 31.3% ± 1.8% | 1.14% ± 0.5% | 0.20% ± 0.04% | 0.12% ± 0.03% |
| 800 °C | 39.0% ± 2.9% | 0.74% ± 0.1% | 0.22% ± 0.4% | 0.18% ± 0.04% |
| 900 °C | 30.5% ± 3.2% | 1.98% ± 0.5% | 0.37% ± 0.02% | 0.28% ± 0.07% |
| 1000 °C | 43.7% ± 5.6% | 2.88% ± 0.4% | 0.40% ± 0.06% | 0.46% ± 0.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Liu, D.; Zhang, L.; Liu, K.; Zhang, J.; Si, Y.; Chen, G.; Zhu, Q. Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing. Metals 2025, 15, 1037. https://doi.org/10.3390/met15091037
Zhang P, Liu D, Zhang L, Liu K, Zhang J, Si Y, Chen G, Zhu Q. Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing. Metals. 2025; 15(9):1037. https://doi.org/10.3390/met15091037
Chicago/Turabian StyleZhang, Peng, Dehao Liu, Linfu Zhang, Kang Liu, Jie Zhang, Yuxiao Si, Gang Chen, and Qiang Zhu. 2025. "Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing" Metals 15, no. 9: 1037. https://doi.org/10.3390/met15091037
APA StyleZhang, P., Liu, D., Zhang, L., Liu, K., Zhang, J., Si, Y., Chen, G., & Zhu, Q. (2025). Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing. Metals, 15(9), 1037. https://doi.org/10.3390/met15091037

