Evaluation of Flat Sheet UF PES Membranes Modified with a Polymerized Coating of Bicontinuous Microemulsion for Wastewater Treatment: Insights from Laboratory MBR Experiments
Abstract
1. Introduction
2. Materials and Methods
2.1. Membrane Preparation
2.2. Laboratory Side-Stream MBR (ssMBR)
2.3. Model Wastewater (MW) Preparation
2.4. Characterization Methods for Membranes
2.5. Fouling Test in ssMBR
3. Results and Discussion
3.1. Membrane Morphology and Properties
3.2. Fouling Experiments
3.2.1. Flux-Step Test with Low-Strength DMW
3.2.2. Constant Flux Test with High-Strength OMW
3.3. Characterization of Fouled Membranes
3.3.1. Detecting PBM on Fouled Membranes
3.3.2. CAM of Fouled Membranes
3.3.3. SEM Images of Fouled Membranes
3.3.4. Permeate Quality
4. Conclusions
- Stable performance under variable wastewater strengths.
- Enhanced anti-fouling characteristics.
- Improved permeability at lower TMP.
- Comparable baseline performance with added benefits.
- Effectiveness of the spray-coating modification strategy.
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, C.J.; Zheng, P.; Chen, T.T.; Zhang, J.Q.; Mahmood, Q.; Ding, S.; Chen, X.G.; Chen, J.W.; Wu, D.T. Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMOX process. Water Res. 2011, 45, 201–210. [Google Scholar] [CrossRef]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater treatment and reuse: A review of its application and health implications. Water Air Soil Pollution 2021, 232, 208. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F. Recent advances in membrane bioreactors: Configurations and operating conditions. Crit. Rev. Environ. Sci. Technol. 2017, 47, 543–600. [Google Scholar]
- Kim, J.; Wu, B.; Jeong, S.; Jeong, S.; Kim, M. Recent advances of membrane-based hybrid membrane bioreactors for wastewater reclamation. Front. Membr. Sci. Technol. 2024, 3, 1361433. [Google Scholar] [CrossRef]
- Le Clech, P.; Chen, V.; Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A review on the mechanism, impacts and control methods of membrane fouling in MBR systems. Membranes 2020, 10, 24. [Google Scholar] [CrossRef]
- Upadhyaya, L.; Qian, X.; Wickramasinghe, S.R. Chemical modification of membrane surface—Overview. Curr. Opin. Chem. Eng. 2018, 20, 13–18. [Google Scholar] [CrossRef]
- Mu, Y.; Feng, H.; Wang, S.; Zhang, S.; Luan, J.; Zhang, M.; Yu, Z.; Wang, G. Combined strategy of blending and surface modification as an effective route to prepare antifouling ultrafiltration membranes. J. Colloid Interface Sci. 2021, 589, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bae, T.H.; Tak, T.M. Effect of TiO2 nanoparticles incorporation on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005, 249, 1–8. [Google Scholar] [CrossRef]
- Murcia, M.D.; Hidalgo, A.M.; Gómez, M.; León, G.; Gómez, E.; Martínez, M. Ultrafiltration membranes modified with reduced graphene oxide: Effect on methyl green removal from aqueous solution. Materials 2023, 16, 1369. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in production and modification of PVDF membrane. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Tian, Y.; Zhang, J.; Zhan, W.; Zhao, J.; Ding, Y.; Zuo, W. Hydrophilic modification of polyvinylidene fluoride membranes by ZnO atomic layer deposition using nitrogen dioxide/diethylzinc functionalization. J. Membr. Sci. 2016, 514, 241–249. [Google Scholar] [CrossRef]
- Bernards, M.T.; Mast, D. Zwitterionic polymer brushes for antifouling membrane surfaces. J. Mater. Chem. B 2013, 1, 36–45. [Google Scholar]
- Huang, L.; Zhao, S.; Wang, Z.; Wang, J. Zwitterion-modified UF for improved antifouling in MBRs. Sep. Purif. Technol. 2015, 156, 572–583. [Google Scholar] [CrossRef]
- Tripathi, B.P.; Chung, J.S. Surface-structured and patterned membranes for improved antifouling. J. Membr. Sci. 2013, 448, 135–148. [Google Scholar]
- Hoinkis, J.; Deowan, S.; Panten, V.; Figoli, A.; Huang, R.; Drioli, E. Membrane bioreactor (MBR) technology—A promising approach for industrial water reuse. Procedia Eng. 2012, 33, 234–241. [Google Scholar] [CrossRef]
- Galiano, F. Preparation and Characterization of Polymersiable Bicontinuous Microemulsion Membranes for Water Treatment Application. Ph.D. Thesis, University of Calabria, Cosenza, Italy, 2013. Available online: http://hdl.handle.net/10955/995 (accessed on 10 November 2025).
- Deowan, S.A. Development of Membrane Bioreactor (MBR) Process Applying Novel Low Fouling Membranes. Ph.D. Thesis, University of Calabria, Cosenza, Italy, 2013. Available online: http://hdl.handle.net/10955/772 (accessed on 10 November 2025). [CrossRef]
- Galiano, F.; Schmidt, S.A.; Ye, X.; Kumar, R.; Mancuso, R.; Curcio, E.; Gabriele, B.; Hoinkis, J.; Figoli, A. UV-LED induced bicontinuous microemulsions polymerisation for surface modification of commercial membranes—Enhancing the antifouling properties. Sep. Purif. Technol. 2018, 194, 149–160. [Google Scholar] [CrossRef]
- Gukelberger, E.; Hitzel, C.; Mancuso, R.; Galiano, F.; Bruno, M.D.L.; Simonutti, R.; Gabriele, B.; Figoli, A.; Hoinkis, J. Viscosity modification of polymerizable bicontinuous microemulsion by controlled radical polymerization for membrane coating applications. Membranes 2020, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Heer, J.; Sankar, S.; Geiger, F.; Gukelberger, E.; Galiano, F.; Mancuso, R.; Gabriele, B.; Figoli, A.; Hoinkis, J. Study on UF PES membranes spray-coated with polymerizable bicontinuous microemulsion materials for low-fouling behavior. Membranes 2023, 13, 893. [Google Scholar] [CrossRef]
- Vatanpour, V.; Mehrabi, Z.; Behroozi, A.H.; Kose-Mutlu, B.; Kaya, R.; Koyuncu, I. Spray-coating technique in the fabrication and modification of membranes: A review. Sep. Purif. Technol. 2025, 378, 3. [Google Scholar] [CrossRef]
- Cifuentes-Cabezas, M.; Bohórquez-Zurita, J.; Gil-Herrero, S.; Vincent-Vela, M.; Mendoza-Roca, J.; Álvarez-Blanco, S. Deep study on fouling modelling of ultrafiltration membranes used for OMW treatment: Comparison between semi-empirical models, response surface, and artificial neural networks. Food Bioprocess Technol. 2023, 16, 2126–2146. [Google Scholar] [CrossRef]
- Mann+Hummel. Product Specification–NADIR® UP150 P Ultrafiltration Membrane. Available online: https://water-membrane-solutions.mann-hummel.com/en.html (accessed on 10 November 2025).
- Mann+Hummel. Product Specification–BIO-CEL® L-2 Submerged MBR Module for Wastewater Treatment, Membrane Characteristics. Available online: https://water-membrane-solutions.mann-hummel.com/en.html (accessed on 10 November 2025).
- TQC Sheen. Datasheet–Spiral Bar Coated AB3050. Available online: www.industrialphysics.com (accessed on 10 November 2025).
- Sartorius, A.G. Technical Datasheet—Biostat® D-DCU. Available online: https://www.sartorius.com/download/10102/broch-biostat-d-dcu-sbi1512-e-data.pdf (accessed on 10 November 2025).
- Sandadi, S.; Pedersen, H.; Bowers, J.S.; Rendeiro, D. A comprehensive comparison of mixing, mass transfer, Chinese hamster ovary cell growth, and antibody production using Rushton turbine and marine impellers. Bioprocess Biosyst. Eng. 2011, 34, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, E.; Auffarth, K.; Henze, M.; Ledin, A. Characteristics of grey wastewater. Urban Water 2002, 4, 85–104. [Google Scholar] [CrossRef]
- Rahman, A.; Hasan, M.; Meerburg, F.; Jimenez, J.A.; Miller, M.W.; Bott, C.B.; Al-Omari, A.; Murthy, S.; Shaw, A.; De Clippeleir, H.; et al. Moving forward with A-stage and high-rate contact-stabilization for energy efficient water resource recovery facility: Mechanisms, factors, practical approach, and guidelines. J. Water Process Eng. 2020, 36, 101329. [Google Scholar] [CrossRef]
- Balice, V.; Cera, O. Acidic phenolic fraction of the olive vegetation water determined by a gas chromatographic method. Grasas Aceites 1984, 35, 178–180. [Google Scholar]
- Hamdi, M. Future prospects and constraints of olive mill wastewaters use and treatment: A review. Bioprocess Eng. 1993, 8, 209–214. [Google Scholar] [CrossRef]
- Khatib, A.; Aqra, F.; Yaghi, N.; Subuh, Y.; Hayeek, B.; Musa, M.; Basheer, S.; Sabbah, I. Reducing the environmental impact of olive mill wastewater. Am. J. Environ. Sci. 2009, 5, 1–6. [Google Scholar] [CrossRef]
- Salvemini, F. Composizione chimica e valutazione biologica di un mangime ottenuto essicando tercamente le acque di vegetazione delle olive. Riv. Sostanze Grasse 1985, 112, 559–564. [Google Scholar]
- Clech, P.L.; Jefferson, B.; Chang, I.S.; Judd, S.J. Critical flux determination by the flux-step method in a submerged membrane bioreactor. J. Membr. Sci. 2003, 227, 81–93. [Google Scholar] [CrossRef]
- Deng, L.; Guo, W.; Ngo, H.H.; Du, B.; Wei, Q.; Tran, N.H.; Nguyen, N.C.; Chen, S.S.; Li, J. Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor. Bioresour. Technol. 2016, 210, 11–17. [Google Scholar] [CrossRef]
- Díez, B.; Rosal, R. A critical review of membrane modification techniques for fouling and biofouling control in pressure-driven membrane processes. Nanotechnol. Environ. Eng. 2020, 5, 15. [Google Scholar] [CrossRef]
- Ladewig, B.; Al-Shaeli, M. Fouling in Membrane Bioreactors. In Fundamentals of MBRs; Springer Nature Singapore: Singapore, 2017; pp. 39–85. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Schaule, G.; Griebe, T.; Schmitt, J.; Tamachkiarowa, A. Biofouling—The Achilles heel of membrane processes. Desalination 1997, 113, 215–225. [Google Scholar] [CrossRef]
- Platkowska-Siwied, A.; Bodzek, M. Influence of natural organic matter on fouling and ultrafiltration membranes properties—AFM analysis. Ecol. Chem. Eng. A 2012, 19, 1561–1570. [Google Scholar] [CrossRef]
- Figoli, A.; Hoinkis, J.; Gabriele, B.; De Luca, G.; Galiano, F.; Deowan, S.A. Bicontinuous Microemulsion Polymerised Coating for Water Treatment. European Patent EP3049178, 8 April 2020. [Google Scholar]











| Chemicals | Molecular Formula | Concentration (mg L−1) | CAS Number, Supplier |
|---|---|---|---|
| Glucose | C6H12O6 | 640 | 50-99-7, Sigma Aldrich (Merck KGaA, Darmstadt, Germany) |
| Calcium chloride dihydrate | CaCl2·2H2O | 195 | 10035-04-8, Supelco (Merck KGaA, Darmstadt, Germany) |
| Sodium bicarbonate | NaHCO3 | 220 | 144-5-8, Supelco (Merck KGaA, Darmstadt, Germany) |
| Urea | (NH2)2CO | 80 | 57-13-6, Sigma Aldrich (Merck KGaA, Darmstadt, Germany) |
| Ammonium chloride | NH4Cl | 98 | 12125-02-9, Carl Roth (Karlsruhe, Germany) |
| Trisodium phosphate dodecahydrate | Na3PO4·12H2O | 96 | 10101-89-0, Supelco (Merck KGaA, Darmstadt, Germany) |
| Chemicals | Molecular Formula | Concentration (mg L−1) | CAS Number, Supplier |
|---|---|---|---|
| Vanillic acid | C8H8O4 | 250 | 121-34-6, Sigma Aldrich (Merck KGaA, Darmstadt, Germany) |
| Tannic acid | C76H52O46 | 250 | 1401-55-4, Sigma Aldrich (Merck KGaA, Darmstadt, Germany) |
| Glucose | C6H12O6 | 2250 | 50-99-7, Sigma Aldrich (Merck KGaA, Darmstadt, Germany) |
| Sodium hydroxide | NaOH | 50 | 1310-73-2, Sigma Aldrich (Merck KGaA, Darmstadt, Germany) |
| Ammonium chloride | NH4Cl | 100 | 12125-02-9, Carl Roth (Karlsruhe, Germany) |
| Potassium chloride | KCl | 200 | 7447-40-7, Supelco (Merck KGaA, Darmstadt, Germany) |
| Parameter | Cell Test Kit | Measurement Range (mg L−1) | Standard Deviation (mg L−1) |
|---|---|---|---|
| COD | 114541 (Merck KGaA, Darmstadt, Germany) | 25–1500 | ±4.700 |
| N–NH4+ | 114544 (Merck KGaA, Darmstadt, Germany) | 0.5–16.0 | ±0.400 |
| N–NO3– | 114542 (Merck KGaA, Darmstadt, Germany) | 0.5–18.0 | ±0.013 |
| P–PO43– | 100474 (Merck KGaA, Darmstadt, Germany) | 0.05–5.00 | ±0.024 |
| Parameters | Concentration (mg L−1) |
|---|---|
| COD | 694.0 ± 3% |
| TOC | 225.0 ± 2% |
| N–NH4+ | 26.5 ± 4% |
| P–PO43– | 8.1 ± 5% |
| Parameters | Concentration (mg L−1) |
|---|---|
| COD | 3310.0 ± 7% |
| TOC | 1280.0 ± 8% |
| N–NH4+ | 49.5 ± 5% |
| Characterization Method | Equipment and Manufacturer |
|---|---|
| Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy | Bruker Tensor II (Ettlingen, Germany) |
| Contact Angle Measurement (CAM) | OCA 15EC setup, Data Physics Instruments (Filderstadt, Germany) |
| Scanning Electron Microscopy (SEM) | Zeiss EVO, MA100 (Assing S.p.A., Monterotondo, Italy) |
| Membrane Surface | CAM (Average) | Change in CA After Fouling |
|---|---|---|
| PES | 83° ± 4° | Increased |
| PES casting-coated with PBM | 28° ± 3° | Decreased |
| PES spray-coated with PBM | 26° ± 3° | Decreased |
| Membrane Surface | CAM (Average) | Change in CA After Fouling |
|---|---|---|
| PES | 77° ± 4° | Increased |
| PES casting-coated with PBM | 50° ± 3° | Decreased |
| PES spray-coated with PBM | 54° ± 2° | Decreased |
| Fouled Membrane Surface | Post Flux-Step Test with Low-Strength DMW | Post Constant Flux Test with High-Strength OMW |
|---|---|---|
| PES | 4.0 ± 0.8 µm | 3.0 ± 0.6 µm |
| PES casting-coated with PBM | 2.1 ± 0.6 µm | 1.4 ± 0.2 µm |
| PES spray-coated with PBM | 0.7 ± 0.2 µm | 1.2 ± 0.3 µm |
| Parameters | Concentration in Permeates from Different Membrane Samples (mg L−1) | ||
|---|---|---|---|
| PES | PBM Casting-Coated | PBM Spray-Coated | |
| COD | 94.0 ± 3% | 74.6 ± 4% | 83.5 ± 5% |
| TOC | 34.0 ± 2% | 12.4 ± 3% | 15.2 ± 4% |
| N–NH4+ | 8.5 ± 4% | 8.1 ± 3% | 8.4 ± 3% |
| N–NO3– | 99.0 ± 6% | 99.4 ± 4% | 99.3 ± 4% |
| P–PO43– | 5.3 ± 4% | 5.0 ± 2% | 5.2 ± 2% |
| Parameters | Concentration in Permeates from Different Membrane Samples (mg L−1) | ||
|---|---|---|---|
| PES | PBM Casting-Coated | PBM Spray-Coated | |
| COD | 134.0 ± 10% | 94.5 ± 7% | 116.0 ± 10% |
| TOC | 36.0 ± 11% | 28.3 ± 8% | 21.5 ± 9% |
| N–NH4+ | Below detection limit | Below detection limit | Below detection limit |
| N–NO3– | 141.2 ± 9% | 144.0 ± 6% | 140.3 ± 4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
De, S.; Quynh, T.L.; Galiano, F.; Mancuso, R.; Gabriele, B.; Hoinkis, J.; Figoli, A. Evaluation of Flat Sheet UF PES Membranes Modified with a Polymerized Coating of Bicontinuous Microemulsion for Wastewater Treatment: Insights from Laboratory MBR Experiments. Membranes 2026, 16, 24. https://doi.org/10.3390/membranes16010024
De S, Quynh TL, Galiano F, Mancuso R, Gabriele B, Hoinkis J, Figoli A. Evaluation of Flat Sheet UF PES Membranes Modified with a Polymerized Coating of Bicontinuous Microemulsion for Wastewater Treatment: Insights from Laboratory MBR Experiments. Membranes. 2026; 16(1):24. https://doi.org/10.3390/membranes16010024
Chicago/Turabian StyleDe, Sneha, Tran Ly Quynh, Francesco Galiano, Raffaella Mancuso, Bartolo Gabriele, Jan Hoinkis, and Alberto Figoli. 2026. "Evaluation of Flat Sheet UF PES Membranes Modified with a Polymerized Coating of Bicontinuous Microemulsion for Wastewater Treatment: Insights from Laboratory MBR Experiments" Membranes 16, no. 1: 24. https://doi.org/10.3390/membranes16010024
APA StyleDe, S., Quynh, T. L., Galiano, F., Mancuso, R., Gabriele, B., Hoinkis, J., & Figoli, A. (2026). Evaluation of Flat Sheet UF PES Membranes Modified with a Polymerized Coating of Bicontinuous Microemulsion for Wastewater Treatment: Insights from Laboratory MBR Experiments. Membranes, 16(1), 24. https://doi.org/10.3390/membranes16010024

