Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,212)

Search Parameters:
Keywords = technology import

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 672 KiB  
Systematic Review
Assessing and Understanding Educators’ Experiences of Synchronous Hybrid Learning in Universities: A Systematic Review
by Hannah Clare Wood, Michael Detyna and Eleanor Jane Dommett
Educ. Sci. 2025, 15(8), 987; https://doi.org/10.3390/educsci15080987 (registering DOI) - 2 Aug 2025
Abstract
The rise in online learning, accelerated by the COVID-19 pandemic, has led to greater use of synchronous hybrid learning (SHL) in higher education. SHL allows simultaneous teaching of in-person and online learners through videoconferencing tools. Previous studies have identified various benefits (e.g., flexibility) [...] Read more.
The rise in online learning, accelerated by the COVID-19 pandemic, has led to greater use of synchronous hybrid learning (SHL) in higher education. SHL allows simultaneous teaching of in-person and online learners through videoconferencing tools. Previous studies have identified various benefits (e.g., flexibility) and challenges (e.g., student engagement) to SHL. Whilst systematic reviews have emerged on this topic, few studies have considered the experiences of staff. The aim of this review was threefold: (i) to better understand how staff experiences and perceptions are assessed, (ii) to understand staff experiences in terms of the benefits and challenges of SHL and (iii) to identify recommendations for effective teaching and learning using SHL. In line with the PRISMA guidance, we conducted a systematic review across four databases, identifying 14 studies for inclusion. Studies were conducted in nine different countries and covered a range of academic disciplines. Most studies adopted qualitative methods, with small sample sizes. Measures used were typically novel and unvalidated. Four themes were identified relating to (i) technology, (ii) redesigning teaching and learning, (iii) student engagement and (iv) staff workload. In terms of recommendations, ensuring adequate staff training and ongoing classroom support were considered essential. Additionally, active and collaborative learning were considered important to address issues with interactivity. Whilst these findings largely aligned with previous work, this review also identified limited reporting in research in this area, and future studies are needed to address this. Full article
(This article belongs to the Section Higher Education)
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 (registering DOI) - 2 Aug 2025
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

29 pages, 30467 KiB  
Article
Clay-Hosted Lithium Exploration in the Wenshan Region of Southeastern Yunnan Province, China, Using Multi-Source Remote Sensing and Structural Interpretation
by Lunxin Feng, Zhifang Zhao, Haiying Yang, Qi Chen, Changbi Yang, Xiao Zhao, Geng Zhang, Xinle Zhang and Xin Dong
Minerals 2025, 15(8), 826; https://doi.org/10.3390/min15080826 (registering DOI) - 2 Aug 2025
Abstract
With the rapid increase in global lithium demand, the exploration of newly discovered lithium in the bauxite of the Wenshan area in southeastern Yunnan has become increasingly important. However, the current research on clay-type lithium in the Wenshan area has primarily focused on [...] Read more.
With the rapid increase in global lithium demand, the exploration of newly discovered lithium in the bauxite of the Wenshan area in southeastern Yunnan has become increasingly important. However, the current research on clay-type lithium in the Wenshan area has primarily focused on local exploration, and large-scale predictive metallogenic studies remain limited. To address this, this study utilized multi-source remote sensing data from ZY1-02D and ASTER, combined with ALOS 12.5 m DEM and Sentinel-2 imagery, to carry out remote sensing mineral identification, structural interpretation, and prospectivity mapping for clay-type lithium in the Wenshan area. This study indicates that clay-type lithium in the Wenshan area is controlled by NW, EW, and NE linear structures and are mainly distributed in the region from north of the Wenshan–Malipo fault to south of the Guangnan–Funing fault. High-value areas of iron-rich silicates and iron–magnesium minerals revealed by ASTER data indicate lithium enrichment, while montmorillonite and cookeite identification by ZY1-02D have strong indicative significance for lithium. Field verification samples show the highest Li2O content reaching 11,150 μg/g, with six samples meeting the comprehensive utilization criteria for lithium in bauxite (Li2O ≥ 500 μg/g) and also showing an enrichment of rare earth elements (REEs) and gallium (Ga). By integrating stratigraphic, structural, mineral identification, geochemical characteristics, and field verification data, ten mineral exploration target areas were delineated. This study validates the effectiveness of remote sensing technology in the exploration of clay-type lithium and provides an applicable workflow for similar environments worldwide. Full article
Show Figures

Figure 1

38 pages, 1194 KiB  
Review
Transforming Data Annotation with AI Agents: A Review of Architectures, Reasoning, Applications, and Impact
by Md Monjurul Karim, Sangeen Khan, Dong Hoang Van, Xinyue Liu, Chunhui Wang and Qiang Qu
Future Internet 2025, 17(8), 353; https://doi.org/10.3390/fi17080353 (registering DOI) - 2 Aug 2025
Abstract
Data annotation serves as a critical foundation for artificial intelligence (AI) and machine learning (ML). Recently, AI agents powered by large language models (LLMs) have emerged as effective solutions to longstanding challenges in data annotation, such as scalability, consistency, cost, and limitations in [...] Read more.
Data annotation serves as a critical foundation for artificial intelligence (AI) and machine learning (ML). Recently, AI agents powered by large language models (LLMs) have emerged as effective solutions to longstanding challenges in data annotation, such as scalability, consistency, cost, and limitations in domain expertise. These agents facilitate intelligent automation and adaptive decision-making, thereby enhancing the efficiency and reliability of annotation workflows across various fields. Despite the growing interest in this area, a systematic understanding of the role and capabilities of AI agents in annotation is still underexplored. This paper seeks to fill that gap by providing a comprehensive review of how LLM-driven agents support advanced reasoning strategies, adaptive learning, and collaborative annotation efforts. We analyze agent architectures, integration patterns within workflows, and evaluation methods, along with real-world applications in sectors such as healthcare, finance, technology, and media. Furthermore, we evaluate current tools and platforms that support agent-based annotation, addressing key challenges such as quality assurance, bias mitigation, transparency, and scalability. Lastly, we outline future research directions, highlighting the importance of federated learning, cross-modal reasoning, and responsible system design to advance the development of next-generation annotation ecosystems. Full article
Show Figures

Figure 1

12 pages, 1010 KiB  
Article
The Effect of cdk1 Gene Knockout on Heat Shock-Induced Polyploidization in Loach (Misgurnus anguillicaudatus)
by Hanjun Jiang, Qi Lei, Wenhao Ma, Junru Wang, Jing Gong, Xusheng Guo and Xiaojuan Cao
Life 2025, 15(8), 1223; https://doi.org/10.3390/life15081223 (registering DOI) - 2 Aug 2025
Abstract
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) [...] Read more.
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) Methods: In this study, tetraploidization in diploid loach was induced by heat shock treatment, and, for the first time, the role of the key cell cycle gene cdk1 (cyclin-dependent kinase 1) in chromosome doubling was investigated; (3) Results: The experimental results show that when eggs are fertilized for 20 min and then subjected to a 4 min heat shock treatment at 39–40 °C, this represents the optimal induction condition, resulting in a tetraploid rate of 44%. Meanwhile, the results of the cdk1 knockout model (2n cdk1−/−) constructed using CRISPR/Cas9 showed that the absence of cdk1 significantly increased the chromosome doubling efficiency of the loach. The qPCR analysis revealed that knockout of cdk1 significantly upregulated cyclin genes (ccnb3,ccnc, and ccne1), while inhibiting expression of the separase gene espl1 (p < 0.05); (4) Conclusions: During chromosome doubling in diploid loaches induced by heat shock, knocking out the cdk1 gene can increase the tetraploid induction rate. This effect may occur through downregulation of the espl1 gene. This study offers novel insights into optimizing the induced breeding technology of polyploid fish and deciphering its molecular mechanism, while highlighting the potential application of integrating gene editing with physical induction. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

14 pages, 626 KiB  
Article
Mapping Clinical Questions to the Nursing Interventions Classification: An Evidence-Based Needs Assessment in Emergency and Intensive Care Nursing Practice in South Korea
by Jaeyong Yoo
Healthcare 2025, 13(15), 1892; https://doi.org/10.3390/healthcare13151892 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Evidence-based nursing practice (EBNP) is essential in high-acuity settings such as intensive care units (ICUs) and emergency departments (EDs), where nurses are frequently required to make time-critical, high-stakes clinical decisions that directly influence patient safety and outcomes. Despite its recognized importance, [...] Read more.
Background/Objectives: Evidence-based nursing practice (EBNP) is essential in high-acuity settings such as intensive care units (ICUs) and emergency departments (EDs), where nurses are frequently required to make time-critical, high-stakes clinical decisions that directly influence patient safety and outcomes. Despite its recognized importance, the implementation of EBNP remains inconsistent, with frontline nurses often facing barriers to accessing and applying current evidence. Methods: This descriptive, cross-sectional study systematically mapped and prioritized clinical questions generated by ICU and ED nurses at a tertiary hospital in South Korea. Using open-ended questionnaires, 204 clinical questions were collected from 112 nurses. Each question was coded and classified according to the Nursing Interventions Classification (NIC) taxonomy (8th edition) through a structured cross-mapping methodology. Inter-rater reliability was assessed using Cohen’s kappa coefficient. Results: The majority of clinical questions (56.9%) were mapped to the Physiological: Complex domain, with infection control, ventilator management, and tissue perfusion management identified as the most frequent areas of inquiry. Patient safety was the second most common domain (21.6%). Notably, no clinical questions were mapped to the Family or Community domains, highlighting a gap in holistic and transitional care considerations. The mapping process demonstrated high inter-rater reliability (κ = 0.85, 95% CI: 0.80–0.89). Conclusions: Frontline nurses in high-acuity environments predominantly seek evidence related to complex physiological interventions and patient safety, while holistic and community-oriented care remain underrepresented in clinical inquiry. Utilizing the NIC taxonomy for systematic mapping establishes a reliable framework to identify evidence gaps and support targeted interventions in nursing practice. Regular protocol evaluation, alignment of continuing education with empirically identified priorities, and the integration of concise evidence summaries into clinical workflows are recommended to enhance EBNP implementation. Future research should expand to multicenter and interdisciplinary settings, incorporate advanced technologies such as artificial intelligence for automated mapping, and assess the long-term impact of evidence-based interventions on patient outcomes. Full article
(This article belongs to the Section Nursing)
Show Figures

Figure 1

25 pages, 904 KiB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 (registering DOI) - 2 Aug 2025
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

17 pages, 901 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 (registering DOI) - 2 Aug 2025
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
23 pages, 995 KiB  
Article
Toward Sustainable Technology Use in Education: Psychological Pathways and Professional Status Effects in the TAM Framework
by Andrei-Lucian Marian, Roxana Apostolache and Ciprian Marius Ceobanu
Sustainability 2025, 17(15), 7025; https://doi.org/10.3390/su17157025 (registering DOI) - 2 Aug 2025
Abstract
The sustainable integration of technology into educational practices is pivotal for modern teaching and learning. Grounded in the Technology Acceptance Model (TAM), this study explores the psychological and contextual factors that influence technology acceptance among pre-service and in-service teachers. Employing a nonexperimental, cross-sectional [...] Read more.
The sustainable integration of technology into educational practices is pivotal for modern teaching and learning. Grounded in the Technology Acceptance Model (TAM), this study explores the psychological and contextual factors that influence technology acceptance among pre-service and in-service teachers. Employing a nonexperimental, cross-sectional design, data were collected from 347 participants to examine the relationships between perceived usefulness, perceived ease of use, attitude toward use, behavioural intention, and actual system use. Results indicate that pre-service teachers demonstrate stronger openness to technology adoption, driven primarily by attitudinal factors, whereas in-service teachers’ acceptance is more closely linked to perceived utility and usability. This study advances the TAM by integrating a dual serial mediation model and testing the moderating role of professional status, thereby offering a nuanced understanding of sustainable digital engagement across career stages. Our findings underscore the importance of fostering positive perceptions and providing differentiated support throughout teachers’ professional trajectories to achieve long-term, meaningful technology adoption in education. Full article
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 (registering DOI) - 2 Aug 2025
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

22 pages, 950 KiB  
Article
Industrial Diversification in Emerging Economies: The Role of Human Capital, Technological Investment, and Institutional Quality in Promoting Economic Complexity
by Sinazo Ngqoleka, Thobeka Ncanywa, Zibongiwe Mpongwana and Abiola John Asaleye
Sustainability 2025, 17(15), 7021; https://doi.org/10.3390/su17157021 (registering DOI) - 1 Aug 2025
Abstract
This study examines the role of human capital, technological investment, and institutional quality in promoting economic complexity in South Africa, with implications for sustainable development and the strategic role of Small and Medium Enterprises. Motivated by the growing importance of productive sophistication for [...] Read more.
This study examines the role of human capital, technological investment, and institutional quality in promoting economic complexity in South Africa, with implications for sustainable development and the strategic role of Small and Medium Enterprises. Motivated by the growing importance of productive sophistication for long-term development in emerging economies (notably SDG 8 and SDG 9), the study examines both long-run and short-run dynamics using the Autoregressive Distributed Lag approach, with robustness checks via Fully Modified Least Squares, Dynamic Least Squares, and Canonical Cointegration Regression. Structural Vector Autoregression is employed to assess the persistence of shocks, while the Toda–Yamamoto causality test evaluates causality. The results reveal that institutional quality significantly enhances economic complexity in the long run, while technological investment exhibits a negative long-run impact, potentially indicating absorptive capacity constraints within industries. Though human capital and income per capita do not influence complexity in the long run, they have short-term effects, with income per capita having the most immediate influence. Variance decomposition shows that shocks to technological investment are essential for economic complexity, and are the most persistent, followed by human capital and institutional quality. These findings show the need for institutional reforms that lower entry barriers for SMEs in industries, targeted innovation policies that support upgrading, and human capital strategies aligned with driven industrial transformation. The study offers insights for policymakers striving to influence structural drivers to advance sustainable industrial development and achieve the SDGs. Full article
Show Figures

Figure A1

48 pages, 3956 KiB  
Article
SEP and Blockchain Adoption in Western Balkans and EU: The Mediating Role of ESG Activities and DEI Initiatives
by Vasiliki Basdekidou and Harry Papapanagos
FinTech 2025, 4(3), 37; https://doi.org/10.3390/fintech4030037 (registering DOI) - 1 Aug 2025
Abstract
This paper explores the intervening role in SEP performance of corporate environmental, cultural, and ethnic activities (ECEAs) and diversity, equity, inclusion, and social initiatives (DEISIs) on blockchain adoption (BCA) strategy, particularly useful in the Western Balkans (WB), which demands transparency due to extended [...] Read more.
This paper explores the intervening role in SEP performance of corporate environmental, cultural, and ethnic activities (ECEAs) and diversity, equity, inclusion, and social initiatives (DEISIs) on blockchain adoption (BCA) strategy, particularly useful in the Western Balkans (WB), which demands transparency due to extended fraud and ethnic complexities. In this domain, a question has been raised: In BCA strategies, is there any correlation between SEP performance and ECEAs and DEISIs in a mediating role? A serial mediation model was tested on a dataset of 630 WB and EU companies, and the research conceptual model was validated by CFA (Confirmation Factor Analysis), and the SEM (Structural Equation Model) fit was assessed. We found a statistically sound (significant, positive) correlation between BCA and ESG success performance, especially in the innovation and integrity ESG performance success indicators, when DEISIs mediate. The findings confirmed the influence of technology, and environmental, cultural, ethnic, and social factors on BCA strategy. The findings revealed some important issues of BCA that are of worth to WB companies’ managers to address BCA for better performance. This study adds to the literature on corporate blockchain transformation, especially for organizations seeking investment opportunities in new international markets to diversify their assets and skill pool. Furthermore, it contributes to a deeper understanding of how DEI initiatives impact the correlation between business transformation and socioeconomic performance, which is referred to as the “social impact”. Full article
(This article belongs to the Special Issue Fintech Innovations: Transforming the Financial Landscape)
Show Figures

Figure 1

18 pages, 10604 KiB  
Article
Fast Detection of Plants in Soybean Fields Using UAVs, YOLOv8x Framework, and Image Segmentation
by Ravil I. Mukhamediev, Valentin Smurygin, Adilkhan Symagulov, Yan Kuchin, Yelena Popova, Farida Abdoldina, Laila Tabynbayeva, Viktors Gopejenko and Alexey Oxenenko
Drones 2025, 9(8), 547; https://doi.org/10.3390/drones9080547 (registering DOI) - 1 Aug 2025
Abstract
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves [...] Read more.
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves chemicals but also reduces the environmental load on cultivated fields. Machine learning algorithms are widely used for plant classification. Research on the application of the YOLO algorithm is conducted for simultaneous identification, localization, and classification of plants. However, the quality of the algorithm significantly depends on the training set. The aim of this study is not only the detection of a cultivated plant (soybean) but also weeds growing in the field. The dataset developed in the course of the research allows for solving this issue by detecting not only soybean but also seven weed species common in the fields of Kazakhstan. The article describes an approach to the preparation of a training set of images for soybean fields using preliminary thresholding and bound box (Bbox) segmentation of marked images, which allows for improving the quality of plant classification and localization. The conducted research and computational experiments determined that Bbox segmentation shows the best results. The quality of classification and localization with the application of Bbox segmentation significantly increased (f1 score increased from 0.64 to 0.959, mAP50 from 0.72 to 0.979); for a cultivated plant (soybean), the best classification results known to date were achieved with the application of YOLOv8x on images obtained from the UAV, with an f1 score = 0.984. At the same time, the plant detection rate increased by 13 times compared to the model proposed earlier in the literature. Full article
Show Figures

Figure 1

25 pages, 1178 KiB  
Article
A Novel Data-Driven Multi-Branch LSTM Architecture with Attention Mechanisms for Forecasting Electric Vehicle Adoption
by Md Mizanur Rahaman, Md Rashedul Islam, Mia Md Tofayel Gonee Manik, Md Munna Aziz, Inshad Rahman Noman, Mohammad Muzahidur Rahman Bhuiyan, Kanchon Kumar Bishnu and Joy Chakra Bortty
World Electr. Veh. J. 2025, 16(8), 432; https://doi.org/10.3390/wevj16080432 (registering DOI) - 1 Aug 2025
Abstract
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short‑Term Memory (LSTM) branches—one for past EV sales, one for [...] Read more.
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short‑Term Memory (LSTM) branches—one for past EV sales, one for infrastructure and policy signals, and one for economic trends. An attention mechanism first highlights the most important weeks in each branch, then decides which branch matters most at any point in time. Trained end‑to‑end on publicly available data, the model beats traditional statistical methods and newer deep learning baselines while remaining small enough to run efficiently. An ablation study shows that every branch and both attention steps improve accuracy, and that adding policy and economic data helps more than relying on EV history alone. Because the network is modular and its attention weights are easy to interpret, it can be extended to produce confidence intervals, include physical constraints, or forecast adoption of other clean‑energy technologies. Full article
20 pages, 865 KiB  
Review
Barriers and Facilitators to Artificial Intelligence Implementation in Diabetes Management from Healthcare Workers’ Perspective: A Scoping Review
by Giovanni Cangelosi, Andrea Conti, Gabriele Caggianelli, Massimiliano Panella, Fabio Petrelli, Stefano Mancin, Matteo Ratti and Alice Masini
Medicina 2025, 61(8), 1403; https://doi.org/10.3390/medicina61081403 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by [...] Read more.
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by healthcare professionals in the adoption of AI. Secondarily, by analyzing both quantitative and qualitative data collected, it aims to support the potential development of AI-based programs for diabetes management, with particular focus on a possible bottom-up approach. Materials and Methods: A scoping review was conducted following PRISMA-ScR guidelines for reporting and registered in the Open Science Framework (OSF) database. The study selection process was conducted in two phases—title/abstract screening and full-text review—independently by three researchers, with a fourth resolving conflicts. Data were extracted and assessed using Joanna Briggs Institute (JBI) tools. The included studies were synthesized narratively, combining both quantitative and qualitative analyses to ensure methodological rigor and contextual depth. Results: The adoption of AI tools in diabetes management is influenced by several barriers, including perceived unsatisfactory clinical performance, high costs, issues related to data security and decision-making transparency, as well as limited training among healthcare workers. Key facilitators include improved clinical efficiency, ease of use, time-saving, and organizational support, which contribute to broader acceptance of the technology. Conclusions: The active and continuous involvement of healthcare workers represents a valuable opportunity to develop more effective, reliable, and well-integrated AI solutions in clinical practice. Our findings emphasize the importance of a bottom-up approach and highlight how adequate training and organizational support can help overcome existing barriers, promoting sustainable and equitable innovation aligned with public health priorities. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
Back to TopTop