Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,795)

Search Parameters:
Keywords = synthetic polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5314 KiB  
Review
Hydrogel Applications for Cultural Heritage Protection: Emphasis on Antifungal Efficacy and Emerging Research Directions
by Meijun Chen, Shunyu Xiang and Huan Tang
Gels 2025, 11(8), 606; https://doi.org/10.3390/gels11080606 (registering DOI) - 2 Aug 2025
Abstract
Hydrogels, characterized by their high water content, tunable mechanical properties, and excellent biocompatibility, have emerged as a promising material platform for the preservation of cultural heritage. Their unique physicochemical features enable non-invasive and adaptable solutions for environmental regulation, structural stabilization, and antifungal protection. [...] Read more.
Hydrogels, characterized by their high water content, tunable mechanical properties, and excellent biocompatibility, have emerged as a promising material platform for the preservation of cultural heritage. Their unique physicochemical features enable non-invasive and adaptable solutions for environmental regulation, structural stabilization, and antifungal protection. This review provides a comprehensive overview of recent progress in hydrogel-based strategies specifically developed for the conservation of cultural relics, with a particular focus on antifungal performance—an essential factor in preventing biodeterioration. Current hydrogel systems, composed of natural or synthetic polymer networks integrated with antifungal agents, demonstrate the ability to suppress fungal growth, regulate humidity, alleviate mechanical stress, and ensure minimal damage to artifacts during application. This review also highlights future research directions, such as the application prospects of novel materials, including stimuli-responsive hydrogels and self-dissolving hydrogels. As an early exploration of the use of hydrogels in antifungal protection and broader cultural heritage conservation, this work is expected to promote the wider application of this emerging technology, contributing to the effective preservation and long-term transmission of cultural heritage worldwide. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 (registering DOI) - 1 Aug 2025
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

50 pages, 11611 KiB  
Review
The Quest Towards Superhydrophobic Cellulose and Bacterial Cellulose Membranes and Their Perspective Applications
by Iliana Ntovolou, Despoina Farkatsi and Kosmas Ellinas
Micro 2025, 5(3), 37; https://doi.org/10.3390/micro5030037 (registering DOI) - 31 Jul 2025
Abstract
Over the last few decades, the growing demand for sustainable resources has made biopolymers increasingly popular, as they offer an eco-friendly alternative to conventional synthetic polymers, which are often associated with environmental issues such as the formation of microplastics and toxic substances. Functionalization [...] Read more.
Over the last few decades, the growing demand for sustainable resources has made biopolymers increasingly popular, as they offer an eco-friendly alternative to conventional synthetic polymers, which are often associated with environmental issues such as the formation of microplastics and toxic substances. Functionalization of biomaterials involves modifying their physical, chemical, or biological properties to improve their performance for specific applications. Cellulose and bacterial cellulose are biopolymers of interest, due to the plethora of hydroxyl groups, their high surface area, and high porosity, which makes them ideal candidates for several applications. However, there are applications, which require precise control of their wetting properties. In this review, we present the most effective fabrication methods for modifying both the morphology and the chemical properties of cellulose and bacterial cellulose, towards the realization of superhydrophobic bacterial cellulose films and surfaces. Such materials can find a wide variety of applications, yet in this review we target and discuss applications deriving from the wettability control, such as antibacterial surfaces, wound healing films, and separation media. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

19 pages, 4697 KiB  
Article
The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications
by Mohamad Alsaadi, Tomas Flanagan, Daniel P. Fitzpatrick and Declan M. Devine
Sustainability 2025, 17(15), 6967; https://doi.org/10.3390/su17156967 (registering DOI) - 31 Jul 2025
Abstract
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) [...] Read more.
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) of a semi-unidirectional non-crimp basalt fibre (BF)-reinforced acrylic matrix and epoxy matrix composites was investigated. Optical and scanning electron microscopes were used to describe the fracture and interfacial failure mechanisms. The results show that the BF/Elium composite exhibited higher fracture toughness properties compared to the BF/Epoxy composite. The results of the mode I and mode II interlaminar fracture toughness values for the BF/Elium composite were 1280 J/m2 and 2100 J/m2, which are 14% and 56% higher, respectively, than those of the BF/Epoxy composite. The result values for both composites were normalised with respect to the density of each composite laminate. The saturated moisture content and diffusion coefficient values of seawater-aged samples at 45 °C and room temperature for the BF/Elium and BF/Epoxy composites were analysed. Both composites exhibited signs of polymer matrix decomposition and fibre surface degradation under the influence of seawater hydrothermal ageing, resulting in a reduction in the mode II interlaminar fracture toughness values. Enhancement was observed in mode I fracture toughness under hydrothermal ageing, particularly for the BF/Epoxy composite, due to matrix plasticisation and fibre bridging. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

42 pages, 3564 KiB  
Review
A Review on Sustainable Upcycling of Plastic Waste Through Depolymerization into High-Value Monomer
by Ramkumar Vanaraj, Subburayan Manickavasagam Suresh Kumar, Seong Cheol Kim and Madhappan Santhamoorthy
Processes 2025, 13(8), 2431; https://doi.org/10.3390/pr13082431 - 31 Jul 2025
Viewed by 3
Abstract
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular [...] Read more.
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular approach that converts plastic waste back into valuable monomers and chemical feedstocks. This article provides an in-depth narrative review of recent progress in the upcycling of major plastic types such as PET, PU, PS, and engineering plastics through thermal, chemical, catalytic, biological, and mechanochemical depolymerization methods. Each method is critically assessed in terms of efficiency, scalability, energy input, and environmental impact. Special attention is given to innovative catalyst systems, such as microsized MgO/SiO2 and Co/CaO composites, and emerging enzymatic systems like engineered PETases and whole-cell biocatalysts that enable low-temperature, selective depolymerization. Furthermore, the conversion pathways of depolymerized products into high-purity monomers such as BHET, TPA, vanillin, and bisphenols are discussed with supporting case studies. The review also examines life cycle assessment (LCA) data, techno-economic analyses, and policy frameworks supporting the adoption of depolymerization-based recycling systems. Collectively, this work outlines the technical viability and sustainability benefits of depolymerization as a core pillar of plastic circularity and monomer recovery, offering a path forward for high-value material recirculation and waste minimization. Full article
Show Figures

Figure 1

23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 62
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

14 pages, 1259 KiB  
Review
Engineered Hydrogels for Musculoskeletal Regeneration: Advanced Synthesis Strategies and Therapeutic Efficacy in Preclinical Models
by Gabriela Calin, Mihnea Costescu, Marcela Nour (Cârlig), Tudor Ciuhodaru, Batîr-Marin Denisa, Letitia Doina Duceac, Cozmin Mihai, Melania Florina Munteanu, Svetlana Trifunschi, Alexandru Oancea and Daniela Liliana Damir
Polymers 2025, 17(15), 2094; https://doi.org/10.3390/polym17152094 (registering DOI) - 30 Jul 2025
Viewed by 190
Abstract
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial [...] Read more.
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial for musculoskeletal tissue regeneration. This is due to their high water content (70–99%), ECM-like structure, injectability, and controllable degradation rates. Recent preclinical studies indicate that they can enhance regeneration by modulating the release of bioactive compounds, growth factors, and stem cells. Composite hydrogels that combine natural and synthetic polymers, like chitosan and collagen, have compressive moduli that are advantageous for tendon–bone healing. Some of these hydrogels can even hold up to 0.8 MPa of tensile strength. In osteoarthritis models, functionalized systems such as microspheres responsive to matrix metalloproteinase-13 have demonstrated disease modulation and targeted drug delivery, while intelligent in situ hydrogels have exhibited a 43% increase in neovascularization and a 50% enhancement in myotube production. Hydrogel-based therapies have been shown to restore contractile force by as much as 80%, increase myofiber density by 65%, and boost ALP activity in bone defects by 2.1 times in volumetric muscle loss (VML) models. Adding TGF-β3 or MSCs to hydrogel systems improved GAG content by about 60%, collagen II expression by 35–50%, and O’Driscoll scores by 35–50% in cartilage regeneration. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

26 pages, 14851 KiB  
Article
Degradation of Synthetic Restoration Materials by Xerotolerant/Xerophilic Fungi Contaminating Canvas Paintings
by Amela Kujović, Katja Kavkler, Michel Alexander Wilson-Hernandez, Miloš Vittori, Luen Zidar, Cene Gostinčar, Kristina Sepčić, Yordanis Pérez-Llano, Ramón Alberto Batista-García, Nina Gunde-Cimerman and Polona Zalar
J. Fungi 2025, 11(8), 568; https://doi.org/10.3390/jof11080568 - 30 Jul 2025
Viewed by 93
Abstract
Canvas paintings are prone to biodeterioration due to their complex chemical composition, which can support fungal growth even under controlled conditions. This study evaluated the susceptibility of common synthetic restoration materials—Lascaux glues (303 HV, 498 HV), Acrylharz P550, BEVA 371, Laropal A81, and [...] Read more.
Canvas paintings are prone to biodeterioration due to their complex chemical composition, which can support fungal growth even under controlled conditions. This study evaluated the susceptibility of common synthetic restoration materials—Lascaux glues (303 HV, 498 HV), Acrylharz P550, BEVA 371, Laropal A81, and Regalrez 1094—to degradation by fourteen xerotolerant/xerophilic fungal strains. All tested Aspergillus and Penicillium species extensively colonized, especially artificially aged materials. FTIR-PAS analysis revealed chemical changes in carbonyl and C–H bonds in Laropal A81 and Regalrez 1094 colonized by Aspergillus spp. Scanning electron microscopy (SEM) imaging showed thinning of Lascaux glues and deformation of Regalrez 1094. Transcriptomic profiling of A. puulaauensis grown on Lascaux 498 HV and Regalrez 1094 identified altered expression of genes coding for esterases and oxidases, enzymes involved in synthetic polymer degradation. Esterase activity assays using 4-nitrophenol-based substrates confirmed significant enzymatic activity correlating with the presence of ester bonds. These findings highlight the vulnerability of synthetic restoration materials, specifically Laropal A81, Regalrez 1094, and Lascaux glues, to extremophilic fungi thriving in environments with low water activity. The results emphasize the urgent need for specific knowledge on fungi and their metabolic pathways to use/develop more durable conservation materials and strategies to protect cultural heritage objects from biodeterioration. Full article
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 181
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

33 pages, 2684 KiB  
Review
Biocompatible Natural Polymer-Based Amorphous Solid Dispersion System Improving Drug Physicochemical Properties, Stability, and Efficacy
by Arif Budiman, Helen Ivana, Kelly Angeline Huang, Stella Aurelia Huang, Mazaya Salwa Nadhira, Agus Rusdin and Diah Lia Aulifa
Polymers 2025, 17(15), 2059; https://doi.org/10.3390/polym17152059 - 28 Jul 2025
Viewed by 296
Abstract
Poor aqueous solubility still disqualifies many promising drug candidates at late stages of development. Amorphous solid dispersion (ASD) technology solves this limitation by trapping the active pharmaceutical ingredient (API) in a high-energy, non-crystalline form, yet most marketed ASDs rely on synthetic carriers such [...] Read more.
Poor aqueous solubility still disqualifies many promising drug candidates at late stages of development. Amorphous solid dispersion (ASD) technology solves this limitation by trapping the active pharmaceutical ingredient (API) in a high-energy, non-crystalline form, yet most marketed ASDs rely on synthetic carriers such as polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC), which raise concerns about long-term biocompatibility, residual solvent load, and sustainability. This study summarizes the emergence of natural polymer-based ASDs (NP-ASDs), along with the bond mechanism reactions through which these natural polymers enhance drug performance. As a result, NP-ASDs exhibit improved physical stability and significantly enhance the dissolution rate of poorly soluble drugs. The structural features of natural polymers play a critical role in stabilizing the amorphous state and modulating drug release profiles. These findings support the growing potential of NP-ASDs as sustainable and biocompatible alternatives to synthetic carriers in pharmaceutical development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 1640 KiB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Viewed by 345
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 277
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

34 pages, 924 KiB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 457
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

80 pages, 962 KiB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Viewed by 776
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
Back to TopTop