Teleconnection Patterns and Synoptic Drivers of Climate Extremes in Brazil (1981–2023)
Abstract
1. Introduction
2. Methods
2.1. Atmospheric and Oceanic Teleconnection Indices
2.2. Synoptic Indices
2.3. Hydrometeorological Indicators
2.4. Statistical Framework
- n is the sample size;
- and are the individual sample points indexed with i;
- is the sample mean (analogously for ).
3. Results
3.1. Teleconnections, SACZ, and Blocking
3.2. SACZ, Blockings, and Flow
3.3. SACZ, Blockings, and SPI
3.4. SACZ, Blockings, and Heatwaves
4. Discussion
4.1. Trend Evaluation
4.2. Teleconnections, SACZ, and Blocking
4.3. SACZ, Blockings, and Flow
4.4. SACZ, Blockings, and Heatwaves
4.5. SACZ, Blockings, and SPI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delforge, D.; Wathelet, V.; Below, R.; Sofia, C.L.; Tonnelier, M.; van Loenhout, J.A.; Speybroeck, N. EM-DAT: The Emergency Events Database. Preprint 2023. [Google Scholar] [CrossRef]
- Reboita, M.S.; Gan, M.A.; Rocha, R.P.d.; Ambrizzi, T. Regimes de precipitação na América do Sul: Uma revisão bibliográfica. Rev. Bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Cavalcanti, I.F.A. Large scale and synoptic features associated with extreme precipitation over South America: A review and case studies for the first decade of the 21st century. Atmos. Res. 2012, 118, 27–40. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Grimm, A.; Scortegagna Almeida, A.; Beneti, C.; Leite, E. The combined effect of climate oscillations in producing extremes: The 2020 drought in southern Brazil. RBRH 2020, 25, e48. [Google Scholar] [CrossRef]
- Getirana, A.; Libonati, R.; Cataldi, M. Brazil is in water crisis—It needs a drought plan. Nature 2021, 600, 218–220. [Google Scholar] [CrossRef]
- Cataldi, M. Creation and Assessment of an Index for Atmospheric Blockings in Brazil’s Central Region. Adv. Hydrol. Meteorol. 2024, 1. [Google Scholar] [CrossRef]
- da Fonseca Aguiar, L.; Cataldi, M. Social and environmental vulnerability in Southeast Brazil associated with the South Atlantic Convergence Zone. Nat. Hazards 2021, 109, 2423–2437. [Google Scholar] [CrossRef]
- Empresa de Pesquisa Energética. Summary report of the National Energy Balance 2024: Base year 2023; EPE: Rio de Janeiro, Brazil, 2024. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-819/topico-715/BEN_S%C3%ADntese_2024_PT.pdf (accessed on 28 November 2022).
- Vasquez-Arroyo, E.; da Silva, F.; Santos, A.; Cordeiro, D.; Marengo, J.A.; Lucena, A.F.P. Climate impacts in the Brazilian energy security: Analysis of observed events and adaptation options. Sustain. Debate 2020, 11, 157–176. Available online: https://doaj.org/article/c85c186b133a4800b485294a05c1abde (accessed on 8 May 2025). [CrossRef]
- Agência Nacional de Águas e Saneamento Básico (ANA). Monitor de Secas—Mapa Interativo. 2025. Available online: http://monitordesecas.ana.gov.br/ (accessed on 28 March 2025).
- European Geosciences Union (EGU). Standard Precipitation Index (SPI) Applied to Socioeconomic Pathway Scenarios (SSPs) as a Tool to Map the Distribution of Droughts and Potential Fire Hazard Areas in Brazil in the Face of Climate Change; EGU General Assembly: Vienna, Austria, 2024. [Google Scholar] [CrossRef]
- Pivello, V.R.; Vieira, I.; Christianini, A.V.; Ribeiro, D.B.; da Silva Menezes, L.; Berlinck, C.N.; Melo, F.P.; Marengo, J.A.; Tornquist, C.G.; Tomas, W.M.; et al. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspect. Ecol. Conserv. 2021, 19, 233–255. [Google Scholar] [CrossRef]
- Richardson, D.; Black, A.; Irving, D.; Matear, R.; Monselesan, D.; Risbey, J.; Squire, D.; Tozer, C. Global increase in wildfire potential from compound fire weather and drought. npj Clim. Atmos. Sci. 2022, 5, 23. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, J.F.; Mendes, D.; Correia Filho, W.L.F.; da Silva Junior, C.A.; de Gois, G.; da Rosa Ferraz Jardim, A.M.; da Silva, M.V.; Lyra, G.B.; Teodoro, P.E.; Pimentel, L.C.G.; et al. Fire foci in South America: Impact and causes, fire hazard and future scenarios. J. South Am. Earth Sci. 2021, 112, 103623. [Google Scholar] [CrossRef]
- Marengo, J.A.; Souza, C.M.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 228. [Google Scholar] [CrossRef]
- Galves, V.L.; Cataldi, M.; Alcoforado Sphaier, L.; da Fonseca Aguiar, L. Temporal Evolution and Intensification of Extreme Heatwaves in Brazil’s capitals: Insights from the XHW Index (1950–2024). In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. EGU25-12454. [Google Scholar] [CrossRef]
- Foroni, M.; Salvioli, G.; Rielli, R.; Goldoni, C.A.; Orlandi, G.; Sajani, S.Z.; Guerzoni, A.; Maccaferri, C.; Daya, G.; Mussi, C. A Retrospective Study on Heat-Related Mortality in an Elderly Population During the 2003 Heat Wave in Modena, Italy: The Argento Project. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 647–651. [Google Scholar] [CrossRef]
- Palinkas, L.A.; Hurlburt, M.S.; Fernandez, C.; De Leon, J.; Yu, K.; Salinas, E.; Garcia, E.; Johnston, J.; Rahman, M.M.; Silva, S.J. Vulnerable, Resilient, or Both? A Qualitative Study of Adaptation Resources and Behaviors to Heat Waves and Health Outcomes of Low-Income Residents of Urban Heat Islands. Int. J. Environ. Res. Public Health 2022, 19, 11090. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.; Adams, H.; Adelekan, I.; Adler, C.; Adrian, R.; Aldunce, P.; Ali, E.; Ara Begum, R.; Bednar-Friedl, B.; et al. Technical Summary. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.O., Roberts, D., Poloczanska, E., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 37–118. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Weather. Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Pezzi, L.; Cavalcanti, I. The relative importance of ENSO and Tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America. Clim. Dyn. 2001, 17, 205–212. [Google Scholar] [CrossRef]
- Ambrizzi, T.; de Souza, E.B.; Pulwarty, R.S. The Hadley and Walker Regional Circulations and Associated ENSO Impacts on South American Seasonal Rainfall. In The Hadley Circulation: Present, Past and Future; Diaz, H.F., Bradley, R.S., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 203–235. [Google Scholar] [CrossRef]
- Cataldi, M.; Assad, L.; Torres-Junior, A.R.; Alves, J.L.D. Estudo da influência das anomalias da tsm do atlântico sul extratropical na região da confluência brasil malvinas no regime hidrometeorológico de verão do sul e sudeste do brasil. Rev. Bras. Meteorol. 2010, 25, 513–524. [Google Scholar] [CrossRef]
- Reboita, M.; Ambrizzi, T.; Machado Crespo, N.; Dutra, L.; Ferreira, G.; Rehbein, A.; Drumond, A.; Rocha, R.; Souza, C. Impacts of teleconnection patterns on South America climate. Ann. N. Y. Acad. Sci. 2021, 1504, 116–153. [Google Scholar] [CrossRef]
- Feng, S.; Hu, Q.; Oglesby, R.J. Influence of Atlantic sea surface temperatures on persistent drought in North America. Clim. Dyn. 2011, 37, 569–586. [Google Scholar] [CrossRef]
- Kushnir, Y.; Seager, R.; Ting, M.; Naik, N.; Nakamura, J. Mechanisms of Tropical Atlantic SST Influence on North American Precipitation Variability. J. Clim. 2010, 23, 5610–5628. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Kuhlbrodt, T.; Swaminathan, R.; Ceppi, P.; Wilder, T. A Glimpse into the Future: The 2023 Ocean Temperature and Sea Ice Extremes in the Context of Longer-Term Climate Change. Bull. Am. Meteorol. Soc. 2024, 105, E474–E485. [Google Scholar] [CrossRef]
- Enfield, D.; Mestas-Nunez, A.; Mayer, D.; Cid-Serrano, L. How ubiquitous is the dipole relationship in the tropical Atlantic Sea Surface Temperatures? J. Geophys. Res. 1999, 104, 7841–7848. [Google Scholar] [CrossRef]
- Wang, C.; Enfield, D. The Tropical Western Hemisphere Warm Pool. Geophys. Res. Lett. 2001, 28, 1635–1638. [Google Scholar] [CrossRef]
- Schwing, F.; Murphree, T.; Green, P. The Northern Oscillation Index (NOI): A new climate index for the northeast Pacific. Prog. Oceanogr. 2002, 53, 115–139. [Google Scholar] [CrossRef]
- Trenberth, K.; Hurrell, J. Decadal Atmosphere-Ocean Variations in the Pacific. Clim. Dyn. 1994, 9, 303–319. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J. Regional Precipitation Trends: Distinguishing Natural Variability from Anthropogenic Forcing. J. Clim. 2010, 23, 2131–2145. [Google Scholar] [CrossRef]
- Chiang, J.; Vimont, D. Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability. J. Clim. 2004, 17, 4143–4158. [Google Scholar] [CrossRef]
- Christy, J.R.; Spencer, R.W.; Braswell, W.D. MSU Tropospheric Temperatures: Dataset Construction and Radiosonde Comparisons. J. Atmos. Ocean. Technol. 2000, 17, 1153–1170. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Reynolds, R. Global surface air temperature in 1995: Return to pre-Pinatubo level. Geophys. Res. Lett. 1996, 23, 1665–1668. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M. GISS analysis of surface temperature change. J. Geophys. Res. 1999, 104, 30997–31022. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Glascoe, J.; Ruedy, R. A common-sense climate index: Is climate changing noticeably? Proc. Natl. Acad. Sci. USA 1998, 95, 4113–4120. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Imhoff, M.; Lawrence, W.; Easterling, D.; Peterson, T.; Karl, T. A closer look at United States and global surface temperature change. J. Geophys. Res. Atmos. 2001, 106, 23947–23963. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., der Linden, P.J.v., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; Volume 1, 881p. [Google Scholar]
- Council, N.R. Reconciling Observations of Global Temperature Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., der Linden, P.J.v., Dai, X., Maskell, K., Johnson, C.A., Eds.; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Peterson, T.C.; Vose, R.S. An Overview of the Global Historical Climatology Network Temperature Database. Bull. Am. Meteorol. Soc. 1997, 78, 2837–2850. [Google Scholar] [CrossRef]
- Hadley Centre for Climate Prediction and Research. Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2000. Available online: https://rda.ucar.edu/datasets/d277003/ (accessed on 26 March 2025).
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved In Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M. Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation. J. Clim. 1994, 7, 929–948. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W.; Livezey, R.E.; Stokes, D.C. Reconstruction of Historical Sea Surface Temperatures Using Empirical Orthogonal Functions. J. Clim. 1996, 9, 1403–1420. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Belem, A.; Marton, E.; Cataldi, M. Dynamics-based regression models for the South Atlantic Convergence Zone. Clim. Dyn. 2019, 52, 5527–5553. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. Extreme Precipitation Events in Southeastern South America and Large-Scale Convective Patterns in the South Atlantic Convergence Zone. J. Clim. 2002, 15, 2377–2394. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels?tab=overview (accessed on 10 November 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Cataldi, M.; Galves, V.L.V.; Sphaier, L.A.; Garnés-Morales, G.; Gallardo, V.; Párraga, L.M.; Montávez, J.P.; Jimenez-Guerrero, P. Development of a New Generalizable, Multivariate, and Physical-Body-Response-Based Extreme Heatwave Index. Atmosphere 2024, 15, 1541. [Google Scholar] [CrossRef]
- Xavier, A.C.; Scanlon, B.R.; King, C.W.; Alves, A.I. New improved Brazilian daily weather gridded data (1961–2020). Int. J. Climatol. 2022, 42, 8390–8404. [Google Scholar] [CrossRef]
- Tomasella, J.; Cunha, A.P.M.; Simões, P.A.; Zeri, M. Assessment of trends, variability and impacts of droughts across Brazil over the period 1980–2019. Nat. Hazards 2023, 116, 2173–2190. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the Power of the Mann–Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Leyba, I.M.; Solman, S.A.; Saraceno, M.; Martinez, J.A.; Dominguez, F. The South Atlantic Ocean as a moisture source region and its relation with precipitation in South America. Clim. Dyn. 2023, 61, 1741–1756. [Google Scholar] [CrossRef]
- Silva, G.A.; Ambrizzi, T.; Reboita, M.S.; Carvalho, L.M. Teleconnections between tropical Atlantic SST and SACZ variability. Int. J. Climatol. 2021, 41, 2339–2355. [Google Scholar] [CrossRef]
- Nobre, C.A.; Sellers, P.J.; Shukla, J. Amazon deforestation and regional climate change. Geophys. Res. Lett. 2006, 33, L11709. [Google Scholar] [CrossRef]
- Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. Recent extremes of drought and flooding in Amazonia: Vulnerabilities and human adaptation. Wiley Interdiscip. Rev. Clim. Change 2012, 3, 659–681. [Google Scholar] [CrossRef]
- Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M.; Mann, M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32, L20708. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.; Muñoz, J.; et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 2019, 10, 2553. [Google Scholar] [CrossRef]
Name | Description | More Information |
---|---|---|
PNA | Pacific North American Index | From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml (accessed on 10 March 2025) |
EP_NP | East Pacific/North Pacific Oscillation | From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml (accessed on 10 March 2025) |
WP | Western Pacific Index | From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml (accessed on 10 March 2025) |
EA_WR | Eastern Atlantic/Western Russia | From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml (accessed on 10 March 2025) |
NAO | North Atlantic Oscillation | From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml (accessed on 10 March 2025) |
SOI | Southern Oscillation Index | From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/indices/ (accessed on 10 March 2025) |
Nino3 | Eastern Tropical Pacific SST | Niño 3 region: 5° N–5° S, 150° W–90° W From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/indices/ (accessed on 10 March 2025) CPC uses the NOAA ERSST V5 anomalies |
TNA | Tropical Northern Atlantic Index [31] | Anomaly of the average of the monthly SST from 5.5° N to 23.5° N and 15° W to 57.5° W. HadISST and NOAA OI 1° × 1° datasets are used to create index. Climatology is 1971–2000. |
TSA | Tropical Southern Atlantic Index [31] | Anomaly of the average of the monthly SST from Eq-20° S and 10° E–30° W. HadISST and NOAA OI 1° × 1° datasets are used to create index. Climatology is 1971–2000. |
WHWP | Western Hemisphere Warm Pool [32] | Monthly anomaly of the ocean surface area warmer than 28.5 °C in the Atlantic and eastern North Pacific. Based on HadISST and NOAA OI SST (for the latest value). Climatology is 1971–2000. |
ONI | Oceanic Niño Index | From NOAA Climate Prediction Center (CPC). Three-month running mean of NOAA ERSST.V5 SST anomalies in the Niño 3.4 region, based on a changing base period that consists of multiple centered 30-year base periods. These 30-year base periods will be used to calculate the anomalies for successive 5-year periods in the historical record. |
MEI_V2 | Multivariate ENSO Index (MEI V2) | Time series is bimonthly, so the Jan value represents the Dec-Jan value and is centered between the months. Details and current values at https://psl.noaa.gov/enso/mei/ (accessed on 10 March 2025) |
Nino12 | Extreme Eastern Tropical Pacific SST | Niño 1 + 2 region: 0–10° S, 90° W–80° W From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/indices/ (accessed on 10 March 2025) CPC uses the NOAA ERSST V5 anomalies. |
Nino4 | Central Tropical Pacific SST | Niño 4 region: 5° N–5° S, 160° E–150° W From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/indices/ (accessed on 10 March 2025) CPC uses the NOAA ERSST V5 anomalies. |
Nino34 | East Central Tropical Pacific SST | Niño 3.4 region: 5° N–5° S, 170° W–120° W From NOAA Climate Prediction Center (CPC): https://www.cpc.ncep.noaa.gov/data/indices/ (accessed on 10 March 2025) CPC uses the NOAA ERSST V5 anomalies. |
NOI | Northern Oscillation Index [33] | NOI is an index of climate variability based on the difference in SLP anomalies at the North Pacific High and near Darwin, Australia. |
NP | North Pacific Pattern [34] | NP is the area-weighted sea level pressure over the region 30° N–65° N, 160° E–140° W. |
AO | Arctic Oscillation | The loading pattern of AO is defined as the first leading mode from the EOF analysis of monthly mean height anomalies at 1000 hPa (NH) or 700 hPa (SH). |
PWA | Pacific Warmpool Area Average [35] | Definition: area averaged SST: 20° N–20° S, 120° E–60° W. Dataset: NOAA ERSSTV5 1948-present. Climatology: 1981–2020. |
AMM | Atlantic Meridional Mode [36] | - |
QBO | Quasi-Biennial Oscillation | Calculated at PSL (from the zonal average of the 30 mb zonal wind at the equator as computed from the NCEP/NCAR Reanalysis). |
SF | Solar Flux | 10.7 cm |
GML_OT | Global Mean Land/Ocean Temperature [37,38,39,40,41,42,43,44,45,46,47,48] | - |
Index | Region | Name in Results | Geographical Limits | |
---|---|---|---|---|
Longitude | Latitude | |||
South Atlantic Convergence Zone | AB | SACZ_AB | 44° W–42° W | 21° S–16° S |
C | SACZ_C | 44° W–42° W | 23.5° S–21° S | |
DE | SACZ_DE | 44° W–42° W | 28.5° S–23.5° S | |
Atmospheric Blockings | North h1 | BLN_h1 | 60° W–50° W | 17.5° S–10° S |
North h2 | BLN_h2 | 50° W–40° W | 17.5° S–10° S | |
South h1 | BLS_h1 | 60° W–50° W | 25° S–17.5° S | |
South h2 | BLS_h2 | 50° W–40° W | 25° S–17.5° S | |
North | BLN | 60° W–40° W | 17.5° S–10° S | |
South | BLS | 60° W–40° W | 25° S–17.5° S | |
Total | BLT | 60° W–40° W | 25° S–10° S |
State | State Acronym | City | Name in Results |
---|---|---|---|
Espírito Santo | ES | Vitória | HW_ES |
Piauí | PI | Teresina | HW_PI |
São Paulo | SP | São Paulo | HW_SP |
Maranhão | MA | São Luís | HW_MA |
Bahia | BA | Salvador | HW_BA |
Rio de Janeiro | RJ | Rio de Janeiro | HW_RJ |
Acre | AC | Rio Branco | HW_AC |
Pernambuco | PE | Recife | HW_PE |
Rondônia | RO | Porto Velho | HW_RO |
Rio Grande do Sul | RS | Porto Alegre | HW_RS |
Tocantins | TO | Palmas | HW_TO |
Rio Grande do Norte | RN | Natal | HW_RN |
Amazonas | AM | Manaus | HW_AM |
Alagoas | AL | Maceió | HW_AL |
Amapá | AP | Macapá | HW_AP |
Paraíba | PB | João Pessoa | HW_PB |
Goiás | GO | Goiânia | HW_GO |
Ceará | CE | Fortaleza | HW_CE |
Santa Catarina | SC | Florianópolis | HW_SC |
Paraná | PR | Curitiba | HW_PR |
Mato Grosso | MT | Cuiabá | HW_MT |
Mato Grosso do Sul | MS | Campo Grande | HW_MS |
Federal District | DF | Brasília | HW_DF |
Roraima | RR | Boa Vista | HW_RR |
Minas Gerais | MG | Belo Horizonte | HW_MG |
Pará | PA | Belém | HW_PA |
Sergipe | SE | Aracaju | HW_SE |
Biome | Horizon | Name in Results |
---|---|---|
Caatinga | 1 | SPI1_Caatinga |
6 | SPI6_Caatinga | |
12 | SPI12_Caatinga | |
Atlantic Rainforest | 1 | SPI1_Atlantic |
6 | SPI6_Atlantic | |
12 | SPI12_Atlantic | |
Cerrado | 1 | SPI1_Cerrado |
6 | SPI6_Cerrado | |
12 | SPI12_Cerrado | |
Pantanal | 1 | SPI1_Pantanal |
6 | SPI6_Pantanal | |
12 | SPI12_Pantanal | |
Amazon | 1 | SPI1_Amazonia |
6 | SPI6_Amazonia | |
12 | SPI12_Amazonia | |
Pampa | 1 | SPI1_Pampa |
6 | SPI6_Pampa | |
12 | SPI12_Pampa |
Hydrographic Sub-Basin | Hydropower Plant | Name in Results |
---|---|---|
Grande River | Água Vermelha | QAV |
Grande River | Furnas | QFUR |
Iguaçu River | Salto Santiago | QSSAN |
Iguaçu River | Gov. Bento Munhoz | QGBM |
Jacuí River | Passo Real | QPR |
Paraguay River | Manso | QMAN |
Paranaíba River | São Simão | QSSIM |
Paranaíba River | Emborcação | QEMB |
Paranapanema River | Rosana | QROS |
Paranapanema River | Capivara | QCAP |
Paranapanema River | Itaipu | QITA |
Parnaíba River | Boa Esperança | QBE |
São Francisco River | Sobradinho | QSOB |
São Francisco River | Três Marias | QTM |
Tietê River | Promissão | QPRO |
Tietê River | Barra Bonita | QBB |
Tocantins River | Tucuruí | QTCU |
Tocantins River | Serra da Mesa | QSM |
Uruguay River | Machadinho | QMAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldi, M.; Sancho, L.; Esposte Coutinho, P.; da Fonseca Aguiar, L.; Galves, V.L.V.; Guida, A. Teleconnection Patterns and Synoptic Drivers of Climate Extremes in Brazil (1981–2023). Atmosphere 2025, 16, 699. https://doi.org/10.3390/atmos16060699
Cataldi M, Sancho L, Esposte Coutinho P, da Fonseca Aguiar L, Galves VLV, Guida A. Teleconnection Patterns and Synoptic Drivers of Climate Extremes in Brazil (1981–2023). Atmosphere. 2025; 16(6):699. https://doi.org/10.3390/atmos16060699
Chicago/Turabian StyleCataldi, Marcio, Lívia Sancho, Priscila Esposte Coutinho, Louise da Fonseca Aguiar, Vitor Luiz Victalino Galves, and Aimée Guida. 2025. "Teleconnection Patterns and Synoptic Drivers of Climate Extremes in Brazil (1981–2023)" Atmosphere 16, no. 6: 699. https://doi.org/10.3390/atmos16060699
APA StyleCataldi, M., Sancho, L., Esposte Coutinho, P., da Fonseca Aguiar, L., Galves, V. L. V., & Guida, A. (2025). Teleconnection Patterns and Synoptic Drivers of Climate Extremes in Brazil (1981–2023). Atmosphere, 16(6), 699. https://doi.org/10.3390/atmos16060699