Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,816)

Search Parameters:
Keywords = synthetic features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7965 KiB  
Article
Identification of Environmental Noise Traces in Seismic Recordings Using Vision Transformer and Mel-Spectrogram
by Qianlong Ding, Shuangquan Chen, Jinsong Shen and Borui Wang
Appl. Sci. 2025, 15(15), 8586; https://doi.org/10.3390/app15158586 (registering DOI) - 1 Aug 2025
Abstract
Environmental noise is inevitable during seismic data acquisition, with major sources including heavy machinery, rivers, wind, and other environmental factors. During field data acquisition, it is important to assess the impact of environmental noise and evaluate data quality. In subsequent seismic data processing, [...] Read more.
Environmental noise is inevitable during seismic data acquisition, with major sources including heavy machinery, rivers, wind, and other environmental factors. During field data acquisition, it is important to assess the impact of environmental noise and evaluate data quality. In subsequent seismic data processing, these noise components also need to be eliminated. Accurate identification of noise traces facilitates rapid quality control (QC) during fieldwork and provides a reliable basis for targeted noise attenuation. Conventional environmental noise identification primarily relies on amplitude differences. However, in seismic data, high-amplitude signals are not necessarily caused by environmental noise. For example, surface waves or traces near the shot point may also exhibit high amplitudes. Therefore, relying solely on amplitude-based criteria has certain limitations. To improve noise identification accuracy, we use the Mel-spectrogram to extract features from seismic data and construct the dataset. Compared to raw time-series signals, the Mel-spectrogram more clearly reveals energy variations and frequency differences, helping to identify noise traces more accurately. We then employ a Vision Transformer (ViT) network to train a model for identifying noise in seismic data. Tests on synthetic and field data show that the proposed method performs well in identifying noise. Moreover, a denoising case based on synthetic data further confirms its general applicability, making it a promising tool in seismic data QC and processing workflows. Full article
Show Figures

Figure 1

24 pages, 29785 KiB  
Article
Multi-Scale Feature Extraction with 3D Complex-Valued Network for PolSAR Image Classification
by Nana Jiang, Wenbo Zhao, Jiao Guo, Qiang Zhao and Jubo Zhu
Remote Sens. 2025, 17(15), 2663; https://doi.org/10.3390/rs17152663 (registering DOI) - 1 Aug 2025
Abstract
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based [...] Read more.
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based on a 3D complex-valued network to improve classification accuracy by fully leveraging multi-scale features, including phase information. We first designed a complex-valued three-dimensional network framework combining complex-valued 3D convolution (CV-3DConv) with complex-valued squeeze-and-excitation (CV-SE) modules. This framework is capable of simultaneously capturing spatial and polarimetric features, including both amplitude and phase information, from PolSAR images. Furthermore, to address robustness degradation from limited labeled samples, we introduced a multi-scale learning strategy that jointly models global and local features. Specifically, global features extract overall semantic information, while local features help the network capture region-specific semantics. This strategy enhances information utilization by integrating multi-scale receptive fields, complementing feature advantages. Extensive experiments on four benchmark datasets demonstrated that the proposed method outperforms various comparison methods, maintaining high classification accuracy across different sampling rates, thus validating its effectiveness and robustness. Full article
Show Figures

Figure 1

24 pages, 23817 KiB  
Article
Dual-Path Adversarial Denoising Network Based on UNet
by Jinchi Yu, Yu Zhou, Mingchen Sun and Dadong Wang
Sensors 2025, 25(15), 4751; https://doi.org/10.3390/s25154751 (registering DOI) - 1 Aug 2025
Abstract
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a [...] Read more.
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a novel three-module architecture for image denoising, comprising a generator, a dual-path-UNet-based denoiser, and a discriminator. The generator creates synthetic noise patterns to augment training data, while the dual-path-UNet denoiser uses multiple receptive field modules to preserve fine details and dense feature fusion to maintain global structural integrity. The discriminator provides adversarial feedback to enhance denoising performance. This dual-path adversarial training mechanism addresses the limitations of traditional methods by simultaneously capturing both local details and global structures. Experiments on the SIDD, DND, and PolyU datasets demonstrate superior performance. We compare our architecture with the latest state-of-the-art GAN variants through comprehensive qualitative and quantitative evaluations. These results confirm the effectiveness of noise removal with minimal loss of critical image details. The proposed architecture enhances image denoising capabilities in complex noise scenarios, providing a robust solution for applications that require high image fidelity. By enhancing adaptability to various types of noise while maintaining structural integrity, this method provides a versatile tool for image processing tasks that require preserving detail. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

15 pages, 4258 KiB  
Article
Complex-Scene SAR Aircraft Recognition Combining Attention Mechanism and Inner Convolution Operator
by Wansi Liu, Huan Wang, Jiapeng Duan, Lixiang Cao, Teng Feng and Xiaomin Tian
Sensors 2025, 25(15), 4749; https://doi.org/10.3390/s25154749 (registering DOI) - 1 Aug 2025
Abstract
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings [...] Read more.
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings and the demand for real-time processing, this paper proposes a YOLOv7-MTI recognition model that combines the attention mechanism and involution. By integrating the MTCN module and involution, performance is enhanced. The Multi-TASP-Conv network (MTCN) module aims to effectively extract low-level semantic and spatial information using a shared lightweight attention gate structure to achieve cross-dimensional interaction between “channels and space” with very few parameters, capturing the dependencies among multiple dimensions and improving feature representation ability. Involution helps the model adaptively adjust the weights of spatial positions through dynamic parameterized convolution kernels, strengthening the discrete strong scattering points specific to aircraft and suppressing the continuous scattering of the background, thereby alleviating the interference of complex backgrounds. Experiments on the SAR-AIRcraft-1.0 dataset, which includes seven categories such as A220, A320/321, A330, ARJ21, Boeing737, Boeing787, and others, show that the mAP and mRecall of YOLOv7-MTI reach 93.51% and 96.45%, respectively, outperforming Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8. Compared with the basic YOLOv7, mAP is improved by 1.47%, mRecall by 1.64%, and FPS by 8.27%, achieving an effective balance between accuracy and speed, providing research ideas for SAR aircraft recognition. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

23 pages, 10606 KiB  
Review
A Review of On-Surface Synthesis and Characterization of Macrocycles
by Chao Yan, Yiwen Wang, Jiahui Li, Xiaorui Chen, Xin Zhang, Jianzhi Gao and Minghu Pan
Nanomaterials 2025, 15(15), 1184; https://doi.org/10.3390/nano15151184 - 1 Aug 2025
Abstract
Macrocyclic organic nanostructures have emerged as crucial components of functional supramolecular materials owing to their unique structural and chemical features, such as their distinctive “infinite” cyclic topology and tunable topology-dependent properties, attracting significant recent attention. However, the controlled synthesis of macrocyclic compounds with [...] Read more.
Macrocyclic organic nanostructures have emerged as crucial components of functional supramolecular materials owing to their unique structural and chemical features, such as their distinctive “infinite” cyclic topology and tunable topology-dependent properties, attracting significant recent attention. However, the controlled synthesis of macrocyclic compounds with well-defined compositions and geometries remains a formidable challenge. On-surface synthesis, capable of constructing nanostructures with atomic precision on various substrates, has become a frontier technique for exploring novel macrocyclic architectures. This review summarizes the recent advances in the on-surface synthesis of macrocycles. It focuses on analyzing the synthetic mechanisms and conformational characterization of macrocycles formed through diverse bonding interactions, including both covalent and non-covalent linkages. This review elucidates the intricate interplay between the thermodynamic and kinetic factors governing macrocyclic structure formation across these bonding types and clarifies the critical influence of the reaction temperature and external conditions on the cyclization efficiency. Ultimately, this study offers design strategies for the precise on-surface synthesis of larger and more flexible macrocyclic compounds. Full article
(This article belongs to the Special Issue Recent Advances in Surface and Interface Nanosystems)
Show Figures

Figure 1

25 pages, 2082 KiB  
Article
XTTS-Based Data Augmentation for Profanity Keyword Recognition in Low-Resource Speech Scenarios
by Shin-Chi Lai, Yi-Chang Zhu, Szu-Ting Wang, Yen-Ching Chang, Ying-Hsiu Hung, Jhen-Kai Tang and Wen-Kai Tsai
Appl. Syst. Innov. 2025, 8(4), 108; https://doi.org/10.3390/asi8040108 - 31 Jul 2025
Abstract
As voice cloning technology rapidly advances, the risk of personal voices being misused by malicious actors for fraud or other illegal activities has significantly increased, making the collection of speech data increasingly challenging. To address this issue, this study proposes a data augmentation [...] Read more.
As voice cloning technology rapidly advances, the risk of personal voices being misused by malicious actors for fraud or other illegal activities has significantly increased, making the collection of speech data increasingly challenging. To address this issue, this study proposes a data augmentation method based on XText-to-Speech (XTTS) synthesis to tackle the challenges of small-sample, multi-class speech recognition, using profanity as a case study to achieve high-accuracy keyword recognition. Two models were therefore evaluated: a CNN model (Proposed-I) and a CNN-Transformer hybrid model (Proposed-II). Proposed-I leverages local feature extraction, improving accuracy on a real human speech (RHS) test set from 55.35% without augmentation to 80.36% with XTTS-enhanced data. Proposed-II integrates CNN’s local feature extraction with Transformer’s long-range dependency modeling, further boosting test set accuracy to 88.90% while reducing the parameter count by approximately 41%, significantly enhancing computational efficiency. Compared to a previously proposed incremental architecture, the Proposed-II model achieves an 8.49% higher accuracy while reducing parameters by about 98.81% and MACs by about 98.97%, demonstrating exceptional resource efficiency. By utilizing XTTS and public corpora to generate a novel keyword speech dataset, this study enhances sample diversity and reduces reliance on large-scale original speech data. Experimental analysis reveals that an optimal synthetic-to-real speech ratio of 1:5 significantly improves the overall system accuracy, effectively addressing data scarcity. Additionally, the Proposed-I and Proposed-II models achieve accuracies of 97.54% and 98.66%, respectively, in distinguishing real from synthetic speech, demonstrating their strong potential for speech security and anti-spoofing applications. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
14 pages, 4194 KiB  
Article
Crystal Structure of Anthranilate Phosphoribosyltransferase from Methanocaldococcus jannaschii
by Jung-Min Choi
Crystals 2025, 15(8), 702; https://doi.org/10.3390/cryst15080702 (registering DOI) - 31 Jul 2025
Abstract
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has [...] Read more.
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has been a central target for metabolic engineering to enhance microbial production. Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the second step of the pathway by transferring a phosphoribosyl group from PRPP to anthranilate, forming phosphoribosyl anthranilate (PRA). AnPRT, the sole member of class IV phosphoribosyltransferases, adopts a unique fold and functions as a homodimer. While the structural basis of AnPRT activity has been elucidated in several organisms, thermostable variants remain underexplored despite their relevance for high-temperature bioprocessing. In this study, the crystal structure of AnPRT from the thermophilic archaeon Methanocaldococcus jannaschii (MjAnPRT) was determined at a 2.16 Å resolution. The enzyme exhibits a conserved dimeric architecture and key catalytic motifs. Comparative structural analysis with mesophilic and hyper thermophilic homologs revealed that MjAnPRT possesses enhanced local stability in catalytically important regions and strengthened inter-subunit interactions. These features likely contribute to its thermostability and provide a valuable framework for the rational design of robust AnPRTs for industrial and synthetic biology applications. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

31 pages, 18320 KiB  
Article
Penetrating Radar on Unmanned Aerial Vehicle for the Inspection of Civilian Infrastructure: System Design, Modeling, and Analysis
by Jorge Luis Alva Alarcon, Yan Rockee Zhang, Hernan Suarez, Anas Amaireh and Kegan Reynolds
Aerospace 2025, 12(8), 686; https://doi.org/10.3390/aerospace12080686 (registering DOI) - 31 Jul 2025
Abstract
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, [...] Read more.
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, Weight, and Power) ultra-wideband (UWB) impulse radar with realistic electromagnetic modeling for deployment on unmanned aerial vehicles (UAVs). The system incorporates ultra-realistic antenna and propagation models, utilizing Finite Difference Time Domain (FDTD) solvers and multilayered media, to replicate realistic airborne sensing geometries. Verification and calibration are performed by comparing simulation outputs with laboratory measurements using varied material samples and target models. Custom signal processing algorithms are developed to extract meaningful features from complex electromagnetic environments and support anomaly detection. Additionally, machine learning (ML) techniques are trained on synthetic data to automate the identification of structural characteristics. The results demonstrate accurate agreement between simulations and measurements, as well as the potential for deploying this design in flight tests within realistic environments featuring complex electromagnetic interference. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
A Data-Driven Approach for Internal Crack Prediction in Continuous Casting of HSLA Steels Using CTGAN and CatBoost
by Mengying Geng, Haonan Ma, Shuangli Liu, Zhuosuo Zhou, Lei Xing, Yibo Ai and Weidong Zhang
Materials 2025, 18(15), 3599; https://doi.org/10.3390/ma18153599 (registering DOI) - 31 Jul 2025
Abstract
Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class [...] Read more.
Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class instances. This study proposes a predictive framework that integrates conditional tabular generative adversarial network (CTGAN) for synthetic minority sample generation and CatBoost for classification. A dataset of 733 process records was collected from a continuous caster, and 25 informative features were selected using mutual information. CTGAN was employed to augment the minority class (crack) samples, achieving a balanced training set. Feature distribution analysis and principal component visualization indicated that the synthetic data effectively preserved the statistical structure of the original minority class. Compared with the other machine learning methods, including KNN, SVM, and MLP, CatBoost achieved the highest metrics, with an accuracy of 0.9239, precision of 0.9041, recall of 0.9018, and F1-score of 0.9022. Results show that CTGAN-based augmentation improves classification performance across all models. These findings highlight the effectiveness of GAN-based augmentation for imbalanced industrial data and validate the CTGAN–CatBoost model as a robust solution for online defect prediction in steel manufacturing. Full article
(This article belongs to the Special Issue Latest Developments in Advanced Machining Technologies for Materials)
Show Figures

Figure 1

15 pages, 2057 KiB  
Article
Machine Learning-Based Prediction of Atmospheric Corrosion Rates Using Environmental and Material Parameters
by Saurabh Tiwari, Khushbu Dash, Nokeun Park and Nagireddy Gari Subba Reddy
Coatings 2025, 15(8), 888; https://doi.org/10.3390/coatings15080888 (registering DOI) - 31 Jul 2025
Abstract
Atmospheric corrosion significantly impacts infrastructure worldwide, with traditional assessment methods being time-intensive and costly. This study developed a comprehensive machine learning framework for predicting atmospheric corrosion rates using environmental and material parameters. Three regression models (Linear Regression, Random Forest, and Gradient Boosting) were [...] Read more.
Atmospheric corrosion significantly impacts infrastructure worldwide, with traditional assessment methods being time-intensive and costly. This study developed a comprehensive machine learning framework for predicting atmospheric corrosion rates using environmental and material parameters. Three regression models (Linear Regression, Random Forest, and Gradient Boosting) were trained on a scientifically informed synthetic dataset incorporating established corrosion principles from ISO 9223 standards and peer-reviewed literature. The Gradient Boosting model achieved superior performance with cross-validated R2 = 0.835 ± 0.024 and RMSE = 98.99 ± 16.62 μm/year, significantly outperforming the Random Forest (p < 0.001) and Linear Regression approaches. Feature importance analysis revealed the copper content (30%), exposure time (20%), and chloride deposition (15%) as primary predictors, consistent with the established principles of corrosion science. Model diagnostics demonstrated excellent predictive accuracy (R2 = 0.863) with normally distributed residuals and homoscedastic variance patterns. This methodology provides a systematic framework for ML-based corrosion prediction, with significant implications for protective coating design, material selection, and infrastructure risk assessment, pending comprehensive experimental validation. Full article
(This article belongs to the Special Issue Advanced Anticorrosion Coatings and Coating Testing)
Show Figures

Figure 1

29 pages, 2379 KiB  
Article
FADEL: Ensemble Learning Enhanced by Feature Augmentation and Discretization
by Chuan-Sheng Hung, Chun-Hung Richard Lin, Shi-Huang Chen, You-Cheng Zheng, Cheng-Han Yu, Cheng-Wei Hung, Ting-Hsin Huang and Jui-Hsiu Tsai
Bioengineering 2025, 12(8), 827; https://doi.org/10.3390/bioengineering12080827 - 30 Jul 2025
Abstract
In recent years, data augmentation techniques have become the predominant approach for addressing highly imbalanced classification problems in machine learning. Algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) and Conditional Tabular Generative Adversarial Network (CTGAN) have proven effective in synthesizing minority class [...] Read more.
In recent years, data augmentation techniques have become the predominant approach for addressing highly imbalanced classification problems in machine learning. Algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) and Conditional Tabular Generative Adversarial Network (CTGAN) have proven effective in synthesizing minority class samples. However, these methods often introduce distributional bias and noise, potentially leading to model overfitting, reduced predictive performance, increased computational costs, and elevated cybersecurity risks. To overcome these limitations, we propose a novel architecture, FADEL, which integrates feature-type awareness with a supervised discretization strategy. FADEL introduces a unique feature augmentation ensemble framework that preserves the original data distribution by concurrently processing continuous and discretized features. It dynamically routes these feature sets to their most compatible base models, thereby improving minority class recognition without the need for data-level balancing or augmentation techniques. Experimental results demonstrate that FADEL, solely leveraging feature augmentation without any data augmentation, achieves a recall of 90.8% and a G-mean of 94.5% on the internal test set from Kaohsiung Chang Gung Memorial Hospital in Taiwan. On the external validation set from Kaohsiung Medical University Chung-Ho Memorial Hospital, it maintains a recall of 91.9% and a G-mean of 86.7%. These results outperform conventional ensemble methods trained on CTGAN-balanced datasets, confirming the superior stability, computational efficiency, and cross-institutional generalizability of the FADEL architecture. Altogether, FADEL uses feature augmentation to offer a robust and practical solution to extreme class imbalance, outperforming mainstream data augmentation-based approaches. Full article
Show Figures

Graphical abstract

17 pages, 4324 KiB  
Article
Anomaly Detection on Laminated Composite Plate Using Self-Attention Autoencoder and Gaussian Mixture Model
by Olivier Munyaneza and Jung Woo Sohn
Mathematics 2025, 13(15), 2445; https://doi.org/10.3390/math13152445 - 29 Jul 2025
Viewed by 104
Abstract
Composite laminates are widely used in aerospace, automotive, construction, and luxury industries, owing to their superior mechanical properties and design flexibility. However, detecting manufacturing defects and in-service damage remains a vital challenge for structural safety. While traditional unsupervised machine learning methods have been [...] Read more.
Composite laminates are widely used in aerospace, automotive, construction, and luxury industries, owing to their superior mechanical properties and design flexibility. However, detecting manufacturing defects and in-service damage remains a vital challenge for structural safety. While traditional unsupervised machine learning methods have been used in structural health monitoring (SHM), their high false positive rates limit their reliability in real-world applications. This issue is mostly inherited from their limited ability to capture small temporal variations in Lamb wave signals and their dependence on shallow architectures that suffer with complex signal distributions, causing the misclassification of damaged signals as healthy data. To address this, we suggested an unsupervised anomaly detection framework that integrates a self-attention autoencoder with a Gaussian mixture model (SAE-GMM). The model is solely trained on healthy Lamb wave signals, including high-quality synthetic data generated via a generative adversarial network (GAN). Damages are detected through reconstruction errors and probabilistic clustering in the latent space. The self-attention mechanism enhances feature representation by capturing subtle temporal dependencies, while the GMM enables a solid separation among signals. Experimental results demonstrated that the proposed model (SAE-GMM) achieves high detection accuracy, a low false positive rate, and strong generalization under varying noise conditions, outperforming traditional and deep learning baselines. Full article
Show Figures

Figure 1

23 pages, 8942 KiB  
Article
Optical and SAR Image Registration in Equatorial Cloudy Regions Guided by Automatically Point-Prompted Cloud Masks
by Yifan Liao, Shuo Li, Mingyang Gao, Shizhong Li, Wei Qin, Qiang Xiong, Cong Lin, Qi Chen and Pengjie Tao
Remote Sens. 2025, 17(15), 2630; https://doi.org/10.3390/rs17152630 - 29 Jul 2025
Viewed by 175
Abstract
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the [...] Read more.
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the challenges of cloud-induced data gaps and cross-sensor geometric biases by proposing an advanced optical and SAR image-matching framework specifically designed for cloud-prone equatorial regions. We use a prompt-driven visual segmentation model with automatic prompt point generation to produce cloud masks that guide cross-modal feature-matching and joint adjustment of optical and SAR data. This process results in a comprehensive digital orthophoto map (DOM) with high geometric consistency, retaining the fine spatial detail of optical data and the all-weather reliability of SAR. We validate our approach across four equatorial regions using five satellite platforms with varying spatial resolutions and revisit intervals. Even in areas with more than 50 percent cloud cover, our method maintains sub-pixel edging accuracy under manual check points and delivers comprehensive DOM products, establishing a reliable foundation for downstream environmental monitoring and ecosystem analysis. Full article
Show Figures

Figure 1

18 pages, 1498 KiB  
Article
A Proactive Predictive Model for Machine Failure Forecasting
by Olusola O. Ajayi, Anish M. Kurien, Karim Djouani and Lamine Dieng
Machines 2025, 13(8), 663; https://doi.org/10.3390/machines13080663 - 29 Jul 2025
Viewed by 233
Abstract
Unexpected machine failures in industrial environments lead to high maintenance costs, unplanned downtime, and safety risks. This study proposes a proactive predictive model using a hybrid of eXtreme Gradient Boosting (XGBoost) and Neural Networks (NN) to forecast machine failures. A synthetic dataset capturing [...] Read more.
Unexpected machine failures in industrial environments lead to high maintenance costs, unplanned downtime, and safety risks. This study proposes a proactive predictive model using a hybrid of eXtreme Gradient Boosting (XGBoost) and Neural Networks (NN) to forecast machine failures. A synthetic dataset capturing recent breakdown history and time since last failure was used to simulate industrial scenarios. To address class imbalance, SMOTE and class weighting were applied, alongside a focal loss function to emphasize difficult-to-classify failures. The XGBoost model was tuned via GridSearchCV, while the NN model utilized ReLU-activated hidden layers with dropout. Evaluation using stratified 5-fold cross-validation showed that the NN achieved an F1-score of 0.7199 and a recall of 0.9545 for the minority class. XGBoost attained a higher PR AUC of 0.7126 and a more balanced precision–recall trade-off. Sample predictions demonstrated strong recall (100%) for failures, but also a high false positive rate, with most prediction probabilities clustered between 0.50–0.55. Additional benchmarking against Logistic Regression, Random Forest, and SVM further confirmed the superiority of the proposed hybrid model. Model interpretability was enhanced using SHAP and LIME, confirming that recent breakdowns and time since last failure were key predictors. While the model effectively detects failures, further improvements in feature engineering and threshold tuning are recommended to reduce false alarms and boost decision confidence. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

29 pages, 36251 KiB  
Article
CCDR: Combining Channel-Wise Convolutional Local Perception, Detachable Self-Attention, and a Residual Feedforward Network for PolSAR Image Classification
by Jianlong Wang, Bingjie Zhang, Zhaozhao Xu, Haifeng Sima and Junding Sun
Remote Sens. 2025, 17(15), 2620; https://doi.org/10.3390/rs17152620 - 28 Jul 2025
Viewed by 156
Abstract
In the task of PolSAR image classification, effectively utilizing convolutional neural networks and vision transformer models with limited labeled data poses a critical challenge. This article proposes a novel method for PolSAR image classification that combines channel-wise convolutional local perception, detachable self-attention, and [...] Read more.
In the task of PolSAR image classification, effectively utilizing convolutional neural networks and vision transformer models with limited labeled data poses a critical challenge. This article proposes a novel method for PolSAR image classification that combines channel-wise convolutional local perception, detachable self-attention, and a residual feedforward network. Specifically, the proposed method comprises several key modules. In the channel-wise convolutional local perception module, channel-wise convolution operations enable accurate extraction of local features from different channels of PolSAR images. The local residual connections further enhance these extracted features, providing more discriminative information for subsequent processing. Additionally, the detachable self-attention mechanism plays a pivotal role: it facilitates effective interaction between local and global information, enabling the model to comprehensively perceive features across different scales, thereby improving classification accuracy and robustness. Subsequently, replacing the conventional feedforward network with a residual feedforward network that incorporates residual structures aids the model in better representing local features, further enhances the capability of cross-layer gradient propagation, and effectively alleviates the problem of vanishing gradients during the training of deep networks. In the final classification stage, two fully connected layers with dropout prevent overfitting, while softmax generates predictions. The proposed method was validated on the AIRSAR Flevoland, RADARSAT-2 San Francisco, and RADARSAT-2 Xi’an datasets. The experimental results demonstrate that the proposed method can attain a high level of classification performance even with a limited amount of labeled data, and the model is relatively stable. Furthermore, the proposed method has lower computational costs than comparative methods. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

Back to TopTop