Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,422)

Search Parameters:
Keywords = target gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2707 KiB  
Article
Functional Studies and Expression Characteristics of the Vacuolar Sugar Transporter CoSWEET2a in Camellia oleifera
by Xinhui Zou, Bingshuai Du, Jing Zhou, Jingjing Hu, Yibo Cao and Lingyun Zhang
Plants 2025, 14(17), 2618; https://doi.org/10.3390/plants14172618 - 22 Aug 2025
Abstract
Sugar transporters of the SWEET family are essential for plant growth, development, yield formation, and stress responses by regulating sugar transport and distribution. This study characterizes the function and expression characteristics of CoSWEET2a, a Clade I SWEET gene in Camellia oleifera. We [...] Read more.
Sugar transporters of the SWEET family are essential for plant growth, development, yield formation, and stress responses by regulating sugar transport and distribution. This study characterizes the function and expression characteristics of CoSWEET2a, a Clade I SWEET gene in Camellia oleifera. We conducted subcellular localization, functional complementation in Arabidopsis, sugar response assays, drought tolerance tests, and hormone induction analysis. A key finding is CoSWEET2a, which that is localized on the vacuolar membrane in Camellia oleifera. Heterologous expression in Arabidopsis atsweet2 mutants revealed sugar-specific effects on root growth. Moreover, expression of CoSWEET2a increased soluble sugar content in Arabidopsis seeds. Additionally, CoSWEET2a overexpression enhanced drought stress tolerance by augmenting sugar content. The expression of CoSWEET2a is regulated by gibberellin (GA) and abscisic acid (ABA), and its promoter contains corresponding hormone response elements. In conclusion, CoSWEET2a functions as a “sugar buffer” on the vacuolar membrane, regulating sugar accumulation, root development, and drought stress responses. This discovery not only reveals that vacuolar SWEET plays an important role in maintaining cytoplasmic sugar homeostasis in plants but also provides a direct genetic target for engineering high-quality, drought-tolerant crops. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
13 pages, 1207 KiB  
Article
Evaluation of Cyclotron Solid Target Produced Gallium-68 Chloride for the Labeling of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC
by Michał Jagodziński, Jakub Boratyński, Paulina Hamankiewicz, Łukasz Cheda, Witold Uhrynowski, Agnieszka Girstun, Joanna Trzcińska-Danielewicz, Zbigniew Rogulski and Marek Pilch-Kowalczyk
Molecules 2025, 30(17), 3458; https://doi.org/10.3390/molecules30173458 - 22 Aug 2025
Abstract
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence [...] Read more.
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence of gallium-68 chloride obtained from cyclotron solid target and formulated to be equivalent to the eluate from a germanium-gallium generator, aiming to determine whether this production method can serve as a reliable alternative for PET radiopharmaceutical applications. Preparations of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC, labeled with cyclotron-derived gallium-68 chloride, were subjected to quality control analysis using radio thin layer chromatography and radio high performance liquid chromatography. Subsequently, biodistribution studies were performed in mouse oncological models of expression of PSMA antigen and SSTR receptor to compare uptake of preparations produced with generator and cyclotron-derived isotopes. All tested formulations met the required radiochemical purity specifications. Moreover, tumor accumulation of the radiolabeled compounds was comparable regardless of the isotope source. The results support the conclusion that gallium-68 produced via cyclotron is functionally equivalent to that obtained from a generator, demonstrating its potential for interchangeable use in clinical and research radiopharmaceutical applications. Full article
Show Figures

Figure 1

19 pages, 659 KiB  
Review
Cyber-Attacks on Energy Infrastructure—A Literature Overview and Perspectives on the Current Situation
by Doney Abraham, Siv Hilde Houmb and Laszlo Erdodi
Appl. Sci. 2025, 15(17), 9233; https://doi.org/10.3390/app15179233 - 22 Aug 2025
Abstract
Advanced Persistent Threats (APT) are stealthy multi-step attacks, often executed over an extensive time period and tailored for a specific attack target. APTs represent a “low and slow” type of cyberattack, meaning that they most often remain undetected until the consequence of the [...] Read more.
Advanced Persistent Threats (APT) are stealthy multi-step attacks, often executed over an extensive time period and tailored for a specific attack target. APTs represent a “low and slow” type of cyberattack, meaning that they most often remain undetected until the consequence of the attack becomes evident. Energy infrastructure, including power grids, oil and gas infrastructure, offshore wind installations, etc., form the basis of a modern digital nation. In addition to loss of power, financial systems, banking systems, digital national services, etc., become non-operational without electricity. Loss of power from an APT cyberattack could result in loss of life and the possibility of creating digital chaos. Digital payments becomes unavailable, digital identification is affected, and even POS terminals need to run on emergency power, which is limited in time, resulting in challenges in paying for food and beverages. Examples of Advanced Persistent Threats (APTs) targeting energy infrastructures include Triton, which in 2017 aimed to manipulate the safety systems of a petrochemical plant in Saudi Arabia, potentially leading to catastrophic physical consequences. Another significant incident is the Industroyer2 malware attack in 2022, which targeted a Ukrainian energy provider in an attempt to disrupt operations. The paper combines APT knowledge with energy infrastructure domain expertise, focusing on technical aspects while at the same time providing perspectives on societal consequences that could result from APTs. Full article
(This article belongs to the Special Issue Cyber-Physical Systems Security: Challenges and Approaches)
Show Figures

Figure 1

23 pages, 6706 KiB  
Article
Oleuropein Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice by Targeting TGF-β1 Signaling Pathway
by Liang Zhang, Zhigang Liu, Yayue Hu, Xueze Liu, Zhongyi Yang, Yuming Liu, Ran Jiao, Xiaoting Gu, Weidong Zhang, Xiaohe Li and Honggang Zhou
Biomolecules 2025, 15(9), 1211; https://doi.org/10.3390/biom15091211 - 22 Aug 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by the accumulation of fibrotic tissue in the lungs, leading to impaired gas exchange and respiratory failure, with a poor prognosis and limited treatment options. Oleuropein, a compound extracted from olive [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by the accumulation of fibrotic tissue in the lungs, leading to impaired gas exchange and respiratory failure, with a poor prognosis and limited treatment options. Oleuropein, a compound extracted from olive leaves, demonstrates a range of pharmacological activities, including benefits for non-alcoholic fatty liver disease and cardiac fibrosis. This study investigates the therapeutic potential of oleuropein for IPF and its underlying mechanisms. We first established a bleomycin-induced mouse model of pulmonary fibrosis and evaluated the in vivo efficacy of oleuropein. Our findings demonstrated that oleuropein significantly alleviated lung fibrosis and improved pulmonary function. Through in vitro experiments, we found that oleuropein inhibited TGF-β1-induced fibroblast migration, activation, autophagy, and apoptotic resistance, and mechanistically, oleuropein could regulate the TGF-β1/Smad and TGF-β1/mTOR signaling pathways in fibroblasts. Additionally, molecular docking analysis indicated that FAP-α is a potential target of oleuropein, displaying strong binding affinity. The effects of oleuropein on fibroblasts were markedly disrupted in FAP-α knockout cells. In conclusion, oleuropein exerts its beneficial effects by targeting FAP-α and inhibiting TGF-β1-related signaling pathways, improving the pathological characteristics of pulmonary fibrosis in mouse models, and demonstrating promising application prospects for the treatment of IPF. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

15 pages, 6299 KiB  
Article
Qualitative and Quantitative Metabolite Comparison of Grain, Persimmon, and Apple Vinegars with Antioxidant Activities
by Hyun-Ji Tak, Sowon Yang, So-Young Kim, Na-Rae Lee and Choong Hwan Lee
Antioxidants 2025, 14(8), 1029; https://doi.org/10.3390/antiox14081029 - 21 Aug 2025
Abstract
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome [...] Read more.
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome analyses. We profiled non-volatile and volatile metabolites using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), ultra-high-performance liquid chromatography–orbitrap–tandem mass spectrometry, and headspace–solid-phase microextraction–GC-TOF-MS. Among the 132 identified metabolites, 73 non-volatile and 40 volatile metabolites showed significant differences across the three vinegar types. Amino acids, hydroxy fatty acids, phenolic compounds, aldehydes, pyrazines, and sulfides were abundant in GV. Some phenolic compounds, alcohols, and esters were abundant in PV, whereas carbohydrates, flavonoids, and terpenoids were abundant in AV, contributing to nutrients, tastes, and flavors. Bioactivity assays revealed that GV showed notable antioxidant activity, whereas PV and AV had the highest total phenolic and flavonoid contents, respectively. Through quantitative analysis, we revealed that acetic acid, propionic acid, butanoic acid, lactic acid, and alanine were major components in the three types of vinegar, although their composition was different in each vinegar. Our comprehensive qualitative and quantitative metabolite comparison provides insights into the differences among the three vinegar types, classified according to their raw materials. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

21 pages, 7455 KiB  
Article
A Method for Predicting Gas Well Productivity in Non-Dominant Multi-Layer Tight Sandstone Reservoirs of the Sulige Gas Field Based on Multi-Task Learning
by Dawei Liu, Shiqing Cheng, Han Wang and Yang Wang
Processes 2025, 13(8), 2666; https://doi.org/10.3390/pr13082666 - 21 Aug 2025
Abstract
This study proposes a multi-task learning-based production capacity prediction model aimed at improving the prediction accuracy for gas wells in multi-layer tight sandstone reservoirs of the Sulige gas field under small-sample conditions. The model integrates mutation theory and progressive hierarchical feature extraction to [...] Read more.
This study proposes a multi-task learning-based production capacity prediction model aimed at improving the prediction accuracy for gas wells in multi-layer tight sandstone reservoirs of the Sulige gas field under small-sample conditions. The model integrates mutation theory and progressive hierarchical feature extraction to achieve adaptive nonlinear feature extraction and autonomous feature selection tailored to different prediction tasks. Using the daily average production of each gas-bearing layer during the first month after well commencement and the cumulative production of each gas-bearing layer over the first year as targets, the model was applied to predict the production capacity of 66 gas wells. Compared with single-task models and classical machine learning methods, the proposed multi-task model significantly improves prediction accuracy, reducing the root mean squared error (RMSE) by over 40% and increasing the coefficient of determination (R2) to 0.82. Experimental results demonstrate the model’s effectiveness in environments with limited training data, offering a reliable approach for productivity prediction in complex multi-layer tight sandstone reservoirs. Full article
Show Figures

Figure 1

29 pages, 1515 KiB  
Review
Greenhouse Gas Emissions from Livestock-Driven Deforestation in the Amazon: A Bibliometric Analysis 2004–2024
by Diego Hernandez Guzman, Seweryn Zielinski, Adriana Hernandez Guzman, Beliña Annery Herrera Tapias, Omar Ramírez and Celene B. Milanés
Land 2025, 14(8), 1695; https://doi.org/10.3390/land14081695 - 21 Aug 2025
Abstract
The Amazon rainforest, a vital global carbon sink, is experiencing extensive forest loss due to environmental pressures, particularly from livestock production. While research on this topic has grown, a comprehensive synthesis is needed to map the intellectual landscape of this critical field and [...] Read more.
The Amazon rainforest, a vital global carbon sink, is experiencing extensive forest loss due to environmental pressures, particularly from livestock production. While research on this topic has grown, a comprehensive synthesis is needed to map the intellectual landscape of this critical field and inform actionable policies. Unlike a systematic review, which synthesizes findings qualitatively, this analysis focuses on a quantitative overview of research trends, key authors, and collaborative networks regarding greenhouse gas emissions from livestock-driven deforestation in the Amazon from 2004 to 2024. Additionally, the study makes a thematic synthesis of reviewed literature providing overview on emissions, mitigation, and biodiversity impacts. The review, based on data from Scopus and Web of Science processed through Bibliometrix and VOSviewer software, reveals a growing and increasingly collaborative field, with research output showing significant growth post-2010, dominated by institutions in Brazil and the United States, with a conceptual focus that has shifted from basic deforestation metrics to sophisticated analyses of mitigation strategies and policy impacts. The findings highlight recurrent deforestation drivers, including export-oriented agriculture and weak land tenure, and demonstrate the effectiveness of specific mitigation options. Key mitigation strategies identified include silvopastoral systems with more than 30% tree cover, rotational grazing, and targeted pasture restoration, which can halve emissions within 5–7 years when combined with credit incentives and secure land tenure. The review underscores the evolution of research toward more policy-relevant and interdisciplinary approaches, but also highlights the need for more empirical validation and collaborative efforts to translate these findings into scalable climate solutions. Full article
Show Figures

Figure 1

28 pages, 11980 KiB  
Article
Gas Sources and Productivity-Influencing Factors of Matrix Reservoirs in Xujiahe Formation—A Case Study of Xin 8-5H Well and Xinsheng 204-1H Well
by Weijie Miao, Xingwen Wang, Wen Zhang, Ling Qiu, Qianli Lu and Xinwei Gong
Processes 2025, 13(8), 2644; https://doi.org/10.3390/pr13082644 - 20 Aug 2025
Viewed by 118
Abstract
The tight sandstone gas reservoirs of the Xujiahe Formation are critical targets for tight gas exploration and development in the Sichuan Basin. While Class I reservoirs have been successfully developed using staged volume fracturing technology, efforts are being increasingly directed toward Class II [...] Read more.
The tight sandstone gas reservoirs of the Xujiahe Formation are critical targets for tight gas exploration and development in the Sichuan Basin. While Class I reservoirs have been successfully developed using staged volume fracturing technology, efforts are being increasingly directed toward Class II and III matrix-type blocks. These reservoirs are characterized by a low permeability, high geo-stress differentials, strong heterogeneity, and limited fracture development. These properties result in several challenges, including ambiguous gas production sources, low reservoir utilization rates, significant variability in horizontal well performance, and rapid early-stage production decline—all of which hinder the effective development of matrix-type reservoirs. This study examines two representative fractured wells, Xin 8-5H and Xinsheng 204-1H, located in Class II and III blocks of the Xujiahe Formation gas reservoir. To identify gas production sources, we establish full-fracturing-section productivity models. Furthermore, accounting for variations in geological characteristics, we develop distinct productivity models for three key zones, the matrix area, fracture area, and fault area, to evaluate the productivity controls. The findings reveal that well Xin 8-5H primarily produces gas from the matrix and fault zones, whereas well Xinsheng 204-1H derives most of its production from the matrix and natural fractures. In matrix-dominated zones, generating complex fracture networks enhances productivity. An optimal cluster spacing of approximately 14 m ensures broad pressure sweep coverage while maintaining effective inter-cluster fracture connectivity. Additionally, natural fractures in the Xu-2 matrix reservoirs play a vital role in fluid communication. To maximize reservoir contact, well trajectories should be designed such that natural fractures are oriented either parallel or perpendicular to the wellbore, thereby improving lateral and vertical development. Near fault zones, adjusting cluster spacing to 14–25 m—while keeping the distance between faults and fracturing stages below 50 m—effectively connects faults and substantially increases production. This study introduces a systematic methodology for identifying gas sources in matrix reservoirs and optimizes key productivity-influencing parameters. The results provide both theoretical insights and practical strategies for the efficient development of Xu-2 matrix reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 764 KiB  
Article
Effect of Coridothymus capitatus Essential Oil on Chrysanthemum Aphid Behaviour and Survival: Phytochemical Analysis and Antioxidant Potential
by Paraskevi Yfanti, Andreas Papavlasopoulos, Polyxeni Lazaridou, Dimitra Douma and Marilena E. Lekka
Molecules 2025, 30(16), 3437; https://doi.org/10.3390/molecules30163437 - 20 Aug 2025
Viewed by 141
Abstract
There is a growing interest in using essential oils with phytoprotectant properties instead of synthetic pesticides to mitigate the risks of insect pesticide resistance, environmental harm, and adverse effects on non-target organisms and human health. This study focused on the effects of Coridothymus [...] Read more.
There is a growing interest in using essential oils with phytoprotectant properties instead of synthetic pesticides to mitigate the risks of insect pesticide resistance, environmental harm, and adverse effects on non-target organisms and human health. This study focused on the effects of Coridothymus capitatus essential oil on host selection, settling behaviour, and survival of Macrosiphoniella sanborni in dual-choice and no-choice tests. The essential oil and methanol extract of C. capitatus were analyzed using Gas Chromatography–Mass Spectrometry (GC-MS) and Liquid Chromatography–Mass Spectrometry (LTQ-LC-MS Orbitrap), respectively. The antioxidant activity was also tested through the radical scavenging assay. The settling inhibitory activity in the dual-choice test increased dose-dependently from 60% to 72% for essential oil concentrations of 0.1 to 0.3% (v/v) for up to 120 min exposure, but decreased thereafter. However, under no-choice conditions, the inhibitory effect after 60 min of exposure was inversely proportional to the concentration but became proportional by the end of the experiment (72 h). After 72 h, both assays produced a mortality rate of 15% to 17%. C. capitatus was classified as a Carvacrol chemotype. Fifteen phenolic compounds were identified in the MeOH extract, and both the extract and essential oil exhibited substantial antioxidant activity. In conclusion, our findings indicate that C. capitatus essential oil affects the behaviour and survival of M. sanborni. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils, 3rd Edition)
Show Figures

Figure 1

14 pages, 1172 KiB  
Article
A Comprehensive Genomic Analysis of Nucleophosmin (NPM1) in Acute Myeloid Leukemia
by Osama Batayneh, Mahmoudreza Moein, Alexandra Goodman, Devashish Desai, Dean Pavlick, Chelsea Marcus, Caleb Ho, Russell Madison, Richard S. P. Huang, Jeffrey S. Ross, Teresa Gentile, Zheng Zhou and Krishna Bilas Ghimire
Cancers 2025, 17(16), 2710; https://doi.org/10.3390/cancers17162710 - 20 Aug 2025
Viewed by 190
Abstract
Background/Objectives: This study investigates genomic alterations (GA) between NPM1-mutated (NPM1mut) and wild-type (NPM1wt) acute myeloid leukemia (AML), aiming to better understand the AML genomic profile. NPM1mut AML represents a distinct clinical AML subtype with high relapse rates despite initial responsiveness to chemotherapy. Methods: [...] Read more.
Background/Objectives: This study investigates genomic alterations (GA) between NPM1-mutated (NPM1mut) and wild-type (NPM1wt) acute myeloid leukemia (AML), aiming to better understand the AML genomic profile. NPM1mut AML represents a distinct clinical AML subtype with high relapse rates despite initial responsiveness to chemotherapy. Methods: A total of 4206 AML cases from 2019 to 2024 were analyzed using the FoundationOne Heme assay, incorporating comprehensive DNA and RNA sequencing. Patients were stratified into NPM1mut and NPM1wt cohorts, and genomic differences were systematically compared between the two groups. Results: Among 4206 cases, 633 (15.1%) featured NPM1 GA, with over 99% exhibiting short variant mutations. NPM1mut AML was more common in females (53.4% vs. 41.5%) and associated with a slightly higher median age (62 vs. 60 years). GA was more frequent in NPM1mut AML compared to the NPM1wt and included DNMT3A (39.2% vs. 12.6%; p < 0.0001), PTPN11 (18.3% vs. 7.5%; p < 0.0001), FLT3 (54.5% vs. 14.7%; p < 0.0001), IDH1 (16.1% vs. 5.6%; p < 0.0001), IDH2 (19.0% vs. 9.0%; p < 0.0001), TET2 (23.4% vs. 13.5%; p < 0.0001), and WT1 (12.5% vs. 9.4%; p = 0.02). GA was more frequent in NPM1wt AML and included ASXL1 (17.1% vs. 3.6%; p 0.0001), BCOR (7.5% vs. 1.6%; p < 0.0001), KMT2A (14.7% vs. 0.2%; p < 0.0001), RUNX1 (22.5% vs. 1.9%; p 0.0001), STAG2 (6.9% vs. 1.6%; p < 0.0001) and TP53 (19.1% vs. 4.1%; p < 0.0001). Conclusions: Mutations linked to therapy targets in AML, such as (FLT3 and IDH1/2), PTPN11, and DNMT3A (both associated with inferior outcomes), are more commonly observed in NPM1mut AML, whereas KMT2A, TP53, and myelodysplastic-related mutations are more commonly observed in NPM1wt AML. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

23 pages, 2612 KiB  
Review
From Lignocellulosic Residues to Protein Sources: Insights into Biomass Pre-Treatments and Conversion
by Isabela Vera dos Anjos, Natacha Coelho, Hugo Duarte, Diogo Neves Proença, Maria F. Duarte, Raul Barros, Sara Raposo, Sandra Gonçalves, Anabela Romano and Bruno Medronho
Polymers 2025, 17(16), 2251; https://doi.org/10.3390/polym17162251 - 20 Aug 2025
Viewed by 238
Abstract
With the global population steadily rising, the demand for sustainable protein sources has become increasingly urgent. Traditional animal- and plant-based proteins face challenges related to scalability, resource efficiency, and environmental impact. In this context, single-cell protein has emerged as a promising alternative. Derived [...] Read more.
With the global population steadily rising, the demand for sustainable protein sources has become increasingly urgent. Traditional animal- and plant-based proteins face challenges related to scalability, resource efficiency, and environmental impact. In this context, single-cell protein has emerged as a promising alternative. Derived from microorganisms such as algae, bacteria, fungi, and yeast, single-cell protein offers a high nutritional profile- including all essential amino acids and vitamins—while enabling rapid production, minimal land and water requirements, and no generation of greenhouse gas emissions. A particularly compelling advantage of single-cell protein is its ability to be produced from agro-industrial waste, converting low-cost residues into valuable nutritional resources and contributing to environmental sustainability. Among these waste streams, lignocellulosic biomass from agricultural and forestry residues stands out as a renewable, biodegradable, and abundant feedstock. This review explores the potential of lignocellulosic waste as a substrate for single-cell protein production, emphasizing both its environmental advantages and nutritional value. It highlights the single-cell protein role as a sustainable and scalable alternative to conventional protein sources. The review also identifies key scientific, economic, and regulatory challenges, and recognizes the importance of targeted investments, particularly in policy development, public awareness, and technological innovation, to enable the broader adoption and acceptance of single-cell protein -based products. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass)
Show Figures

Figure 1

27 pages, 2324 KiB  
Article
The UAE Net-Zero Strategy—Aspirations, Achievements and Lessons for the MENA Region
by Ghassan Zubi, Maximilian Kuhn, Sofoklis Makridis and Stanley Dorasamy
Sustainability 2025, 17(16), 7510; https://doi.org/10.3390/su17167510 - 20 Aug 2025
Viewed by 273
Abstract
The Middle East and North Africa region has not played a major role in climate action so far, and several countries depend economically on fossil fuel exports. However, this is a region with vast solar energy resources, which can be exploited affordably for [...] Read more.
The Middle East and North Africa region has not played a major role in climate action so far, and several countries depend economically on fossil fuel exports. However, this is a region with vast solar energy resources, which can be exploited affordably for power generation and hydrogen production at scale to eventually reach carbon neutrality. In this paper, we elaborate on the case of the United Arab Emirates and explore the aspirations and feasibility of its net-zero by 2050 target. While we affirm the concept per se, we also highlight the technological complexity and economic dimensions that accompany such transformation. We expect the UAE’s electricity demand to triple between today and 2050, and the annual green hydrogen production is expected to reach 3.5 Mt, accounting for over 40% of the electricity consumption. Green hydrogen will provide power-to-fuel solutions for aviation, maritime transport and hard-to-abate industries. At the same time, electrification will intensify—most importantly in road transport and low-temperature heat demands. The UAE can meet its future electricity demands primarily with solar power, followed by natural gas power plants with carbon capture, utilization and storage, while the role of nuclear power in the long term is unclear at this stage. Full article
Show Figures

Figure 1

28 pages, 4311 KiB  
Article
Development of Alginate–Pullulan Capsules for Targeted Delivery of Herbal Dietary Supplements in Functional Fermented Milk Products
by Alibek Muratbayev, Berik Idyryshev, Aitbek Kakimov, Aigerim Bepeyeva, Madina Jumazhanova, Marzhan Tashybayeva, Gulmira Zhumadilova, Nazerke Muratzhankyzy, Zhadyra Imangaliyeva and Aray Bazanova
Foods 2025, 14(16), 2878; https://doi.org/10.3390/foods14162878 - 19 Aug 2025
Viewed by 236
Abstract
The present study develops and optimizes a jet-cutting encapsulation method using a laboratory-scale encapsulator to incorporate herbal dietary supplements into fermented milk products. Sodium alginate and pullulan were selected as core and coating polymers, respectively, after rheological screening demonstrated that 1% alginate (η [...] Read more.
The present study develops and optimizes a jet-cutting encapsulation method using a laboratory-scale encapsulator to incorporate herbal dietary supplements into fermented milk products. Sodium alginate and pullulan were selected as core and coating polymers, respectively, after rheological screening demonstrated that 1% alginate (η ≈ 350–450 Pa·s at 22–25 °C) and 2% pullulan (η ≈ 400 Pa·s at 25–30 °C) provide a balance between atomization, shell integrity, and fluidity. Under optimized conditions, capsules of 1.00 ± 0.05 mm diameter and high sphericity (aspect ratio 1.08 ± 0.03) were produced. In vitro gastrointestinal simulation confirmed capsule stability in simulated gastric fluid (pH 2.0) and complete disintegration within 120 min in simulated intestinal fluid (pH 7.2). Inclusion of 8% (w/w) capsules in a fermented milk beverage preserved appearance, texture, flavor, and color while increasing viscosity from 2.0 to 4.0 Pa·s. Titratable acidity rose from 87 °T at 24 h to 119 °T at 120 h, with sensory quality remaining acceptable; substantial gas formation and excessive sourness occurred only after 168 h, defining a 5-day refrigerated shelf life. These findings demonstrate that the 1% alginate–pullulan capsule system successfully protects plant extracts during gastric transit and enables targeted intestinal release, while maintaining the sensory and rheological properties of the fortified fermented milk product. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

16 pages, 3404 KiB  
Article
Loss of LsSOC1 Function Delays Bolting and Reprograms Transcriptional and Metabolic Responses in Lettuce
by Jin-Young Kim, Young-Hee Jang, Tae-Sung Kim, Yu-Jin Jung and Kwon-Kyoo Kang
DNA 2025, 5(3), 40; https://doi.org/10.3390/dna5030040 - 19 Aug 2025
Viewed by 194
Abstract
Background/Objectives: Bolting in lettuce (Lactuca sativa L.) is highly sensitive to elevated temperatures, leading to premature flowering and reduced crop quality and yield. Although SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a well-known floral integrator in Arabidopsis, its [...] Read more.
Background/Objectives: Bolting in lettuce (Lactuca sativa L.) is highly sensitive to elevated temperatures, leading to premature flowering and reduced crop quality and yield. Although SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a well-known floral integrator in Arabidopsis, its role in heat-induced bolting in lettuce remains unclear. Methods: In this study, we generated CRISPR/Cas9-mediated LsSOC1 knockout (KO) lines and evaluated their phenotypes under high-temperature conditions. Results: LsSOC1-KO lines exhibited delayed bolting up to 18.6 days, and stem elongation was reduced by approximately 3.8 cm, which is equivalent to a 36.1% decrease compared to wild-type (WT) plants. Transcriptome analysis of leaf and bud tissues identified 32 up-regulated and 10 down-regulated genes common to leaf tissue (|log2FC| ≥ 1, adjusted p < 0.05). Among them, GA20-oxidase1 was significantly down-regulated in both tissues, which may have contributed to delayed floral transition and possibly to reduced stem elongation, although tissue-specific regulation of gibberellin metabolism warrants further investigation. In contrast, genes encoding heat shock proteins, ROS-detoxification enzymes, and flavonoid biosynthetic enzymes were up-regulated, suggesting a dual role of LsSOC1 in modulating thermotolerance and floral transition. qRT-PCR validated the sustained suppression of flowering-related genes in LsSOC1 KO plants under 37 °C heat stress. Conclusions: These findings demonstrate that LsSOC1 is a key integrator of developmental and thermal cues, orchestrating both bolting and stress-responsive transcriptional programs. Importantly, delayed bolting may extend the harvest window and improve postharvest quality in lettuce, highlighting LsSOC1 as a promising genetic target for breeding heat-resilient leafy vegetables. Full article
Show Figures

Graphical abstract

22 pages, 1009 KiB  
Review
Targeted Alpha Therapy: Exploring the Clinical Insights into [225Ac]Ac-PSMA and Its Relevance Compared with [177Lu]Lu-PSMA in Advanced Prostate Cancer Management
by Wael Jalloul, Vlad Ghizdovat, Alexandra Saviuc, Despina Jalloul, Irena Cristina Grierosu and Cipriana Stefanescu
Pharmaceuticals 2025, 18(8), 1215; https://doi.org/10.3390/ph18081215 - 18 Aug 2025
Viewed by 326
Abstract
Targeted alpha therapy (TAT) has recently emerged as a highly promising approach for the management of metastatic castration-resistant prostate cancer (mCRPC), especially in patients with disease progression despite standard treatments. Among alpha-emitter radiopharmaceuticals, actinium-225-labelled prostate-specific membrane antigen ([225Ac]Ac-PSMA) has shown remarkable potential due [...] Read more.
Targeted alpha therapy (TAT) has recently emerged as a highly promising approach for the management of metastatic castration-resistant prostate cancer (mCRPC), especially in patients with disease progression despite standard treatments. Among alpha-emitter radiopharmaceuticals, actinium-225-labelled prostate-specific membrane antigen ([225Ac]Ac-PSMA) has shown remarkable potential due to its high linear energy transfer (LET), short path length, and ability to induce potent, localised cytotoxic effects. This review summarises current clinical evidence regarding [225Ac]Ac-PSMA radioligand therapy (RLT), emphasising its efficacy, safety profile, and position relative to beta-emitter therapy with lutetium-177 ([177Lu]Lu-PSMA). Data from compassionate-use programs and small clinical trials demonstrate that [225Ac]Ac-PSMA produces significant biochemical and imaging responses, including > 50% declines in prostate-specific antigen (PSA) and lesion regression on [68Ga]Ga-PSMA PET/CT, even in heavily pre-treated mCRPC cohorts. Xerostomia, renal toxicity, and haematological adverse effects remain the main safety challenges, necessitating optimisation of patient selection, dosing strategies, and salivary gland protection protocols. Compared with [177Lu]Lu-PSMA, [225Ac]Ac-PSMA appears effective even in cases of beta-refractory disease, highlighting its complementary role rather than a competitive alternative. However, limited availability, high production costs, and the lack of large-scale, randomised trials hinder widespread clinical adoption. Future directions include combination protocols, improved radiopharmaceutical design, and trials evaluating its use in earlier disease stages. This review provides a comprehensive overview of the clinical aspects of [225Ac]Ac-PSMA RLT and its evolving role in advanced prostate cancer management. Full article
Show Figures

Figure 1

Back to TopTop