Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = synoptic interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 14547 KB  
Article
Seasonal Intrusion of Central South Atlantic Water (SACW) as a Vector of Lead Isotopic Signatures in Ilha Grande Bay, Brazil
by Lucas Faria De Sousa, Alessandro Filippo, Ariadne Marra de Souza, Armando Dais Tavares and Mauro Cesar Geraldes
Geosciences 2026, 16(1), 51; https://doi.org/10.3390/geosciences16010051 - 21 Jan 2026
Viewed by 269
Abstract
This study investigates the hydrography and geochemical signature in Ilha Grande Bay (RJ, Brazil), focusing on the seasonal intrusion of South Atlantic Central Water (SACW) and its interaction with lead sources. CTD (Conductivity, Temperature, and Depth) data revealed the presence of SACW during [...] Read more.
This study investigates the hydrography and geochemical signature in Ilha Grande Bay (RJ, Brazil), focusing on the seasonal intrusion of South Atlantic Central Water (SACW) and its interaction with lead sources. CTD (Conductivity, Temperature, and Depth) data revealed the presence of SACW during the summer campaigns (Mangaratiba/2011 and Frade/2012), characterized by temperatures below 20 °C and salinity between 34.6 and 36. The intrusion is driven by northeasterly winds that favor coastal upwelling, establishing a classic thermohaline stratification. The winter campaigns did not detect SACW, confirming its seasonal nature. Isotopic analysis of Pb in sediments identified six Pb206/Pb207 intervals, indicating multiple sources, including natural contributions, industrial waste, and urban effluents. The Pb206/Pb207 ranges were defined based on cluster analysis and frequency histograms, which are common methods in isotopic provenance studies. An overlap between the most radiogenic isotopic signatures and the presence of SACW suggests that this water mass acts as a vector for transporting trace elements from the deep oceanic region to the coast. This study provides the first evidence that the South Atlantic Central Water (SACW) acts as a seasonal vector, importing a distinct radiogenic Pb isotopic signature onto the continental shelf of Ilha Grande Bay. By synoptically coupling physical water-mass analysis (CTD) with Pb isotopic tracers, we introduce a novel approach that successfully discriminates oceanic from anthropogenic Pb sources, offering a new framework for understanding contaminant transport in coastal areas influenced by boundary currents. It is concluded that the coastal dynamics in Ilha Grande Bay are governed by the seasonal interaction of coastal, continental, and oceanic waters, and that the integration of physical and geochemical data is crucial for understanding mixing processes and contaminant transport in this complex environment. Full article
Show Figures

Figure 1

33 pages, 19417 KB  
Article
Multiscale Dynamics Organizing Heavy Precipitation During Tropical Cyclone Hilary’s (2023) Remnant Passage over the Southwestern U.S.
by Jackson T. Wiles, Michael L. Kaplan and Yuh-Lang Lin
Atmosphere 2026, 17(1), 82; https://doi.org/10.3390/atmos17010082 - 14 Jan 2026
Viewed by 245
Abstract
The Weather Research and Forecasting Model (WRF-ARW) version 4.5 was used to simulate the synoptic to mesoscale evolving atmosphere of Tropical Cyclone (TC) Hilary’s (2023) remnant passage over the southwestern United States. The atmospheric dynamic processes conducive to the precursor rain events were [...] Read more.
The Weather Research and Forecasting Model (WRF-ARW) version 4.5 was used to simulate the synoptic to mesoscale evolving atmosphere of Tropical Cyclone (TC) Hilary’s (2023) remnant passage over the southwestern United States. The atmospheric dynamic processes conducive to the precursor rain events were extensively studied to determine the effects of mid-level jetogenesis. Concurrently, the dynamics of mesoscale processes related to the interaction of TC Hilary over the complex topography of the western United States were studied with several sensitivity simulations on a nested 2 km × 2 km grid. The differential surface heating between the cloudy California coast and clear/elevated Great Basin plateau had a profound impact on the lower-mid-tropospheric mass field resulting in mid-level jetogenesis. Diagnostic analyses of the ageostrophic flow support the importance of both isallobaric and inertial advective forcing of the mid-level jetogenesis in response to differential surface sensible heating. This ageostrophic mesoscale jet ultimately transported tropical moisture in multiple plumes more than 1000 km poleward beyond the location of the extratropical transition of the storm, resulting in anomalous flooding precipitation within a massive arid western plateau. Full article
(This article belongs to the Section Meteorology)
Show Figures

Graphical abstract

17 pages, 17543 KB  
Article
Characteristics and Synoptic-Scale Background of Low-Level Wind Shear Induced by Downward Momentum Transport: A Case Study at Xining Airport, China
by Yuqi Wang, Dongbei Xu, Ziyi Xiao, Xuan Huang, Wenjie Zhou and Hongyu Liao
Atmosphere 2026, 17(1), 75; https://doi.org/10.3390/atmos17010075 - 13 Jan 2026
Viewed by 250
Abstract
This study investigates the characteristics and causes of a low-level wind shear (LLWS) event induced by downward momentum transport at Xining Airport, China on 5 April 2023. By utilizing Doppler Wind Lidar (DWL), Automated Weather Observing System (AWOS), and ERA5 reanalysis data, the [...] Read more.
This study investigates the characteristics and causes of a low-level wind shear (LLWS) event induced by downward momentum transport at Xining Airport, China on 5 April 2023. By utilizing Doppler Wind Lidar (DWL), Automated Weather Observing System (AWOS), and ERA5 reanalysis data, the detailed structure and synoptic-scale mechanisms of the event were analyzed. The LLWS manifested as a non-convective, meso-γ scale (2–20 km) directional wind shear, characterized by horizontal variations in wind direction. The system moved from northwest to southeast and persisted for approximately three hours. The shear zone was characterized by westerly flow to the west and easterly flow to the east, with their convergence triggering upward motion. The Range Height Indicator (RHI) and Doppler Beam Swinging (DBS) modes of the DWL clearly revealed the features of westerly downward momentum transport. Diagnostic analysis of the synoptic-scale environment reveals that a developing 300-hPa trough steered the merging of the subtropical and polar front jets. This interaction provided a robust source of momentum. The secondary circulation excited in the jet entrance region promoted active vertical motion, facilitating the exchange of momentum and energy between levels. Simultaneously, the development of the upper-level trough led to the intrusion of high potential vorticity (PV) air from the upper levels (100–300 hPa) into the middle troposphere (approximately 500 hPa), which effectively transported high-momentum air downward and dynamically induced convergence in the low-level wind field. Furthermore, the establishment of a deep dry-adiabatic mixed layer in the afternoon provided a favorable thermodynamic environment for momentum transport. These factors collectively led to the occurrence of the LLWS. This study will further deepen the understanding of the formation mechanism of momentum-driven LLWS at plateau airports, and provide a scientific basis for improving the forecasting and warning of such hazardous aviation weather events. Full article
(This article belongs to the Special Issue Aviation Meteorology: Developments and Latest Achievements)
Show Figures

Figure 1

30 pages, 9248 KB  
Article
Groundwater and Surface Water Interactions in the Highwood River and Sheep River Watersheds: An Integrated Alpine and Non-Alpine Assessment
by Aprami Jaggi, Dayal Wijayarathne, Michael Wendlandt, Tiago A. Morais, Tatiana Sirbu, Andrew Underwood, Paul Eby and John Gibson
Hydrology 2026, 13(1), 20; https://doi.org/10.3390/hydrology13010020 - 6 Jan 2026
Viewed by 642
Abstract
Groundwater–surface water interactions were investigated in the Highwood River (3952 km2) and Sheep River watersheds (1568 km2), originating in the Rocky Mountains headwaters of the South Saskatchewan River (Alberta, Canada), to improve understanding of hydrological processes that potentially influence [...] Read more.
Groundwater–surface water interactions were investigated in the Highwood River (3952 km2) and Sheep River watersheds (1568 km2), originating in the Rocky Mountains headwaters of the South Saskatchewan River (Alberta, Canada), to improve understanding of hydrological processes that potentially influence water use and vulnerability to climatic change in representative, alpine-fed mixed-use watersheds. Similar to adjacent regions of the Bow, Red Deer and Oldman watersheds, the upper reaches of these watersheds are sparsely populated with significant seasonal glacier and snowmelt influence, while the lower watersheds are currently under increasing water supply pressure from competing agricultural–municipal interests, with notable risk of flooding during high-flow events and drought during the growing season. Investigations included mapping of hydrologic and hydrogeologic controls (aquifers, buried channels, colluvial deposits, etc.,) and synoptic geochemical and isotopic surveys (δ2H, δ18O, δ13C-DIC, 222Rn) to characterize evolution in water type and seasonal progression in streamflow sources and underlying mechanisms. Our findings confirm seasonal progression in streamflow water sources, characterized by a pronounced snowmelt-dominated spring freshet, but with a sustained recession fed by colluvial, moraine, fluvial, and fractured bedrock sources. Seasonal isotopic variations establish that shallow groundwater sources are actively maintained throughout the spring freshet, often accounting for a dominant portion of streamflow, which indicates active displacement of groundwater storage by snowmelt recharge during spring melt. The contrast in the proportion of alpine contributions in each watershed suggests these systems may respond very differently to climate change, which needs to be carefully considered in developing sustainable water-use strategies for each watershed. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

38 pages, 8638 KB  
Article
Viscous Baroclinic-Barotropic Instability in the Tropics: Is It the Source of Both Easterly Waves and Monsoon Depressions?
by Ahlem Boucherikha, Abderrahim Kacimi and Boualem Khouider
Climate 2025, 13(12), 254; https://doi.org/10.3390/cli13120254 - 18 Dec 2025
Viewed by 511
Abstract
This study investigates the impact of eddy viscosity on equatorially trapped waves and the instability of the background shear in a simple barotropic–baroclinic model. It is the first study to include eddy viscosity in the study of tropical wave dynamics. This study also [...] Read more.
This study investigates the impact of eddy viscosity on equatorially trapped waves and the instability of the background shear in a simple barotropic–baroclinic model. It is the first study to include eddy viscosity in the study of tropical wave dynamics. This study also unifies the study of baroclinic and barotropic instabilities by using a coupled barotopic and baroclinic model of the tropical atmosphere. Linear wave theory is combined with a systematic Galerkin projection of the baroclinic dynamical fields onto parabolic cylinder functions. This study investigates varying shear strengths, eddy viscosities, and their combined effects. In the absence of shear, baroclinic and barotropic waves decouple. The baroclinic waves themselves separate into triads, forming the equatorially trapped wave modes known as Matsuno waves. However, when a strong eddy viscosity is included, the structure and propagation characteristics of these equatorial waves are significantly altered. Different wave types interact, leading to strong mixing in the meridional direction and coupling between meridional modes. This coupling destroys the Matsuno mode separation and offers pathways for these waves to couple and interact with one another. These results suggest that viscosity does not simply suppress growth; it may also reshape the propagation characteristics of unstable modes. In the presence of a background shear, some wave modes become unstable, and barotropic and baroclinic waves are coupled. Without eddy viscosity, instability begins with small scale and slowly propagating modes, at arbitrary small shear strengths. This instability manifests as an ultra-violet catastrophe. As the shear strength increases, the catastrophic instability at small scales expands to high-frequency waves. Meanwhile, instability peaks emerge at synoptic and planetary scales along several Rossby mode branches. When a small eddy viscosity is reintroduced, the catastrophic small-scale instabilities disappear, while the large-scale Rossby wave instabilities persist. These westward-moving modes exhibit a mixed barotropic–baroclinic structure with signature vortices straddling the equator. Some vortices are centered close to the equator, while others are far away. Some waves resemble synoptic-scale monsoon depressions and tropical easterly waves, while others operate on the planetary scale and present elongated shapes reminiscent of atmospheric-river flow patterns. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

7 pages, 734 KB  
Brief Report
First Documented Observation and Meteorological Analysis of Cirrostratus undulatus homomutatus
by Jordi Mazon and Marcel Costa
Atmosphere 2025, 16(12), 1347; https://doi.org/10.3390/atmos16121347 - 28 Nov 2025
Viewed by 441
Abstract
On the morning of 4 April 2025, a rare formation of Cirrostratus undulatus homomutatus was observed over Barcelona. This variety of the homomutatus form of the Cirrostratus cloud genus—originating from the transformation of persistent aircraft contrails—has not previously been documented in the International [...] Read more.
On the morning of 4 April 2025, a rare formation of Cirrostratus undulatus homomutatus was observed over Barcelona. This variety of the homomutatus form of the Cirrostratus cloud genus—originating from the transformation of persistent aircraft contrails—has not previously been documented in the International Cloud Atlas or in any scientific publication, making this observation unique within the current literature. The event was visually recorded and meteorologically analyzed using upper-air data from the Barcelona radiosonde and the ECMWF ERA5 reanalysis at 300 and 500 hPa geopotential heights. Synoptic and thermodynamic analyses revealed a localized region of enhanced wind shear activity coinciding with a thin, moist layer near the tropopause. These conditions likely facilitated the transformation of persistent contrails into cirriform layers exhibiting undulated patterns characteristic of the undulatus variety. This case provides new insight into the microphysical and dynamic mechanisms underlying the evolution of anthropogenic cirriform clouds, contributing to the growing body of knowledge on homomutatus phenomena and their interaction with upper-tropospheric processes. It thus represents the first formal documentation and meteorological interpretation of Cirrostratus undulatus homomutatus, offering a valuable reference for future observational and classification efforts within the WMO framework. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

28 pages, 7633 KB  
Article
Physics-Informed Transformer Networks for Interpretable GNSS-R Wind Speed Retrieval
by Zao Zhang, Jingru Xu, Guifei Jing, Dongkai Yang and Yue Zhang
Remote Sens. 2025, 17(23), 3805; https://doi.org/10.3390/rs17233805 - 24 Nov 2025
Cited by 1 | Viewed by 1000
Abstract
Global Navigation Satellite System Reflectometry (GNSS-R) provides all-weather, high-resolution ocean wind speed monitoring that offers additional benefits for forecasting tropical cyclones and severe weather events. However, existing GNSS-R wind retrieval models often lack interpretability and suffer accuracy degradation during high wind conditions. To [...] Read more.
Global Navigation Satellite System Reflectometry (GNSS-R) provides all-weather, high-resolution ocean wind speed monitoring that offers additional benefits for forecasting tropical cyclones and severe weather events. However, existing GNSS-R wind retrieval models often lack interpretability and suffer accuracy degradation during high wind conditions. To address these limitations, we leverage a mathematical equivalence between Transformers and graph neural networks (GNNs) on complete graphs, which provides a physically grounded interpretation of self-attention as spatiotemporal influence propagation in GNSS-R data. In our model, each GNSS-R footprint is treated as a graph node whose multi-head self-attention weights quantify localized interactions across space and time. This aligns physical influence propagation with the computational efficiency of GPU-accelerated Transformers. Multi-head attention disentangles processes at multiple scales—capturing local (25–100 km), mesoscale (100 km–500 km), and synoptic (>500 km) circulation patterns. When applied to Level 1 Version 3.2 data (2023–2024) from four Asian sea regions, our Transformer–GNN achieves an overall wind speed RMSE reduction of 32% (to 1.35 m s−1 from 1.98 m s−1) and substantial gains in high-wind regimes (winds >25 m s−1: 3.2 m s−1 RMSE). The model is trained on ERA5 reanalysis 10 m equivalent-neutral wind fields, which serve as the primary reference dataset, with independent validation performed against Stepped Frequency Microwave Radiometer (SFMR) aircraft observations during tropical cyclone events and moored buoy measurements where spatiotemporally coincident data are available. Interpretability analysis with SHAP reveals condition-dependent feature attributions and suggests coupling mechanisms between ocean surface currents and wind fields. These results demonstrate that our model advances both predictive accuracy and interpretability in GNSS-R wind retrieval. With operationally viable inference performance, our framework offers a promising approach toward interpretable, physics-aware Earth system AI applications. Full article
(This article belongs to the Special Issue Remote Sensing-Driven Digital Twins for Climate-Adaptive Cities)
Show Figures

Figure 1

21 pages, 8545 KB  
Article
Nonlinear Dynamic Aspects of Generalized Frosts in the Pampa Húmeda of Argentina
by Marilia de A. Gregorio and Gabriela V. Müller
Atmosphere 2025, 16(11), 1268; https://doi.org/10.3390/atmos16111268 - 7 Nov 2025
Cited by 1 | Viewed by 396
Abstract
Generalized frosts have a significant impact on the Pampa Húmeda of Argentina, particularly those without persistence (0DP), defined as events that do not last more than one day, and are the most frequent generalized frosts. This study investigates the dynamical and physical mechanisms [...] Read more.
Generalized frosts have a significant impact on the Pampa Húmeda of Argentina, particularly those without persistence (0DP), defined as events that do not last more than one day, and are the most frequent generalized frosts. This study investigates the dynamical and physical mechanisms that sustain these events, emphasizing the nonlinear interactions represented by the Rossby Wave Source (RWS) equation. Composite analysis of pressure, temperature, wind and geopotential height fields were performed, showing that 0DP events are related to abrupt cold air intrusion linked to the enhancement of upper levels troughs over the eastern Pacific Ocean and transient surface anticyclones over South America. This linear analysis only showed a lack of persistent upper-level maintenance and did not explain the dynamics of the rapid weakening of the circulation. For this reason, a nonlinear analysis based on the decomposition of the RWS equation into its advective and divergent terms is performed. The advective term only acts as an initial trigger, deepening troughs and favoring meridional cold air advection, while the divergent term dominates the events, representing 63–67% of the affected area. This term reinforces ridges, promotes subsidence and favors clear sky conditions that enhance nocturnal radiative cooling and frost formation. Positive anomalies of the divergent RWS term strengthen the ridge and advect cold air over the Pampa Húmeda, whereas subsequent negative anomalies over the southwestern Atlantic act as sinks of wave activity, leading to the rapid dissipation of the synoptic configuration. Consequently, the same mechanism that generates favorable conditions for frost development also determines their lack of persistence. These findings demonstrate that the short-lived nature of 0DP frosts is not due to the absence of dynamical forcing, but rather to nonlinear processes that both enable and constrain frost occurrence. This highlights the importance of incorporating nonlinear diagnostics, such as the RWS, to improve the understanding of short-lived atmospheric extremes. Full article
(This article belongs to the Special Issue Southern Hemisphere Climate Dynamics)
Show Figures

Figure 1

15 pages, 4945 KB  
Article
Divergent Urban Canopy Heat Island Responses to Heatwave Type over the Tibetan Plateau: A Case Study of Xining
by Guoxin Chen, Xiaofan Lu, Qiong Li, Siqi Zhang and Suonam Kealdrup Tysa
Land 2025, 14(10), 2033; https://doi.org/10.3390/land14102033 - 12 Oct 2025
Cited by 1 | Viewed by 792
Abstract
The escalating heatwave risks over the Tibetan Plateau (TP) highlight unresolved gaps in understanding multitype mechanisms and diurnal urban canopy heat island (UCHI) responses. Using Xining’s high-density observational network (2018–2023) and by employing comparative analysis (urban–rural, heatwave versus non-heatwave days) and composite analysis, [...] Read more.
The escalating heatwave risks over the Tibetan Plateau (TP) highlight unresolved gaps in understanding multitype mechanisms and diurnal urban canopy heat island (UCHI) responses. Using Xining’s high-density observational network (2018–2023) and by employing comparative analysis (urban–rural, heatwave versus non-heatwave days) and composite analysis, we found: During the record-breaking July 2022 heatwave across the TP, Xining reached an extreme UCHI peak (z-score: 3.0). Critically asymmetric UCHI responses as daytime heatwaves amplify mean intensity by 0.35 °C via extreme value shifts, whereas nighttime events suppress it by 0.31 °C. Crucially, heatwaves induce negligible daytime UCHI modulation but drive comparable magnitude nighttime UCHI intensification (during daytime events) and reduction (during nighttime events), demonstrating type-dependent and diurnally asymmetric urban thermal sensitivities. Heatwaves driven by distinct synoptic patterns; daytime events are controlled by an anomaly anticyclone (cloudless, dry conditions), while nighttime events occur under plateau-north anticyclones (cloudy, humid conditions). These patterns fundamentally reshape heatwave–UCHI interactions through divergent mechanisms: Daytime/nighttime heatwaves amplify/suppress nocturnal UCHI through enhanced/reduced urban heat storage and accelerated/inhibited rural radiative cooling. Our case study demonstrates that although heatwaves generally amplify nocturnal UCHI, in dry regions, their synoptic drivers significantly modify this nighttime synergy. The nocturnal UCHI during heatwave is not only driven by humidity effects but also modulated by cloud cover-regulated rural radiative cooling and urban thermal storage. These findings establish a mechanistic framework for heatwaves–UCHI interactions and provide actionable insights for heat-resilient planning in high-altitude arid cities. Full article
Show Figures

Figure 1

18 pages, 4841 KB  
Article
Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
by Kylie Hoffman, David D. Turner and Belay B. Demoz
Atmosphere 2025, 16(8), 926; https://doi.org/10.3390/atmos16080926 - 30 Jul 2025
Cited by 1 | Viewed by 661
Abstract
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with [...] Read more.
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with elevated divergence near 3 km AGL and moisture transport over both warm and cold sectors. Data from Raman lidar (RL), Atmospheric Emitted Radiance Interferometer (AERI), and Radar Wind Profilers (RWP) were used to characterize vertical profiles of the event, revealing the presence of a narrow moist updraft, horizontal moisture advection, and cloud development ahead of the front. Convection parameters, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), were derived from collocated AERI and RL. Regions of high CAPE were aligned with areas of high moisture, indicating that convection was more favorable at moist elevated levels than near the surface. RWP observations revealed vorticity structures consistent with existing theories. This study highlights the value of high-resolution, continuous profiling from remote sensors to resolve mesoscale processes and evaluate convection potential. The event underscores the role of elevated moisture and wind shear in modulating convection initiation along a trailing-end cold front boundary where mesoscale and synoptic forces interact. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 6329 KB  
Article
Mesoscale Analysis and Numerical Simulation of an Extreme Precipitation Event on the Northern Slope of the Middle Kunlun Mountains in Xinjiang, China
by Chenxiang Ju, Man Li, Xia Yang, Yisilamu Wulayin, Ailiyaer Aihaiti, Qian Li, Weilin Shao, Junqiang Yao and Zonghui Liu
Remote Sens. 2025, 17(14), 2519; https://doi.org/10.3390/rs17142519 - 19 Jul 2025
Viewed by 990
Abstract
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of [...] Read more.
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of the driving mechanisms, we combine the European Centre for Medium-Range Weather Forecasts Reanalysis-5 (ERA5) reanalysis, regional observations, and high-resolution Weather Research and Forecasting model (WRF) simulations to dissect the 14–17 June 2021, extreme rainfall event. A deep Siberia–Central Asia trough and nascent Central Asian vortex established a coupled upper- and low-level jet configuration that amplified large-scale ascent. Embedded shortwaves funnelled abundant moisture into the orographic basin, where strong low-level moisture convergence and vigorous warm-sector updrafts triggered and sustained deep convection. WRF reasonably replicated observed wind shear and radar echoes, revealing the descent of a mid-level jet into an ultra-low-level jet that provided a mesoscale engine for storm intensification. Momentum–budget diagnostics underscore the role of meridional momentum transport along sloping terrain in reinforcing low-level convergence and shear. Together, these synoptic-to-mesoscale interactions and moisture dynamics led to this landmark extreme-precipitation event. Full article
Show Figures

Graphical abstract

24 pages, 10218 KB  
Article
Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network
by María del Carmen Casas-Castillo, Xavier Navarro and Raül Rodríguez-Solà
Hydrology 2025, 12(7), 178; https://doi.org/10.3390/hydrology12070178 - 3 Jul 2025
Cited by 1 | Viewed by 1750
Abstract
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense [...] Read more.
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense rain gauge network (1994–2019). The aim is to identify dominant spatial patterns and understand how storms evolve in relation to local urban and topographic features. Principal component analysis and simple scaling analysis revealed signs of a rainfall island effect, possibly linked to the urban heat island and modulated by orographic and coastal influences. Tailored rainfall indices highlighted a division between inland areas shaped by orography and coastal zones influenced by the sea. These spatial structures evolved with rainfall duration, shifting from localized contrasts at a 10 min resolution to more homogeneous distributions at daily scales. Storm tracking showed that 90% of speeds ranged from 5 to 60 km/h and intense rainfall events typically moved east–southeast toward the sea and north–northeast. Faster storms tended to follow preferred directions reflecting mesoscale circulations and possible modulations by local terrain. These findings underscore how urban morphology, local relief, and a coastal setting may shape rainfall at the city scale, in interaction with broader Mediterranean synoptic dynamics. Full article
Show Figures

Graphical abstract

30 pages, 14172 KB  
Article
Synoptic and Dynamic Analyses of an Intense Mediterranean Cyclone: A Case Study
by Ahmad E. Samman
Climate 2025, 13(6), 126; https://doi.org/10.3390/cli13060126 - 15 Jun 2025
Viewed by 1889
Abstract
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the [...] Read more.
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the formation and development of this significant Mediterranean cyclone, which impacted the Mediterranean basin and the Arabian Peninsula from 26 January to 4 February 2006. Utilizing ECMWF ERA5 reanalysis data, this research analyzes the synoptic and dynamic conditions that contributed to the cyclone’s evolution and intensification. The cyclone originated over the North Atlantic as cold air from higher latitudes and was advected southward, driven by a strong upper-level trough. The initial phase of cyclogenesis was triggered by baroclinic instability, facilitated by an intense upper-level jet stream interacting with a pre-existing low-level baroclinic zone over coastal regions. Upper-level dynamics enhanced surface frontal structures, promoting the formation of the intense cyclone. As the system progressed, low-level diabatic processes became the primary drivers of its evolution, reducing the influence of upper-level baroclinic mechanisms. The weakening of the upper-level dynamics led to the gradual distortion of the low-level baroclinicity and frontal structures, transitioning the system to a more barotropic state during its mature phase. Vorticity analysis revealed that positive vorticity advection and warm air transport toward the developing cyclone played key roles in its intensification, leading to the development of strong low-level winds. Atmospheric kinetic energy analysis showed that the majority of the atmospheric kinetic energy was concentrated at 400 hPa and above, coinciding with intense jet stream activity. The generation of the atmospheric kinetic energy was primarily driven by cross-contour flow, acting as a major energy source, while atmospheric kinetic energy dissipation from grid to subgrid scales served as a major energy sink. The dissipation pattern closely mirrored the generation pattern but with the opposite sign. Additionally, the horizontal flux of the atmospheric kinetic energy was identified as a continuous energy source throughout the cyclone’s lifecycle. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

25 pages, 12964 KB  
Article
Teleconnection Patterns and Synoptic Drivers of Climate Extremes in Brazil (1981–2023)
by Marcio Cataldi, Lívia Sancho, Priscila Esposte Coutinho, Louise da Fonseca Aguiar, Vitor Luiz Victalino Galves and Aimée Guida
Atmosphere 2025, 16(6), 699; https://doi.org/10.3390/atmos16060699 - 10 Jun 2025
Cited by 2 | Viewed by 2570
Abstract
Brazil is increasingly affected by extreme weather events due to climate change, with pronounced regional differences in temperature and precipitation patterns. The southeast region is particularly vulnerable, frequently experiencing severe droughts and extreme heatwaves linked to atmospheric blocking events and intense rainfall episodes [...] Read more.
Brazil is increasingly affected by extreme weather events due to climate change, with pronounced regional differences in temperature and precipitation patterns. The southeast region is particularly vulnerable, frequently experiencing severe droughts and extreme heatwaves linked to atmospheric blocking events and intense rainfall episodes driven by the South Atlantic Convergence Zone (SACZ). These phenomena contribute to recurring climate-related disasters. The country’s heavy reliance on hydropower heightens its susceptibility to droughts, while growing evidence points to intensifying dry spells and wildfires across multiple regions, threatening agricultural output and food security. Urban areas, particularly, are experiencing more frequent and severe heatwaves, posing serious health risks to vulnerable populations. This study investigates the links between global teleconnection indices and synoptic-scale systems, specifically blocking events and SACZ activity, and their influence on Brazil’s extreme heat, drought conditions, and river flow variability over the past 30 to 40 years. By clarifying these interactions, the research aims to enhance understanding of how large-scale atmospheric dynamics shape climate extremes and to assess their broader implications for water resource management, energy production, and regional climate variability. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

27 pages, 9435 KB  
Review
Comprehensive Insights into the Cholesterol-Mediated Modulation of Membrane Function Through Molecular Dynamics Simulations
by Ehsaneh Khodadadi, Ehsan Khodadadi, Parth Chaturvedi and Mahmoud Moradi
Membranes 2025, 15(6), 173; https://doi.org/10.3390/membranes15060173 - 8 Jun 2025
Cited by 10 | Viewed by 7003
Abstract
Cholesterol plays an essential role in biological membranes and is crucial for maintaining their stability and functionality. In addition to biological membranes, cholesterol is also used in various synthetic lipid-based structures such as liposomes, proteoliposomes, and nanodiscs. Cholesterol regulates membrane properties by influencing [...] Read more.
Cholesterol plays an essential role in biological membranes and is crucial for maintaining their stability and functionality. In addition to biological membranes, cholesterol is also used in various synthetic lipid-based structures such as liposomes, proteoliposomes, and nanodiscs. Cholesterol regulates membrane properties by influencing the density of lipids, phase separation into liquid-ordered (Lo) and liquid-disordered (Ld) areas, and stability of protein–membrane interactions. For planar bilayers, cholesterol thickens the membrane, decreases permeability, and brings lipids into well-ordered domains, thereby increasing membrane rigidity by condensing lipid packing, while maintaining lateral lipid mobility in disordered regions to preserve overall membrane fluidity. It modulates membrane curvature in curved bilayers and vesicles, and stabilizes low-curvature regions, which are important for structural integrity. In liposomes, cholesterol facilitates drug encapsulation and release by controlling bilayer flexibility and stability. In nanodiscs, cholesterol enhances structural integrity and protein compatibility, which enables the investigation of protein–lipid interactions under physiological conditions. In proteoliposomes, cholesterol regulates the conformational stability of embedded proteins that have implications for protein–lipid interaction. Developments in molecular dynamics (MD) techniques, from coarse-grained to all-atom simulations, have shown how cholesterol modulates lipid tail ordering, membrane curvature, and flip-flop behavior in response to concentration. Such simulations provide insights into the mechanisms underlying membrane-associated diseases, aiding in the design of efficient drug delivery systems. In this review, we combine results from MD simulations to provide a synoptic explanation of cholesterol’s complex function in regulating membrane behavior. This synthesis combines fundamental biophysical information with practical membrane engineering, underscoring cholesterol’s important role in membrane structure, dynamics, and performance, and paving the way for rational design of stable and functional lipid-based systems to be used in medicine. In this review, we gather evidence from MD simulations to provide an overview of cholesterol’s complex function regulating membrane behavior. This synthesis connects the fundamental biophysical science with practical membrane engineering, which highlights cholesterol’s important role in membrane structure, dynamics, and function and helps us rationally design stable and functional lipid-based systems for therapeutic purposes. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Graphical abstract

Back to TopTop