Viscous Baroclinic-Barotropic Instability in the Tropics: Is It the Source of Both Easterly Waves and Monsoon Depressions?
Abstract
1. Introduction
2. The Model Equations and Linear Analysis Procedure
2.1. Barotropic–Baroclinic Model Equations with Viscosity
2.2. Linearized Barotropic–Baroclinic Equations in a Baroclinic Shear Background
2.3. Galerkin Truncation in the Meridional Direction
3. ETWs in the Presence of Eddy Viscosity
3.1. Riemann Invariants
3.2. Eddy Damping and Effect of Viscosity on Phase Speed
3.3. Effect of Eddy Viscosity on Wave Structure
4. Baroclinic-Barotropic Instability in the Presence of Eddy Viscosity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Galerkin Projection
Appendix B. Reimann Invariants
References
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2006; p. 745. [Google Scholar]
- Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: New York, NY, USA, 1987; p. 710. [Google Scholar]
- Benoit, C.R.; Jean-Marie, B. Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, 2nd ed.; Academic Press: Oxford, UK, 2011. [Google Scholar]
- Leroux, S.; Hall, N.M.J. On the Relationship between African Easterly Waves and the African Easterly Jet. J. Atmos. Sci. 2009, 66, 2303–2316. [Google Scholar] [CrossRef]
- Goswami, B.N.; Keshavamurthy, R.N.; Satyan, V. Role of barotropic-baroclinic instability for the growth of monsoon depressions and mid-tropospheric cyclones. Proc. Indian Acad. Sci.-Sect. A 1980, 89, 79–97. [Google Scholar]
- Mishra, S.K.; Tandon, M.Y. A Combined Barotropic-Baroclinic Instability Study of the Upper Tropospheric Tropical Easterly Jet. J. Atmos. Sci. 1983, 40, 2708–2723. [Google Scholar] [CrossRef][Green Version]
- Wu, M.C.; Reale, O.; Siegfried, D.S.; Max, J.S.; Thorncroft, C.D. African Easterly Jet: Barotropic Instability, Waves, and Cyclogenesis. J. Clim. 2012, 25, 1489–1510. [Google Scholar] [CrossRef]
- Webster, P.J.; Hai-Ru, C. Energy Accumulation and Emanation Regions at Low Latitudes: Impacts of a Zonally Varying Basic State. J. Atmos. Sci. 1988, 45, 803–829. [Google Scholar] [CrossRef]
- Xie, B.W.X. Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci. 1996, 53, 449–467. [Google Scholar] [CrossRef]
- Xiyan, D.; Jung-Eun, C.; Fei-Fei, J.; Hoi-Ming, C. Global coupled dynamics of tropical easterly waves and tropical cyclone genesis. npj Clim. Atmos. Sci. 2025, 8, 125. [Google Scholar] [CrossRef]
- Ferreira, R.N.; Schubert, W.H. Barotropic Aspects of ITCZ Breakdown. J. Atmos. Sci. 1997, 54, 261–285. [Google Scholar] [CrossRef]
- Yang, Q.; Majda, A.J. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves. J. Atmos. Sci. 2018, 75, 85–111. [Google Scholar] [CrossRef]
- Ferguson, J.; Khouider, B.; Namazi, M. Two-way interactions between between equatorially trapped waves and the barotropic flow. Chin. Ann. Math. Ser. B 2010, 30, 539–568. [Google Scholar]
- Majda, A.J.; Biello, J.A. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 2003, 60, 1809–1821. [Google Scholar] [CrossRef]
- Jones, C.; Waliser, D.; Lau, K.; Stern, W. The Madden-Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Weather Rev. 2004, 132, 1462–1471. [Google Scholar] [CrossRef]
- Zhang, C.; Webster, P. Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci. 1989, 46, 3632–3652. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Wheeler, M.C.; Haertel, P.T.; Straub, K.H.; Roundy, P. Convectively coupled equatorial waves. Rev. Geophys. 2009, 47, RG2003. [Google Scholar] [CrossRef]
- Khouider, B. Models for Tropical Climate Dynamics: Waves, Clouds, and Precipitation; Springer: Cham, Switzerland, 2019; Volume 3. [Google Scholar]
- Huaman, L.; Schumacher, C.; Kiladis, G.N. Eastward-Propagating Disturbances in the Tropical Pacific. Mon. Weather Rev. 2020, 148, 3713–3728. [Google Scholar] [CrossRef]
- Matsuno, T. Quasi-geostrophic motions in the equatorial area. J. Met. Jap. 1966, 44, 25–41. [Google Scholar]
- Wheeler, M.; Kiladis, G.N. Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber-Frequency Domain. J. Atmos. Sci. 1999, 56, 374–399. [Google Scholar] [CrossRef]
- Takayabu, Y.N. Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteorol. Soc. Jpn. 1994, 72, 433–448. [Google Scholar] [CrossRef]
- Roundy, P.E. Interpretation of the spectrum of eastward-moving tropical convective anomalies. Q. J. R. Meteorol. Soc. 2020, 146, 795–806. [Google Scholar] [CrossRef]
- Chaim, G.; Ofer, S.; Itzhak, F.; Nathan, P. Tropical Background and Wave Spectra: Contribution of Wave–Wave Interactions in a Moderately Nonlinear Turbulent Flow. J. Atmos. Sci. 2021, 78, 1773–1789. [Google Scholar] [CrossRef]
- Stechmann, S.N.; Hottovy, S. Unified Spectrum of Tropical Rainfall and Waves in a Simple Stochastic Model. Geophys. Res. Lett. 2017, 44, 10713–10724. [Google Scholar] [CrossRef]
- Noboru, N. Large-Scale Eddy-Mean Flow Interaction in the Earth’s Extratropical Atmosphere. Annu. Rev. Fluid Mech. 2024, 56, 349–377. [Google Scholar] [CrossRef]
- Hartmann, D.L. The Atmospheric General Circulation and Its Variability. J. Meteorol. Soc. Jpn. Ser. II 2007, 85B, 123–143. [Google Scholar] [CrossRef][Green Version]
- Schröttle, J.; Suhas, D.L.; Harnik, N.; Sukhatme, J. Turbulence and equatorial waves in moist and dry shallow-water flow, excited through mesoscale stochastic forcing. Q. J. R. Meteorol. Soc. 2022, 148, 599–619. [Google Scholar] [CrossRef]
- Galperin, B.; Nickerson, A.K.; King, G.P.; Zhang, J.A. Turbulence of Tropical Cyclones: From Peristrophic to Zonostrophic. J. Geophys. Res. Atmos. 2025, 130, e2024JD042733. [Google Scholar] [CrossRef]
- Kerry, E.; Velez-Pardo, M.; Cronin, T.W. The Surprising Roles of Turbulence in Tropical Cyclone Physics. Atmosphere 2023, 14, 1254. [Google Scholar] [CrossRef]
- Barnes, E.A.; Hartmann, D.L. The Global Distribution of Atmospheric Eddy Length Scales. J. Clim. 2012, 25, 3409–3416. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Kraichnan, R. Eddy Viscosity in Two and Three Dimensions. J. Atmos. Sci. 1976, 33, 1521–1536. [Google Scholar] [CrossRef]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Biello, J.A.; Majda, A.J. Boundary layer dissipation and the nonlinear interaction of equatorial baroclinic and barotropic rossby waves. Geophys. Astrophys. Fluid Dyn. 2004, 98, 85–127. [Google Scholar] [CrossRef]
- Khouider, B.; Majda, A.J. A non-oscillatory balanced scheme for an idealized tropical climate model: Part I: Algorithm and validation. Theor. Comput. Fluid Dyn. 2005, 19, 331–354. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Thorncroft, C.D.; Hall, N.M.J. Three-Dimensional Structure and Dynamics of African Easterly Waves. Part I: Observations. J. Atmos. Sci. 2006, 63, 2212–2230. [Google Scholar] [CrossRef]
- Hall, N.M.J.; Kiladis, G.M.; Thorncroft, C.D. Three-Dimensional Structure and Dynamics of African Easterly Waves. Part II: Dynamical Modes. J. Atmos. Sci. 2006, 63, 2231–2245. [Google Scholar] [CrossRef]
- Majda, A. Introduction to PDEs and Waves for the Atmosphere and Ocean; American Mathematical Soc.: Providence, RI, USA, 2003; Volume 9. [Google Scholar]
- Khouider, B.; Majda, A.J.; Stechmann, S. Climate science in the tropics: Waves, vortices and PDEs. Nonlinearity 2012, 26, R1. [Google Scholar] [CrossRef]
- Kasahara, A.; Puri, K. Spectral representation of three-dimensional global data by expansion in normal mode functions. Mon. Weather Rev. 1981, 109, 37–51. [Google Scholar] [CrossRef]
- Kacimi, A.; Khouider, B. The transient response to an equatorial heat source and its convergence to steady state: Implications for MJO theory. Clim. Dyn. 2018, 50, 3315–3330. [Google Scholar] [CrossRef]
- Lin, J.L.; Zhang, M.; Mapes, B.E. Zonal momentum budget of the Madden-Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci. 2005, 62, 2172–2188. [Google Scholar] [CrossRef]
- Lin, J.L.; Mapes, B.E.; Weiqing, H. What Are the Sources of Mechanical Damping in Matsuno–Gill-Type Models? J. Clim. 2008, 21, 165–179. [Google Scholar] [CrossRef][Green Version]
- Romps, D.M. Rayleigh Damping in the Free Troposphere. J. Atmos. Sci. 2014, 71, 553–565. [Google Scholar] [CrossRef]
- Lee, S.K.; Chunzai, W.; Mapes, B.E. A Simple Atmospheric Model of the Local and Teleconnection Responses to Tropical Heating Anomalies. J. Clim. 2009, 22, 272–284. [Google Scholar] [CrossRef]
- Milton, A.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series; National Bureau of Standards: Gaithersburg, MD, USA, 1964; Volume 55.
- Majda, A.J.; Khouider, B. A numerical strategy for efficient modeling of the equatorial wave guide. Proc. Am. Acad. Sci. USA 2001, 98, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Khouider, B.; Majda, A.J. Equatorial Convectively Coupled Waves in a Simple Multicloud Model. J. Atmos. Sci. 2008, 65, 3376–3397. [Google Scholar] [CrossRef]
- Han, Y.; Khouider, B. Convectively Coupled Waves in a Sheared Environment. J. Atmos. Sci. 2010, 67, 2844–2863. [Google Scholar] [CrossRef]
- Zhang, C.; Adames, A.F.; Khouider, B.; Wang, B.; Yang, D. Four Theories of the Madden-Julian Oscillation. Rev. Geophys. 2020, 58, e2019RG000685. [Google Scholar] [CrossRef]
- Kacimi, A.; Khouider, B. A numerical investigation of the barotropic instability on the equatorial β-plane. Theor. Comput. Fluid Dyn. 2013, 27, 491–512. [Google Scholar] [CrossRef]
- Shukla, J. Barotropic-Baroclinic instability of mean zonal wind during summer monsoon. Pure Appl. Geophys. (PAGEOPH) 1977, 115, 1449–1461. [Google Scholar] [CrossRef]
- Shukla, J. CISK-Barotropic-Baroclinic Instability and the Growth of Monsoon Depressions. J. Atmos. Sci. 1978, 35, 495–508. [Google Scholar] [CrossRef]
- Youngs, M.K.; Thompson, A.F.; Lazar, A.; Richards, K.J. ACC Meanders, Energy Transfer, and Mixed Barotropic-Baroclinic Instability. J. Phys. Oceanogr. 2017, 47, 1291–1305. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, X.S. On the Seasonal Eddy Variability in the Kuroshio Extension. J. Phys. Oceanogr. 2018, 48, 1871–1886. [Google Scholar] [CrossRef]
- Sikka, D.R. Some aspects of the life history, structure and movement of monsoon depressions. Pure Appl. Geophys. 1977, 115, 1501–1529. [Google Scholar] [CrossRef]
- Suhas, D.L.; Boos, W.R. Monsoon Depression Amplification by Horizontal Shear and Humidity Gradients: A Shallow Water Perspective. J. Atmos. Sci. 2023, 80, 633–647. [Google Scholar] [CrossRef]
- Liu, C.H.; Moncrieff, M.W. Effects of convectively generated gravity waves and rotation on the organization of convection. J. Atmos. Sci. 2004, 61, 2218–2227. [Google Scholar] [CrossRef]
- Khouider, B.; Moncrieff, M.W. Organized convection parameterization for the ITCZ. J. Atmos. Sci. 2015, 72, 3073–3096. [Google Scholar] [CrossRef]
- Lebel, T.; Parker, D.J.; Flamant, C.; Bourlès, B.; Marticorena, B.; Mougin, E.; Peugeot, C.; Diedhiou, A.; Haywood, J.M.; Ngamini, J.B.; et al. The AMMA field campaigns: Multiscale and multidisciplinary observations in the West African region. Q. J. R. Meteorol. Soc. 2010, 136, 8–33. [Google Scholar] [CrossRef]
- Shubho, D.; Debasish, L.; Sarkar, S.; Sadhukhan, I.; Debnath, G.C. Organizational modes of squall-type Mesoscale Convective Systems during premonsoon season over eastern India. Atmos. Res. 2012, 106, 120–138. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Parker, D.J. The movement of Indian monsoon depressions by interaction with image vortices near the Himalayan wall. Q. J. R. Meteorol. Soc. 2016, 142, 2224–2229. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Vitart, F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–582. [Google Scholar] [CrossRef]
- Boos, W.R.; Hurley, J.V.; Murthy, V.S. Adiabatic westward drift of Indian monsoon depressions. Q. J. R. Meteorol. Soc. 2015, 141, 1035–1048. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Turner, A.G.; Inness, P.M.; Parker, D.E.; Levine, R.C. On the Structure and Dynamics of Indian Monsoon Depressions. Mon. Weather Rev. 2016, 144, 3391–3416. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A. Satellite and CALJET Aircraft Observations of Atmospheric Rivers over the Eastern North Pacific Ocean during the Winter of 1997/98. Mon. Weather Rev. 2004, 132, 1721–1745. [Google Scholar] [CrossRef]
- Dacre, H.F.; Clark, P.A.; Martinez-Alvarado, O.; Stringer, M.A.; Lavers, D.A. How Do Atmospheric Rivers Form? Bull. Am. Meteorol. Soc. 2015, 96, 1243–1255. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Webster, P.J. The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci. 2002, 59, 1593–1606. [Google Scholar] [CrossRef]
- Hunt, K.M.; Fletcher, J.K. The relationship between Indian monsoon rainfall and low-pressure systems. Clim. Dyn. 2019, 53, 1859–1871. [Google Scholar] [CrossRef]
- Raymond, D.J.; Zeng, X. Instability and large-scale circulations in a two-column model of the tropical troposphere. Q. J. R. Meteorol. Soc. 2000, 126, 3117–3135. [Google Scholar] [CrossRef]










| 0 | 100 | 500 | 1000 | 2000 | 3000 | 5000 | 10,000 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Viscosity | 0 | 0.000148 | 0.00370 | 0.01481 | 0.0592 | 0.133 | 0.370 | 1.8414 | |||
| Waves | Waves | Speed (m/s) | |||||||||
| Kelvin | 50 | 50 | 50 | 49.97 | 50.25 | 48.21 | 42.99 | 46.03 | |||
| Yanai west | −188.68 | −188.68 | −188.68 | −188.68 | −188.64 | −188.49 | −188.77 | −179.92 | |||
| Yanai east | 238.68 | 238.68 | 238.68 | 238.70 | 238.94 | 239.89 | 246.05 | 233.17 | |||
| Symmetric gravity west | −362.5 | −362.5 | −362.5 | −362.47 | −362.20 | −361.01 | −350.80 | −127.97 | |||
| Symmetric gravity east | 378.90 | 378.90 | 378.88 | 378.88 | 378.60 | 377.41 | 367.52 | 194.50 | |||
| Symmetric Rossby | −16.40 | −16.40 | −16.40 | −16.38 | −16.02 | −14.64 | −9.71 | −62.58 | |||
| Anti-symmetric gravity west | −427.15 | −427.15 | −427.15 | −427.17 | −471.60 | −496.35 | −451.40 | −175.04 | |||
| Anti-symmetric gravity east | 482.04 | 482.04 | 482.04 | 482.003 | 481.34 | 478.52 | 457.53 | 249.80 | |||
| Anti-symmetric Rossby | −9.88 | −9.88 | −9.88 | −9.91 | −10.03 | −10.54 | −13.41 | −75.91 | |||
| Kelvin | 50 | 50 | 50 | 50 | 49.94 | 49.71 | 48.27 | 48.55 | |||
| Yanai west | −48.01 | −48.01 | −48.01 | −48.008 | −83.91 | −83.56 | −82.48 | −79.24 | |||
| Yanai east | 134.01 | 134.01 | 134.01 | 134.03 | 134.21 | 134.95 | 139.34 | 132.40 | |||
| Symmetric gravity west | −182.18 | −182.18 | −182.17 | −182.17 | −182.03 | −181.44 | −176.41 | −48.98 | |||
| Symmetric gravity east | 197.80 | 197.80 | 197.80 | 197.79 | 197.65 | 197.06 | 192.15 | 119.26 | |||
| Symmetric Rossby | −15.61 | −15.61 | −15.61 | −15.61 | −15.56 | −15.33 | −14.006 | −48.98 | |||
| Anti-symmetric gravity west | −237.55 | −237.55 | −237.54 | −237.53 | −237.30 | −236.32 | −228.30 | −62.79 | |||
| Anti-symmetric gravity east | 247.13 | 247.13 | 247.13 | 247.11 | 246.74 | 245.18 | 234.22 | 145.01 | |||
| Anti-symmetric Rossby | −9.59 | −9.59 | −9.59 | −9.60 | −9.73 | −10.25 | −12.77 | −85.38 | |||
| Kelvin | 50 | 50 | 50 | 50 | 50.02 | 50.14 | 50.85 | 50.98 | |||
| Yanai west | −24.25 | −24.25 | −24.25 | −24.24 | −24.11 | −23.67 | −23.07 | −12.12 | |||
| Yanai east | 74.25 | 74.25 | 74.25 | 74.26 | 74.41 | 75.02 | 77.70 | 75.08 | |||
| Symmetric gravity west | −82.53 | −82.53 | −82.53 | −82.53 | −82.34 | −82.34 | −81.01 | −64.42 | |||
| Symmetric gravity east | 94.13 | 94.13 | 94.13 | 94.12 | 94.06 | 93.79 | 91.83 | 75.01 | |||
| Symmetric Rossby | −11.59 | −11.59 | −11.59 | −11.59 | −11.59 | −11.59 | −11.67 | −11.57 | |||
| Anti-symmetric gravity west | −103.11 | −103.11 | −103.11 | −103.11 | −103.05 | −102.81 | −100.81 | −22.49 | |||
| Anti-symmetric gravity east | 110.98 | 110.98 | 110.98 | 110.97 | 110.77 | 109.95 | 105.54 | 83.75 | |||
| Anti-symmetric Rossby | −7.86 | −7.86 | −7.86 | −7.88 | −8.02 | −8.48 | −9.36 | −74.21 | |||
| Kelvin | 50 | 50 | 50 | 50 | 50.04 | 50.19 | 50.78 | 50.82 | |||
| Yanai west | −7.79 | −7.79 | −7.79 | −7.77 | −7.63 | −7.53 | −7.50 | −4.26 | |||
| Yanai east | 57.79 | 57.79 | 57.79 | 57.80 | 57.93 | 58.46 | 59.68 | 58.88 | |||
| Symmetric gravity west | −58.89 | −58.89 | −58.89 | −58.89 | −58.88 | −58.86 | −58.68 | −56.37 | |||
| Symmetric gravity east | 64.79 | 64.79 | 64.79 | 64.79 | 64.74 | 64.56 | 63.72 | 60.17 | |||
| Symmetric Rossby | −5.89 | −5.89 | −5.89 | −5.89 | −5.89 | −5.89 | −5.82 | −4.63 | |||
| Anti-symmetric gravity west | −66.42 | −66.42 | −66.42 | −66.42 | −66.41 | −66.37 | −66.006 | −7.32 | |||
| Anti-symmetric gravity east | 71.18 | 71.18 | 71.18 | 71.17 | 71.02 | 70.45 | 68.83 | 63.88 | |||
| Anti-symmetric Rossby | −4.76 | −4.76 | −4.76 | −4.77 | −4.91 | −5.008 | −5.001 | −61.18 | |||
| 0 | 100 | 500 | 1000 | 2000 | 3000 | 5000 | 10,000 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Viscosity | 0 | 0.000148 | 0.00370 | 0.01481 | 0.0592 | 0.133 | 0.370 | 1.8414 | |||
| Waves | Waves | Speed (m/s) | |||||||||
| Kelvin | 50 | 50 | 50 | 49.97 | 49.63 | 48.32 | 36.20 | 22.21 | |||
| Yanai west | −188.68 | −188.68 | −188.68 | −188.68 | −188.64 | −188.51 | −188.009 | −181.43 | |||
| Yanai east | 238.68 | 238.68 | 238.68 | 238.70 | 238.94 | 239.85 | 245.45 | 297.43 | |||
| Symmetric gravity west | −362.5 | −362.56 | −363.41 | −362.56 | −363.41 | −366.68 | −386.37 | −375.76 | |||
| Symmetric gravity east | 378.90 | 378.90 | 378.90 | 378.96 | 382.09 | 384.42 | 411.50 | 392.55 | |||
| Symmetric Rossby | −16.40 | −16.40 | −16.32 | −15.38 | −13.34 | −12.05 | −9.48 | −22.72 | |||
| Anti-symmetric gravity west | −427.15 | −427.15 | −427.15 | −472 | −474.5 | −483.02 | −566.46 | −432.23 | |||
| Anti-symmetric gravity east | 482.04 | 482.04 | 482.04 | 482.003 | 484.71 | 494.01 | 549.27 | 445.88 | |||
| Anti-symmetric Rossby | −9.88 | −9.88 | −9.52 | −7.23 | 8.89 | −8.91 | −10.58 | −37.88 | |||
| Kelvin | 50 | 50 | 50 | 50 | 49.94 | 49.72 | 48.12 | 27.44 | |||
| Yanai west | −48.01 | −48.01 | −48.01 | −48.008 | −83.91 | −83.59 | −81.73 | −72.06 | |||
| Yanai east | 134.01 | 134.01 | 134.01 | 134.03 | 134.21 | 134.92 | 139.17 | 171.04 | |||
| Symmetric gravity west | −182.18 | −182.18 | −182.18 | −182.20 | −182.57 | −184.01 | −176.41 | −194.12 | |||
| Symmetric gravity east | 197.80 | 197.80 | 197.80 | 197.84 | 198.48 | 200.94 | 216.52 | 206.98 | |||
| Symmetric Rossby | −15.61 | −15.61 | −15.61 | −15.30 | −13.26 | −12.65 | −10.75 | −18.86 | |||
| Anti-symmetric gravity west | −237.55 | −237.55 | −237.55 | −237.62 | −238.70 | −242.77 | −286.07 | −220.98 | |||
| Anti-symmetric gravity east | 247.13 | 247.13 | 247.14 | 247.23 | 248.54 | 253.45 | 281.36 | 232.44 | |||
| Anti-symmetric Rossby | −9.59 | −9.59 | −9.59 | −9.60 | −9.73 | −10.25 | −12.77 | −85.38 | |||
| Kelvin | 50 | 50 | 50 | 50 | 50.02 | 50.14 | 50.81 | 54.46 | |||
| Yanai west | −24.25 | −24.25 | −24.25 | −24.24 | −24.11 | −23.66 | −21.19 | −20.21 | |||
| Yanai east | 74.25 | 74.25 | 74.25 | 74.26 | 74.41 | 74.99 | 78.20 | 91.08 | |||
| Symmetric gravity west | −82.53 | −82.53 | −82.53 | −82.54 | −82.67 | −83.13 | −85.62 | −86.10 | |||
| Symmetric gravity east | 94.13 | 94.13 | 94.13 | 94.15 | 94.50 | 95.84 | 104.21 | 96.37 | |||
| Symmetric Rossby | −11.59 | −11.59 | −11.58 | −11.49 | −10.48 | −9.69 | −9.61 | −9.15 | |||
| Anti-symmetric gravity west | −103.11 | −103.11 | −103.11 | -103.14 | −102.87 | −105.07 | −122.44 | −104.78 | |||
| Anti-symmetric gravity east | 110.98 | 110.98 | 110.98 | 111.03 | 111.65 | 113.97 | 124.12 | 100.61 | |||
| Anti-symmetric Rossby | −7.86 | −7.86 | −7.84 | −7.54 | −6.47 | −6.77 | −9.31 | −11.38 | |||
| Waves | Waves | Speed (m/s) | |||||||||
| Kelvin | 50 | 50 | 50 | 50 | 50.04 | 50.19 | 50.92 | 53.52 | |||
| Yanai west | −7.79 | −7.79 | −7.79 | −7.77 | −7.62 | −7.25 | −6.89 | −6.92 | |||
| Yanai east | 57.79 | 57.79 | 57.79 | 57.80 | 57.93 | 58.43 | 60.84 | 69.85 | |||
| Symmetric gravity west | −58.89 | −58.89 | −58.89 | −58.89 | −58.96 | −58.20 | −60.34 | −68.60 | |||
| Symmetric gravity east | 64.79 | 64.79 | 64.79 | 64.81 | 50.04 | 66.01 | 70.01 | 66.28 | |||
| Symmetric Rossby | −5.89 | −5.89 | −5.89 | −5.82 | −5.28 | −5.16 | −5.16 | −5.19 | |||
| Anti-symmetric gravity west | −66.42 | −66.42 | −66.42 | −66.44 | −66.65 | −67.42 | −70.68 | −71.55 | |||
| Anti-symmetric gravity east | 71.18 | 71.18 | 71.19 | 71.21 | 71.63 | 73.14 | 76.17 | 69 | |||
| Anti-symmetric Rossby | −4.76 | −4.76 | −4.74 | −4.58 | −4.27 | −4.51 | −4.42 | −4.87 | |||
| 0 | 100 | 500 | 1000 | 2000 | 3000 | 5000 | 10,000 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| N = 4 | Viscosity | 0 | 0.000148 | 0.00370 | 0.01481 | 0.0592 | 0.133 | 0.370 | 1.8414 | ||
| Waves | Waves | (hr−1) | |||||||||
| Kelvin | 0 | 0.06 | |||||||||
| Yanai west | 0 | 0.016 | 0.04 | 0.123 | |||||||
| Yanai east | 0 | 0.01 | 0.04 | 0.13 | |||||||
| Symmetric gravity west | 0 | 0.011 | 0.026 | 0.06 | 0.32 | ||||||
| Symmetric gravity east | 0 | 0.013 | 0.030 | 0.085 | 0.38 | ||||||
| Symmetric Rossby | 0 | 0.061 | 0.065 | 0.19 | |||||||
| Anti-symmetric gravity west | 0 | 0.018 | 0.042 | 0.12 | 0.54 | ||||||
| Anti-symmetric gravity east | 0 | 0.02 | 0.046 | 0.13 | 0.60 | ||||||
| Anti-symmetric Rossby | 0 | 0.017 | 0.039 | 0.11 | 0.40 | ||||||
| Kelvin | 0 | ||||||||||
| Yanai west | 0 | 0.018 | 0.04 | 0.14 | |||||||
| Yanai east | 0 | ||||||||||
| Symmetric gravity west | 0 | ||||||||||
| Symmetric gravity east | 0 | 0.015 | 0.035 | 0.09 | 0.43 | ||||||
| Symmetric Rossby | 0 | 0.01 | 0.024 | 0.068 | 0.33 | ||||||
| Anti-symmetric gravity west | 0 | 0.019 | 0.043 | 0.12 | 0.55 | ||||||
| Anti-symmetric gravity east | 0 | 0.022 | 0.050 | 0.14 | 0.65 | ||||||
| Anti-symmetric Rossby | 0 | 0.018 | 0.042 | 0.12 | 0.43 | ||||||
| Kelvin | 0 | 0.31 | |||||||||
| Yanai west | 0 | 0.015 | 0.034 | 0.09 | 0.76 | ||||||
| Yanai east | 0 | 0.019 | 0.043 | 0.11 | 0.4 | ||||||
| Symmetric gravity west | 0 | 0.017 | 0.039 | 0.10 | 0.4 | ||||||
| Symmetric gravity east | 0 | 0.025 | 0.058 | 0.16 | 0.69 | ||||||
| Symmetric Rossby | 0 | 0.020 | 0.046 | 0.13 | 0.54 | ||||||
| Anti-symmetric gravity west | 0 | 0.025 | 0.057 | 0.16 | 0.34 | ||||||
| Anti-symmetric gravity east | 0 | 0.032 | 0.073 | 0.21 | 0.92 | ||||||
| Anti-symmetric Rossby | 0 | 0.028 | 0.064 | 0.18 | 0.6 | ||||||
| Kelvin | 0 | ||||||||||
| Yanai west | 0 | ||||||||||
| Yanai east | 0 | ||||||||||
| Symmetric gravity west | 0 | ||||||||||
| Symmetric gravity east | 0 | ||||||||||
| Symmetric Rossby | 0 | ||||||||||
| Anti-symmetric gravity west | 0 | ||||||||||
| Anti-symmetric gravity east | 0 | ||||||||||
| Anti-symmetric Rossby | 0 | ||||||||||
| 0 | 100 | 500 | 1000 | 2000 | 3000 | 5000 | 10,000 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Viscosity | 0 | 0.000148 | 0.00370 | 0.01481 | 0.0592 | 0.133 | 0.370 | 1.8414 | |||
| Waves | Waves | (hr−1) | |||||||||
| Kelvin | 0 | 0.023 | 0.045 | ||||||||
| Yanai west | 0 | 0.0163 | 0.043 | 0.133 | |||||||
| Yanai east | 0 | 0.0183 | 0.048 | 0.141 | |||||||
| Symmetric gravity west | 0 | 0.011 | 0.0257 | 0.063 | 0.510 | ||||||
| Symmetric gravity east | 0 | 0.06296 | 0.072 | 0.565 | |||||||
| Symmetric Rossby | 0 | 0.122 | 0.497 | ||||||||
| Anti-symmetric gravity west | 0 | 0.018 | 0.0403 | 0.112 | 0.721 | ||||||
| Anti-symmetric gravity east | 0 | 0.020 | 0.0435 | 0.088 | 0.772 | ||||||
| Anti-symmetric Rossby | 0 | 0.019 | 0.0437 | 0.048 | 0.21 | ||||||
| Kelvin | 0 | 0.0119 | 0.0323 | 0.0952 | |||||||
| Yanai west | 0 | 0.0181 | 0.0483 | 0.145 | |||||||
| Yanai east | 0 | ||||||||||
| Symmetric gravity west | 0 | 0.0118 | 0.0261 | 0.0744 | 0.512 | ||||||
| Symmetric gravity east | 0 | 0.0154 | 0.0339 | 0.0833 | 0.210 | ||||||
| Symmetric Rossby | 0 | 0.0136 | 0.0361 | 0.535 | |||||||
| Anti-symmetric gravity west | 0 | 0.019 | 0.0413 | 0.1167 | 0.725 | ||||||
| Anti-symmetric gravity east | 0 | 0.022 | 0.0476 | 0.0969 | 0.824 | ||||||
| Anti-symmetric Rossby | 0 | 0.0194 | 0.0205 | 0.0568 | 0.262 | ||||||
| Kelvin | 0 | 0.014 | 0.031 | 0.085 | 0.321 | ||||||
| Yanai west | 0 | 0.0157 | 0.034 | 0.091 | 0.325 | ||||||
| Yanai east | 0 | 0.0195 | 0.043 | 0.114 | 0.371 | ||||||
| Symmetric gravity west | 0 | 0.0175 | 0.038 | 0.102 | 0.347 | ||||||
| Symmetric gravity east | 0 | 0.0256 | 0.056 | 0.139 | 0.452 | ||||||
| Symmetric Rossby | 0 | 0.0187 | 0.036 | 0.095 | 0.374 | ||||||
| Anti-symmetric gravity west | 0 | 0.025 | 0.054 | 0.162 | 0.878 | ||||||
| Anti-symmetric gravity east | 0 | 0.032 | 0.070 | 0.150 | 0.580 | ||||||
| Anti-symmetric Rossby | 0 | 0.0192 | 0.041 | 0.1170 | 0.5 | ||||||
| Kelvin | 0 | 0.011 | 0.044 | 0.1 | 0.276 | 1.073 | |||||
| Yanai west | 0 | 0.011 | 0.045 | 0.099 | 0.269 | 1.074 | |||||
| Yanai east | 0 | 0.012 | 0.051 | 0.114 | 0.307 | 1.178 | |||||
| Symmetric gravity west | 0 | 0.011 | 0.047 | 0.102 | 0.28 | 1.397 | |||||
| Symmetric gravity east | 0 | 0.014 | 0.044 | 0.128 | 0.324 | 1.251 | |||||
| Symmetric Rossby | 0 | 0.013 | 0.048 | 0.105 | 0.290 | 1.157 | |||||
| Anti-symmetric gravity west | 0 | 0.0135 | 0.053 | 0.119 | 0.310 | 1.599 | |||||
| Anti-symmetric gravity east | 0 | 0.016 | 0.064 | 0.141 | 0.340 | 1.389 | |||||
| Anti-symmetric Rossby | 0 | 0.014 | 0.059 | 0.113 | 0.386 | 1.279 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boucherikha, A.; Kacimi, A.; Khouider, B. Viscous Baroclinic-Barotropic Instability in the Tropics: Is It the Source of Both Easterly Waves and Monsoon Depressions? Climate 2025, 13, 254. https://doi.org/10.3390/cli13120254
Boucherikha A, Kacimi A, Khouider B. Viscous Baroclinic-Barotropic Instability in the Tropics: Is It the Source of Both Easterly Waves and Monsoon Depressions? Climate. 2025; 13(12):254. https://doi.org/10.3390/cli13120254
Chicago/Turabian StyleBoucherikha, Ahlem, Abderrahim Kacimi, and Boualem Khouider. 2025. "Viscous Baroclinic-Barotropic Instability in the Tropics: Is It the Source of Both Easterly Waves and Monsoon Depressions?" Climate 13, no. 12: 254. https://doi.org/10.3390/cli13120254
APA StyleBoucherikha, A., Kacimi, A., & Khouider, B. (2025). Viscous Baroclinic-Barotropic Instability in the Tropics: Is It the Source of Both Easterly Waves and Monsoon Depressions? Climate, 13(12), 254. https://doi.org/10.3390/cli13120254

