Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (465)

Search Parameters:
Keywords = synthetic organic chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1763 KB  
Article
Nucleophilic Addition of Stabilized Phosphorus Ylides to Closo-Decaborate Nitrilium Salts: A Synthetic Route to Boron Cluster-Functionalized Iminoacyl Phosphoranes and Their Application in Potentiometric Sensing
by Vera V. Voinova, Eugeniy S. Turyshev, Sergey S. Novikov, Nikita A. Selivanov, Alexander Yu. Bykov, Ilya N. Klyukin, Andrey P. Zhdanov, Mikhail S. Grigoriev, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Molecules 2026, 31(2), 231; https://doi.org/10.3390/molecules31020231 - 9 Jan 2026
Viewed by 230
Abstract
This work explores a novel and efficient synthetic approach to a new class of boron cluster derivatives via the nucleophilic addition of stabilized phosphorus ylides, Ph3P=CHR2 (R2 = COOEt, CN), to a series of nitrilium salts of the closo [...] Read more.
This work explores a novel and efficient synthetic approach to a new class of boron cluster derivatives via the nucleophilic addition of stabilized phosphorus ylides, Ph3P=CHR2 (R2 = COOEt, CN), to a series of nitrilium salts of the closo-decaborate anion, [2-B10H9NCR1] (R1 = Me, Et, nPr, iPr, Ph). The reaction proceeds regio- and stereospecifically, affording a diverse range of iminoacyl phosphorane derivatives, [2-B10H9NH=C(R1)C(PPh3)R2], in high isolated yields (up to 95%). The obtained compounds (10 examples) were isolated as tetrabutylammonium or tetraphenylphosphonium salts and thoroughly characterized by multinuclear NMR (11B, 1H, 13C, 31P), high-resolution mass spectrometry, and single-crystal X-ray diffraction. The reaction feasibility was found to be strongly influenced by the steric hindrance of the R1 group. Furthermore, the practical utility of these novel hybrids was demonstrated by employing the [2-B10H9NH=C(CH3)C(COOC2H5)=PPh3] anion as a highly effective membrane-active component in ion-selective electrodes. The developed tetraphenylphosphonium (TPP+) sensor exhibited a near-Nernstian response, a low detection limit of 3 × 10−8 M, and excellent selectivity over a range of common inorganic and organic cations, showcasing the potential of closo-borate-based ionophores in analytical chemistry. Full article
Show Figures

Figure 1

19 pages, 1582 KB  
Article
Sticking Efficiency of Microplastic Particles in Terrestrial Environments Determined with Atomic Force Microscopy
by Robert M. Wheeler and Steven K. Lower
Microplastics 2026, 5(1), 6; https://doi.org/10.3390/microplastics5010006 - 9 Jan 2026
Viewed by 136
Abstract
Subsurface deposition determines whether soils, aquifers, or ocean sediment represent a sink or temporary reservoir for microplastics. Deposition is generally studied by applying the Smoluchowski–Levich equation to determine a particle’s sticking efficiency, which relates the number of particles filtered by sediment to the [...] Read more.
Subsurface deposition determines whether soils, aquifers, or ocean sediment represent a sink or temporary reservoir for microplastics. Deposition is generally studied by applying the Smoluchowski–Levich equation to determine a particle’s sticking efficiency, which relates the number of particles filtered by sediment to the probability of attachment occurring from an interaction between particles and sediment. Sticking efficiency is typically measured using column experiments or estimated from theory using the Interaction Force Boundary Layer (IFBL) model. However, there is generally a large discrepancy (orders of magnitude) between the values predicted from IFBL theory and the experimental column measurements. One way to bridge this gap is to directly measure a microparticle’s interaction forces using Atomic Force Microscopy (AFM). Herein, an AFM method is presented to measure sticking efficiency for a model polystyrene microparticle (2 μm) on a model geomaterial surface (glass or quartz) in environmentally relevant, synthetic freshwaters of varying ionic strength (de-ionized water, soft water, hard water). These data, collected over nanometer length scales, are compared to sticking efficiencies determined through traditional approaches. Force measurement results show that AFM can detect extremely low sticking efficiencies, surpassing the sensitivity of column studies. These data also demonstrate that the 75th to 95th percentile, rather than the mean or median force values, provides a better approximation to values measured in model column experiments or field settings. This variability of the methods provides insight into the fundamental mechanics of microplastic deposition and suggests AFM is isolating the physicochemical interactions, while column experiments also include physical interactions like straining. Advantages of AFM over traditional column/field experiments include high throughput, small volumes, and speed of data collection. For example, at a ramp rate of 1 Hz, 60 sticking efficiency measurements could be made in only a minute. Compared to column or field experiments, the AFM requires much less liquid (μL volume) making it effortless to examine the impact of solution chemistry (temperature, pH, ionic strength, valency of dissolved ions, presence of organics, etc.). Potential limitations of this AFM approach are presented alongside possible solutions (e.g., baseline correction, numerical integration). If these challenges are successfully addressed, then AFM would provide a completely new approach to help elucidate which subsurface minerals represent a sink or temporary storage site for microparticles on their journey from terrestrial to oceanic environments. Full article
(This article belongs to the Special Issue Microplastics in Freshwater Ecosystems)
Show Figures

Figure 1

16 pages, 5762 KB  
Article
Evaluation of Flat Sheet UF PES Membranes Modified with a Polymerized Coating of Bicontinuous Microemulsion for Wastewater Treatment: Insights from Laboratory MBR Experiments
by Sneha De, Tran Ly Quynh, Francesco Galiano, Raffaella Mancuso, Bartolo Gabriele, Jan Hoinkis and Alberto Figoli
Membranes 2026, 16(1), 24; https://doi.org/10.3390/membranes16010024 - 2 Jan 2026
Viewed by 367
Abstract
The study investigates the performance of polyethersulfone (PES) ultrafiltration (UF) membranes modified with a coating of polymerizable bicontinuous microemulsion (PBM) for membrane bioreactor (MBR) applications. Two types of PBM-modified PES membranes—casting-coated and spray-coated—were compared with a commercial PES membrane. A laboratory side-stream MBR [...] Read more.
The study investigates the performance of polyethersulfone (PES) ultrafiltration (UF) membranes modified with a coating of polymerizable bicontinuous microemulsion (PBM) for membrane bioreactor (MBR) applications. Two types of PBM-modified PES membranes—casting-coated and spray-coated—were compared with a commercial PES membrane. A laboratory side-stream MBR (ssMBR) was employed to treat model wastewater (MW) with activated sludge under aerobic conditions. The fouling propensity of the membranes in ssMBR was evaluated through the implementation of two protocols: (i) flux-step test to treat low-strength domestic model wastewater (DMW) and (ii) constant flux test to treat high-strength olive mill model wastewater (OMW). The findings indicated that both the commercial PES and PBM spray-coated PES membranes started to critically foul at 36 L m−2 h−1. The PBM spray-coated membranes showed enhanced fouling resistance in comparison to the PBM casting-coated membranes. The deposition of the biofouling layer was the thinnest on PBM spray-coated membranes, which can be attributed to the low surface charge and high hydrophilicity of the modified membrane surface. In contrast, deposition of a thicker fouling layer was found on the commercial PES membrane, which can be attributed to the relatively higher surface charge promoting organic adsorption. A comparison of the fouling trends exhibited by commercial PES and PBM spray-coated membranes in OMW treatment revealed that they have similar fouling tendencies. However, a notable distinction emerged when the PBM spray-coated membrane was observed to demonstrate a lower fouling propensity accompanied by comparatively thinner fouling layers. The results demonstrate that the PBM spray-coated membranes have enhanced fouling resistance and filtration efficacy in MBRs treating wastewater with diverse strengths, thereby affirming their potential for application in wastewater treatment systems. Full article
Show Figures

Figure 1

35 pages, 31615 KB  
Review
Advances in Flow Chemistry for Organolithium-Based Synthesis: A Process Perspective
by Feng Zhou, Yijun Zhou, Chuansong Duanmu, Yanxing Li, Jin Li, Haiqing Xu, Pan Wang and Kai Zhu
Molecules 2026, 31(1), 105; https://doi.org/10.3390/molecules31010105 - 26 Dec 2025
Viewed by 468
Abstract
While organolithium reactions hold great promise in synthetic chemistry, their high reactivity, strong exothermicity, and the instability of intermediates often limit their application, making the effective control of reaction processes difficult in traditional batch reactors. This review systematically summarizes the latest advances in [...] Read more.
While organolithium reactions hold great promise in synthetic chemistry, their high reactivity, strong exothermicity, and the instability of intermediates often limit their application, making the effective control of reaction processes difficult in traditional batch reactors. This review systematically summarizes the latest advances in utilizing flow chemistry technology to address process challenges related to organolithium reactions from 2014 to 2025. From a process perspective, we systematically discuss the literature cases regarding three key themes: the synthesis of organic compounds applied in the pharmaceutical field, the development of novel methods centered on effective process control (reaction temperature, residence time, phase state, multi-step reaction sequence, and safety), and fundamental process research on continuous flow organolithium reactions. Analysis shows that continuous flow systems provide a powerful platform for fully realizing the potential of organolithium chemistry by enhancing heat/mass transfer and precisely controlling reaction parameters. This review emphasizes how flow chemistry technology not only improves process safety and efficiency but also enables transformations and process scaling that are difficult or impossible in batch modes, thus providing a novel process intensification method for modern synthetic chemistry. Full article
Show Figures

Figure 1

30 pages, 3933 KB  
Review
Next-Generation Electrically Conductive Polymers: Innovations in Solar and Electrochemical Energy Devices
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(24), 3331; https://doi.org/10.3390/polym17243331 - 17 Dec 2025
Viewed by 732
Abstract
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, [...] Read more.
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, solution-phase processability, and cost-effective manufacturing potential. This extensive review provides an in-depth examination of the fundamental principles governing charge carrier mobility in conjugated polymer systems, explores diverse synthetic methodologies for tailoring molecular architectures, and analyzes their transformative applications across multiple energy technology domains. In photovoltaic technologies, electrically conductive polymers have driven major advancements in organic solar cells and photoelectrochemical systems, significantly improving energy conversion efficiency while reducing manufacturing costs. In electrochemical energy storage, their integration into supercapacitors and rechargeable lithium-based batteries has enhanced charge storage capability, accelerated charge–discharge processes, and extended operational lifespan compared with conventional electrode materials. This comprehensive analysis emphasizes emerging developments in hybrid composite architectures that combine conductive polymers with carbon-based nanomaterials, metal oxides, and other functional components to create next-generation flexible, lightweight, and wearable energy systems. By synthesizing fundamental materials chemistry with device engineering perspectives, this review illuminates the transformative potential of electrically conductive polymers in establishing sustainable, efficient, and resilient energy infrastructures for future technological landscapes. Full article
Show Figures

Figure 1

5 pages, 628 KB  
Short Note
9-Oxo-2-(p-tolyl)-4,9-dihydropyrazolo[5,1-b]quinazoline-3a(3H)-carboxylic Acid
by Anastasia A. Andreeva, Yurii V. Shklyaev and Andrey N. Maslivets
Molbank 2025, 2025(4), M2105; https://doi.org/10.3390/M2105 - 8 Dec 2025
Viewed by 240
Abstract
Compounds based on the pyrazoloquinazoline scaffold are of significant interest in synthetic organic chemistry owing to their potential biological activity. In this work, we describe the synthesis of a new derivative with this scaffold, 9-oxo-2-(p-tolyl)-4,9-dihydropyrazolo[5,1-b]quinazoline-3a(3H)-carboxylic acid, obtained [...] Read more.
Compounds based on the pyrazoloquinazoline scaffold are of significant interest in synthetic organic chemistry owing to their potential biological activity. In this work, we describe the synthesis of a new derivative with this scaffold, 9-oxo-2-(p-tolyl)-4,9-dihydropyrazolo[5,1-b]quinazoline-3a(3H)-carboxylic acid, obtained by reacting 2,4-dioxo-4-(p-tolyl)butanoic acid with 2-aminobenzohydrazide in a 1:1 ratio when mixed in ethanol. The compound was characterized by 1H/13C NMR, IR, and X-ray diffraction analysis. Full article
Show Figures

Figure 1

25 pages, 4392 KB  
Article
A Sustainable Microextraction of Hallucinogenic New Psychoactive Substances for Clinical and Forensic Applications
by Emilija Kostić, Aleksandra Catić-Đorđević, Ivana Nešić, Aleksandra Antović, Snežana Đorđević, Miodrag Zdravković, Mirjana Đukić and Maja Vujović
Appl. Sci. 2025, 15(24), 12927; https://doi.org/10.3390/app152412927 - 8 Dec 2025
Viewed by 343
Abstract
The application of Green Analytical Chemistry (GAC) principles in method development aims to reduce waste and replace hazardous solvents with environmentally friendly alternatives. Natural Deep Eutectic Solvents (NADESs) have recently emerged as sustainable replacements for traditional organic solvents. In this study, hydrophobic NADESs [...] Read more.
The application of Green Analytical Chemistry (GAC) principles in method development aims to reduce waste and replace hazardous solvents with environmentally friendly alternatives. Natural Deep Eutectic Solvents (NADESs) have recently emerged as sustainable replacements for traditional organic solvents. In this study, hydrophobic NADESs were used in dispersive liquid–liquid microextraction (DLLME) to extract four synthetic hallucinogenic phenethylamines (2C-B, 25B-NBOMe, 25C-NBOMe, and 25I-NBOMe) in urine samples. Nine NADESs were formed using menthol and different organic acids, with menthol–decanoic acid (1:1 molar ratio) providing the best extraction efficiency. A fractional factorial design identified pH, vortex speed, and vortex time as key factors, which were then optimized using a Box–Behnken design. The statistical model showed strong validity and high predictive power, and the optimal conditions (pH 12, vortex time 20 s, vortex speed 30,000 rpm, centrifugation at 14,000 rpm for 3 min) resulted in the highest recoveries. Greenness and operational sustainability, evaluated using ComplexGAPI, AGREEprep, BAGI, and SPRS tools, revealed clear advantages over existing extraction approaches. Overall, the proposed method represents a sustainable, white-chemistry–driven microextraction strategy suitable for clinical and forensic toxicological applications. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

9 pages, 286 KB  
Proceeding Paper
Synthesis of 2-Naphthyl 2-Chloroacetate and Study of Its Nucleophilic Substitution Reactions with Citric Acid
by Ruzimurod Jurayev, Azimjon Choriev, Anvar Abdushukurov and Ilyos Normurodov
Eng. Proc. 2025, 117(1), 10; https://doi.org/10.3390/engproc2025117010 - 8 Dec 2025
Viewed by 261
Abstract
In this study, an efficient and regioselective synthetic method was developed for the preparation of 3-hydroxy-3-((2-(naphthalen-2-yloxy)-2-oxoethoxy)carbonyl)pentanedioic acid, a multifunctional ether–ester compound of potential interest for pharmaceutical and material science applications. The target compound was synthesized via the nucleophilic substitution (SN2) and esterification reactions [...] Read more.
In this study, an efficient and regioselective synthetic method was developed for the preparation of 3-hydroxy-3-((2-(naphthalen-2-yloxy)-2-oxoethoxy)carbonyl)pentanedioic acid, a multifunctional ether–ester compound of potential interest for pharmaceutical and material science applications. The target compound was synthesized via the nucleophilic substitution (SN2) and esterification reactions of 2-naphthyl chloroacetate with the monosodium salt of citric acid. Optimization of the reaction conditions was carried out by varying the molar ratio of the reagents, reaction temperature, and duration. The highest yield of 83% was achieved under the conditions of a 2:1 molar ratio of chloroacetate to citrate, a temperature of 70–80 °C, and a reaction time of 6 h. The enhanced product yield observed under these conditions is attributed to the dual reactivity of the citric acid monosodium salt, which contains a free hydroxyl group capable of undergoing SN2 etherification, and free carboxylic acid groups that participate in esterification with the electrophilic 2-naphthyl chloroacetate. The stoichiometric 2:1 ratio ensures that both reactive centers on the citrate anion are fully utilized, leading to efficient and selective transformation into the desired product. Mechanistically, the ether bond formation proceeds through the classical Williamson ether synthesis pathway, where the alkoxide formed from the hydroxyl group attacks the electrophilic carbon of the chloroacetate, displacing the chloride ion. Concurrently, esterification enhances molecular complexity and stability. The results underline the synthetic utility of citric acid derivatives in forming complex organic architectures via environmentally benign routes. This study not only contributes a practical approach to multifunctional molecule synthesis but also reinforces the applicability of green chemistry principles in ester–ether coupling strategies. Full article
21 pages, 13065 KB  
Review
Application of Photochemistry in Natural Product Synthesis: A Sustainable Frontier
by Shipra Gupta
Photochem 2025, 5(4), 39; https://doi.org/10.3390/photochem5040039 - 5 Dec 2025
Viewed by 606
Abstract
Natural Product Synthesis (NPS) is a cornerstone of organic chemistry, historically rooted in the dual goals of structure elucidation and synthetic strategy development for bioactive compounds. Initially focused on identifying the structures of medicinally relevant natural products, NPS has evolved into a dynamic [...] Read more.
Natural Product Synthesis (NPS) is a cornerstone of organic chemistry, historically rooted in the dual goals of structure elucidation and synthetic strategy development for bioactive compounds. Initially focused on identifying the structures of medicinally relevant natural products, NPS has evolved into a dynamic field with applications in drug discovery, immunotherapy, and smart materials. This evolution has been propelled by advances in reaction design, mechanistic insight, and the integration of green chemistry principles. A particularly promising development in NPS is the use of photochemistry, which harnesses light—a renewable energy source—to drive chemical transformations. Photochemical reactions offer unique excited-state reactivity, enabling synthetic pathways that are often inaccessible through thermal methods. Their precision and sustainability make them ideal for modern synthetic challenges. This review explores a wide range of photochemical reactions, from classical to contemporary, emphasizing their role in total synthesis. By showcasing their potential, the review aims to encourage broader adoption of photochemical strategies in the synthesis of complex natural products, promoting innovation at the intersection of molecular complexity, sustainability, and synthetic efficiency. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Graphical abstract

37 pages, 2370 KB  
Review
Bacterial Cellulose for Sustainable Food Packaging: Production Pathways, Structural Design, and Functional Modification Strategies
by Ronagul Turganova, Rysgul Tuleyeva, Ayaz Belkozhayev, Nargiz Gizatullina, Gaukhargul Yelemessova, Anel Taubatyrova, Madina Mussalimova, Zhanserik Shynykul and Gaukhar Toleutay
Polymers 2025, 17(23), 3165; https://doi.org/10.3390/polym17233165 - 28 Nov 2025
Viewed by 1622
Abstract
Global concern over food waste and plastic pollution highlights the urgent need for sustainable, high-performance materials that can replace petroleum-based plastics. Bacterial cellulose (BC), a biopolymer synthesized through microbial fermentation by Komagataeibacter and related genera, shows exceptional purity, mechanical strength, biodegradability, and structural [...] Read more.
Global concern over food waste and plastic pollution highlights the urgent need for sustainable, high-performance materials that can replace petroleum-based plastics. Bacterial cellulose (BC), a biopolymer synthesized through microbial fermentation by Komagataeibacter and related genera, shows exceptional purity, mechanical strength, biodegradability, and structural tunability. Following PRISMA principles, this review analyzed studies from PubMed, Scopus, and Web of Science covering the period 1960–November 2025. Search terms included “bacterial cellulose”, “Komagataeibacter”, “Gluconacetobacter”, “static culture”, “agitated culture”, “in situ modification”, “ex situ modification”, “fermentation”, and “food packaging”. Inclusion and exclusion criteria ensured that only relevant and high-quality publications were considered. The article summarizes major developments in BC biosynthesis, structural organization, and modification approaches that enhance mechanical, barrier, antioxidant, and antimicrobial properties for food packaging. Recent advances in in situ and ex situ functionalization are discussed together with progress achieved through synthetic biology, green chemistry, and material engineering. Evidence shows that BC-based composites can reduce oxygen and moisture permeability, strengthen films, and prolong food shelf life while maintaining biodegradability. Remaining challenges such as high cost, lengthy fermentation, and regulatory uncertainty require coordinated strategies focused on metabolic optimization, circular bioeconomy integration, and standardized safety frameworks to unlock BC’s full industrial potential. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 662 KB  
Communication
Synthesis of Stable Betaines Based on 1H-Pyrrole-2,3-diones and Pyridinium Ylides and Their Thermal Conversion to Cyclopropane-Fused Pyrroles
by Maria M. Muranova, Andrey R. Galeev, Ivan G. Mokrushin, Andrey N. Maslivets and Maksim V. Dmitriev
Molecules 2025, 30(23), 4552; https://doi.org/10.3390/molecules30234552 - 26 Nov 2025
Viewed by 363
Abstract
Pyridinium ylides, along with related azaheterocyclic ylides, are widely used in synthetic organic chemistry. However, reactions that yield stable zwitterionic adducts from these ylides remain underexplored. In this work, we demonstrate that the reaction of pyrrole-2,3-diones with in situ-generated pyridine-based azomethine ylides affords [...] Read more.
Pyridinium ylides, along with related azaheterocyclic ylides, are widely used in synthetic organic chemistry. However, reactions that yield stable zwitterionic adducts from these ylides remain underexplored. In this work, we demonstrate that the reaction of pyrrole-2,3-diones with in situ-generated pyridine-based azomethine ylides affords stable zwitterionic adducts, which are typically transient species in analogous processes. These betaines are used as key intermediates for the synthesis of cyclopropane-fused pyrroles or pyridine-2,3-diones via thermolysis in chlorobenzene. Full article
(This article belongs to the Special Issue Synthesis, Modification and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

40 pages, 8122 KB  
Review
Rational Design of Covalent Organic Frameworks for Enhanced Reticular Electrochemiluminescence and Biosensing Applications
by Bing Sun and Lin Cui
Biosensors 2025, 15(11), 760; https://doi.org/10.3390/bios15110760 - 16 Nov 2025
Viewed by 1140
Abstract
Electrochemiluminescence (ECL) has evolved into a powerful analytical technique due to its ultra-high sensitivity, low background noise, and precise electrochemical control. The development of efficient ECL emitters is central to advancing this technology for practical applications. Covalent organic frameworks (COFs) have recently emerged [...] Read more.
Electrochemiluminescence (ECL) has evolved into a powerful analytical technique due to its ultra-high sensitivity, low background noise, and precise electrochemical control. The development of efficient ECL emitters is central to advancing this technology for practical applications. Covalent organic frameworks (COFs) have recently emerged as promising candidates for constructing high-performance ECL systems. The tunable porosity, ordered π-conjugated structures, and versatile modular functionalities of COFs provide fast massive transport, effective electron transfer, rapid interfacial electrochemical reaction, and enhanced ECL emission performance. This review provides a comprehensive overview of the rational design strategies and structural engineering for COF-based ECL materials at the molecular level. Linkage chemistry, monomer selection (luminophores and π-conjugated non-ECL motifs), precise framework regulation, post-synthetic modification, composite formation, and other ECL enhancement strategies were discussed for developing COF-based ECL emitter. Both the incorporation of aggregation-induced emission and intramolecular charge transfer mechanisms are included to enhance ECL efficiency. Donor–acceptor conjugation, heteroatom element content, isomerism, substitution, and dimensional direction were regarded as effective strategies to regulate the electronic structure and band diagrams for designing high-performance ECL systems. The role of COFs as both active emitters and functional scaffolds for signal amplification is critically examined. Furthermore, their diverse analytical applications across biosensing, food safety, environmental monitoring, and chiral recognition are highlighted. By correlating structural features with ECL performance, this review offers insights into the design principles of next-generation reticular ECL materials and outlines future directions for their practical deployment in sensitive and selective sensing platforms. Full article
(This article belongs to the Special Issue Progress in Electrochemiluminescence Biosensors)
Show Figures

Figure 1

36 pages, 4531 KB  
Review
Fascinating Frontier, Nanoarchitectonics, as Method for Everything in Materials Science
by Katsuhiko Ariga
Materials 2025, 18(22), 5196; https://doi.org/10.3390/ma18225196 - 15 Nov 2025
Cited by 1 | Viewed by 825
Abstract
Methodological fusion of materials chemistry, which enables us to create materials, with nanotechnology, which enables us to control nanostructures, could enable us to create advanced functional materials with well controlled nanostructures. Positioned as a post-nanotechnology concept, nanoarchitectonics will enable this purpose. This review [...] Read more.
Methodological fusion of materials chemistry, which enables us to create materials, with nanotechnology, which enables us to control nanostructures, could enable us to create advanced functional materials with well controlled nanostructures. Positioned as a post-nanotechnology concept, nanoarchitectonics will enable this purpose. This review paper highlights the broad scope of applications of the new concept of nanoarchitectonics, selecting and discussing recent papers that contain the term ‘nanoarchitectonics’ in their titles. Topics include controls of dopant atoms in solid electrolytes, transforming the framework of carbon materials, single-atom catalysts, nanorobots and microrobots, functional nanoparticles, nanotubular materials, 2D-organic nanosheets and MXene nanosheets, nanosheet assemblies, nitrogen-doped carbon, nanoporous and mesoporous materials, nanozymes, polymeric materials, covalent organic frameworks, vesicle structures from synthetic polymers, chirality- and topology-controlled structures, chiral helices, Langmuir monolayers, LB films, LbL assembly, nanocellulose, DNA, peptides bacterial cell components, biomimetic nanoparticles, lipid membranes of protocells, organization of living cells, and the encapsulation of living cells with exogenous substances. Not limited to these examples selected in this review article, the concept of nanoarchitectonics is applicable to diverse materials systems. Nanoarchitectonics represents a conceptual framework for creating materials at all levels and can be likened to a method for everything in materials science. Developing technology that can universally create materials with unexpected functions could represent the final frontier of materials science. Nanoarchitectonics will play a significant part in achieving this final frontier in materials science. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Graphical abstract

6 pages, 770 KB  
Proceeding Paper
Triterpenoid bis-Amide Analogs via the Ugi Reaction
by Fidel Rodriguez-López, Cristian Saldana-Arredondo, Hugo A. García-Gutiérrez and Rocío Gámez-Montaño
Chem. Proc. 2025, 18(1), 30; https://doi.org/10.3390/ecsoc-29-26852 - 12 Nov 2025
Viewed by 116
Abstract
Isocyanide-based multicomponent reactions, such as the Ugi four-component reaction, are among the most relevant synthetic tools in modern organic chemistry. They have been successfully applied in natural product science for the synthesis of natural product analogs, for example, carbohydrates and steroids. However, the [...] Read more.
Isocyanide-based multicomponent reactions, such as the Ugi four-component reaction, are among the most relevant synthetic tools in modern organic chemistry. They have been successfully applied in natural product science for the synthesis of natural product analogs, for example, carbohydrates and steroids. However, the synthesis of analogs of other important groups, like triterpenoids, remains rarely studied. In the present work, we report the synthesis of four bis-amides via the Ugi reaction starting from masticadienonic acid, a triterpenoid isolated from Pistacia mexicana. Full article
Show Figures

Figure 1

19 pages, 2181 KB  
Review
Comprehensive Risdiplam Synthesis Overview: From Cross-Coupling Reliance to Complete Palladium Independence
by Georgiy Korenev, Maxim B. Nawrozkij and Roman A. Ivanov
Molecules 2025, 30(22), 4365; https://doi.org/10.3390/molecules30224365 - 12 Nov 2025
Viewed by 870
Abstract
Risdiplam is the first approved small-molecule therapy for spinal muscular atrophy (SMA), a severe, progressive neuromuscular disorder. In addition to its clinical significance, risdiplam is of a great interest for organic and medicinal chemistry due to its complex molecular architecture. Its structure incorporates [...] Read more.
Risdiplam is the first approved small-molecule therapy for spinal muscular atrophy (SMA), a severe, progressive neuromuscular disorder. In addition to its clinical significance, risdiplam is of a great interest for organic and medicinal chemistry due to its complex molecular architecture. Its structure incorporates three highly substituted heterocyclic fragments—imidazo[1,2-b]pyridazine, pyrido[1,2-a]pyrimidin-4-one, and 4,7-diazaspiro[2.5]octane—that serve as both versatile synthetic building blocks and critical pharmacophoric elements for drug design and discovery. The increasing scientific interest in risdiplam has led to numerous publications and patent applications that describe alternative synthetic methodologies. Recently, our group has also developed and introduced efficient, scalable manufacturing routes for the preparation of the target substance and the key intermediates of its synthesis. This mini-review systematically analyzes a plethora of risdiplam assembly strategies and synthetic approaches, covering developments from 2013 to the present. Full article
Show Figures

Graphical abstract

Back to TopTop