Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = synoptic event

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4841 KiB  
Article
Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
by Kylie Hoffman, David D. Turner and Belay B. Demoz
Atmosphere 2025, 16(8), 926; https://doi.org/10.3390/atmos16080926 (registering DOI) - 30 Jul 2025
Viewed by 87
Abstract
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with [...] Read more.
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with elevated divergence near 3 km AGL and moisture transport over both warm and cold sectors. Data from Raman lidar (RL), Atmospheric Emitted Radiance Interferometer (AERI), and Radar Wind Profilers (RWP) were used to characterize vertical profiles of the event, revealing the presence of a narrow moist updraft, horizontal moisture advection, and cloud development ahead of the front. Convection parameters, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), were derived from collocated AERI and RL. Regions of high CAPE were aligned with areas of high moisture, indicating that convection was more favorable at moist elevated levels than near the surface. RWP observations revealed vorticity structures consistent with existing theories. This study highlights the value of high-resolution, continuous profiling from remote sensors to resolve mesoscale processes and evaluate convection potential. The event underscores the role of elevated moisture and wind shear in modulating convection initiation along a trailing-end cold front boundary where mesoscale and synoptic forces interact. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 3289 KiB  
Article
Significant Attribution of Urbanization to Triggering Extreme Rainfall in the Urban Core—A Case of Dallas–Fort Worth in North Texas
by Junaid Ahmad, Jessica A. Eisma and Muhammad Sajjad
Urban Sci. 2025, 9(8), 295; https://doi.org/10.3390/urbansci9080295 - 29 Jul 2025
Viewed by 305
Abstract
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, [...] Read more.
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, which has minimal orographic and coastal influences, to analyze the urban impact on rainfall. DFW was divided into 256 equal grids (10 km × 10 km) and grouped into four clusters using K-means clustering based on the urbanization ratio. Using Multi-Sensor Precipitation Estimator data (with a spatial resolution of 4 km), we examined rainfall exceeding the 95th percentile (i.e., extreme rainfall) on low synoptic days to highlight localized effects. The urban heat island (UHI) effect was estimated based on the average temperature difference between the urban core and the other three non-urban clusters. Multiple rainfall events were monitored on an hourly basis. Potential linkages between urbanization, the UHI, extreme rainfall, wind speed, wind direction, convective inhibition, and convective available potential energy were evaluated. An intense UHI within the DFW area triggered a tornado, resulting in maximum rainfall in the urban core area under high wind speeds and a dominant wind direction. Our findings further clarify the role of urbanization in generating extreme rainfall events, which is essential for developing better policies for urban planning in response to intensifying extreme events due to climate change. Full article
Show Figures

Figure 1

21 pages, 6329 KiB  
Article
Mesoscale Analysis and Numerical Simulation of an Extreme Precipitation Event on the Northern Slope of the Middle Kunlun Mountains in Xinjiang, China
by Chenxiang Ju, Man Li, Xia Yang, Yisilamu Wulayin, Ailiyaer Aihaiti, Qian Li, Weilin Shao, Junqiang Yao and Zonghui Liu
Remote Sens. 2025, 17(14), 2519; https://doi.org/10.3390/rs17142519 - 19 Jul 2025
Viewed by 285
Abstract
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of [...] Read more.
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of the driving mechanisms, we combine the European Centre for Medium-Range Weather Forecasts Reanalysis-5 (ERA5) reanalysis, regional observations, and high-resolution Weather Research and Forecasting model (WRF) simulations to dissect the 14–17 June 2021, extreme rainfall event. A deep Siberia–Central Asia trough and nascent Central Asian vortex established a coupled upper- and low-level jet configuration that amplified large-scale ascent. Embedded shortwaves funnelled abundant moisture into the orographic basin, where strong low-level moisture convergence and vigorous warm-sector updrafts triggered and sustained deep convection. WRF reasonably replicated observed wind shear and radar echoes, revealing the descent of a mid-level jet into an ultra-low-level jet that provided a mesoscale engine for storm intensification. Momentum–budget diagnostics underscore the role of meridional momentum transport along sloping terrain in reinforcing low-level convergence and shear. Together, these synoptic-to-mesoscale interactions and moisture dynamics led to this landmark extreme-precipitation event. Full article
Show Figures

Graphical abstract

24 pages, 17002 KiB  
Article
The Role of Air Mass Advection and Solar Radiation in Modulating Air Temperature Anomalies in Poland
by Olga Zawadzka-Mańko and Krzysztof M. Markowicz
Atmosphere 2025, 16(7), 820; https://doi.org/10.3390/atmos16070820 - 5 Jul 2025
Viewed by 702
Abstract
This study examines the roles of air mass advection and solar radiation in shaping daily air temperature anomalies in Warsaw, Poland, from 2008 to 2023. It integrates solar radiation data, HYSPLIT back-trajectories, air temperature measurements, and machine learning methods, which are key atmospheric [...] Read more.
This study examines the roles of air mass advection and solar radiation in shaping daily air temperature anomalies in Warsaw, Poland, from 2008 to 2023. It integrates solar radiation data, HYSPLIT back-trajectories, air temperature measurements, and machine learning methods, which are key atmospheric factors contributing to temperature anomalies in different seasons. Radiation dominates during warm seasons, while advection-related geographic factors are more influential during winter. Increased solar radiation is observed across all seasons during high-positive temperature anomalies (exceeding two standard deviations). In contrast, cold anomalies in summer are accompanied by strong negative solar radiation anomalies (−136.3 W/m2), while winter cold events may still coincide with positive radiation anomalies (25.7 W/m2). Very slow circulation over Central Europe, which occurs twice as often in summer as in winter, leads to positive temperature (1.3 °C) and negative radiation (−2.1 W/m2) anomalies in summer and to negative temperature (−1.9 °C) anomalies and slightly positive radiation (0.3 W/m2) anomalies in winter. The seasonal variability in the spatial origin of air masses reflects shifts in synoptic-scale circulation patterns. These findings highlight the importance of considering the combined influence of radiative and advective processes in driving temperature extremes and their seasonal dynamics in mid-latitude climates. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 10218 KiB  
Article
Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network
by María del Carmen Casas-Castillo, Xavier Navarro and Raül Rodríguez-Solà
Hydrology 2025, 12(7), 178; https://doi.org/10.3390/hydrology12070178 - 3 Jul 2025
Cited by 1 | Viewed by 467
Abstract
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense [...] Read more.
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense rain gauge network (1994–2019). The aim is to identify dominant spatial patterns and understand how storms evolve in relation to local urban and topographic features. Principal component analysis and simple scaling analysis revealed signs of a rainfall island effect, possibly linked to the urban heat island and modulated by orographic and coastal influences. Tailored rainfall indices highlighted a division between inland areas shaped by orography and coastal zones influenced by the sea. These spatial structures evolved with rainfall duration, shifting from localized contrasts at a 10 min resolution to more homogeneous distributions at daily scales. Storm tracking showed that 90% of speeds ranged from 5 to 60 km/h and intense rainfall events typically moved east–southeast toward the sea and north–northeast. Faster storms tended to follow preferred directions reflecting mesoscale circulations and possible modulations by local terrain. These findings underscore how urban morphology, local relief, and a coastal setting may shape rainfall at the city scale, in interaction with broader Mediterranean synoptic dynamics. Full article
Show Figures

Graphical abstract

18 pages, 2010 KiB  
Article
Frequency Analysis and Trend of Maximum Wind Speed for Different Return Periods in a Cold Diverse Topographical Region of Iran
by Leila Alimohamadian and Raoof Mostafazadeh
Climate 2025, 13(7), 138; https://doi.org/10.3390/cli13070138 - 2 Jul 2025
Viewed by 358
Abstract
This study examines the trends and statistical characteristics of daily maximum wind speed across various synoptic stations in Ardabil Province, Iran, with diverse topography. Using daily wind speed data from multiple synoptic stations, the research focuses on three primary objectives: assessing changes in [...] Read more.
This study examines the trends and statistical characteristics of daily maximum wind speed across various synoptic stations in Ardabil Province, Iran, with diverse topography. Using daily wind speed data from multiple synoptic stations, the research focuses on three primary objectives: assessing changes in daily maximum wind speed, fitting various statistical distributions to the data, and estimating wind speed values for different return periods. In this research, the temporal changes were evaluated while analyzing the frequency of the data, and then the maximum wind speed values were calculated and analyzed for different return periods by fitting frequency distributions. The analysis reveals notable variability in maximum wind speeds across stations. The trend analysis, conducted using the nonparametric Mann–Kendall method, reveals significant positive trends in maximum wind speed at Meshgin-Shahr and Sareyn (p < 0.05). Meanwhile, data from Khalkhal station displays a significant decreasing trend, while other stations, like Ardabil and Parsabad, show no meaningful trends. According to the statistical distributions analysis, the Fisher–Tippett T2 mirrored distribution demonstrates the best fit for Ardabil, with an absolute difference of 2.52%, while the Laplace distribution yields the lowest discrepancies for Bilesavar (3.50%) and Ardabil Airport (3.83%). This ranking indicates that, despite similar first-ranked distributions in some stations, secondary models show variability, suggesting localized influences on wind speed that modify distributional fit. As a conclusion, the Laplace (std) distribution stands out as the best-fit model for several stations, showing relative consistency across several stations. These findings demonstrate the necessity of site-specific statistical modeling to accurately represent wind speed patterns across the diverse landscapes of Ardabil Province. Based on the results, comparing the wind characteristics in the study area with those of other regions in Iran, as well as analyzing the reported trends, can be useful in determining the impact of the region’s climatic conditions and topography on wind patterns. This research offers key insights into wind speed variability and trends in Ardabil, crucial for climate adaptation and risk management of extreme wind events. Full article
(This article belongs to the Special Issue Wind‑Speed Variability from Tropopause to Surface)
Show Figures

Figure 1

21 pages, 11264 KiB  
Article
Comparative Analysis of Perturbation Characteristics Between LBGM and ETKF Initial Perturbation Methods in Convection-Permitting Ensemble Forecasts
by Jiajun Li, Chaohui Chen, Xiong Chen, Hongrang He, Yongqiang Jiang and Yanzhen Kang
Atmosphere 2025, 16(6), 744; https://doi.org/10.3390/atmos16060744 - 18 Jun 2025
Viewed by 327
Abstract
This study investigates an extreme squall line event that occurred in northern Jiangxi Province, China on 30–31 March 2024. Based on the WRF model, convection-permitting ensemble forecast experiments were conducted using two distinct initial perturbation approaches, namely, the Local Breeding of Growing Modes [...] Read more.
This study investigates an extreme squall line event that occurred in northern Jiangxi Province, China on 30–31 March 2024. Based on the WRF model, convection-permitting ensemble forecast experiments were conducted using two distinct initial perturbation approaches, namely, the Local Breeding of Growing Modes (LBGM) and the Ensemble Transform Kalman Filter (ETKF), to compare their perturbation structures, spatiotemporal evolution, and precipitation forecasting capabilities. The experiments demonstrated the following: (1) The LBGM method significantly improved the root mean square error (RMSE) of mid-upper tropospheric variables, particularly demonstrating superior performance in low-level temperature field forecasts, but the overall ensemble spread of the system was consistently smaller than that of ETKF. (2) The evolution of dynamical spread within the squall line system confirmed that ETKF generated greater spread growth in low-level wind fields, while LBGM exhibited better spatiotemporal alignment between mid-upper tropospheric wind field spread and the synoptic system evolution. (3) Vertical profiles of total moist energy revealed that ETKF initially exhibited higher total moist energy than LBGM. Both methods showed increasing total moist energy with forecast lead time, displaying a bimodal structure dominated by kinetic energy in upper layers (300–100 hPa) and balanced kinetic energy and moist physics terms in lower layers (1000–700 hPa), with ETKF demonstrating larger growth rates. (4) Kinetic energy spectrum analysis indicated that ETKF exhibited significantly higher perturbation energy than LBGM in the 100–1000 km mesoscale range and superior small- to medium-scale perturbation characterization at the 6–60 km scales initially. Precipitation and radar echo verification showed that ETKF effectively corrected positional biases in precipitation forecasts, while LBGM more accurately reproduced the bow-shaped echo structure near Nanchang due to its precise simulation of leading-edge vertical updrafts and rear-sector low pseudo-equivalent potential temperature regions. Full article
Show Figures

Figure 1

19 pages, 18325 KiB  
Article
Thermodynamic Study of a Mediterranean Cyclone with Tropical Characteristics in September 2020
by Sotirios T. Arsenis, Angelos I. Siozos and Panagiotis T. Nastos
Atmosphere 2025, 16(6), 722; https://doi.org/10.3390/atmos16060722 - 14 Jun 2025
Viewed by 545
Abstract
This study examines the evolution, structure, and dynamic and thermodynamic mechanisms of a Mediterranean tropical-like cyclone (TLC), or medicane (from Mediterranean–Hurricane), that occurred in the central Mediterranean region from 15 to 19 September 2020. This event is considered an extreme meteorological phenomenon, particularly [...] Read more.
This study examines the evolution, structure, and dynamic and thermodynamic mechanisms of a Mediterranean tropical-like cyclone (TLC), or medicane (from Mediterranean–Hurricane), that occurred in the central Mediterranean region from 15 to 19 September 2020. This event is considered an extreme meteorological phenomenon, particularly impacting the Greek area and affecting the country’s economic and social structures. It is one of the most significant recorded Mediterranean cyclone phenomena in the broader Mediterranean region. The synoptic and dynamic environment, as well as the thermodynamic structure of this atmospheric disturbance, were analyzed using thermodynamic parameters. The system’s development can be described through three distinct phases, characterized by its symmetrical structure and warm core, as illustrated in the phase space diagrams and further supported by dynamical analysis. During the first phase, on 15 September, the structure of the upper tropospheric layers began to strengthen the parent barometric low, which had been in the Sirte Bay region since 13 September. The influence of upper-level dynamical processes was responsible for the reconstruction of the weakened barometric low. In the second phase, during the formation of the Mediterranean cyclone, low-level diabatic processes determined the evolution of the surface cyclone without significant support from upper-tropospheric baroclinic processes. Therefore, in this phase, the system is characterized as barotropic. In the third phase, the system remained barotropic but showed a continuous weakening tendency as the sea surface pressure steadily increased. This comprehensive analysis highlights the intricate processes involved in the development and evolution of Mediterranean cyclones with tropical characteristics. Full article
(This article belongs to the Special Issue Climate and Weather Extremes in the Mediterranean)
Show Figures

Figure 1

25 pages, 12964 KiB  
Article
Teleconnection Patterns and Synoptic Drivers of Climate Extremes in Brazil (1981–2023)
by Marcio Cataldi, Lívia Sancho, Priscila Esposte Coutinho, Louise da Fonseca Aguiar, Vitor Luiz Victalino Galves and Aimée Guida
Atmosphere 2025, 16(6), 699; https://doi.org/10.3390/atmos16060699 - 10 Jun 2025
Viewed by 1411
Abstract
Brazil is increasingly affected by extreme weather events due to climate change, with pronounced regional differences in temperature and precipitation patterns. The southeast region is particularly vulnerable, frequently experiencing severe droughts and extreme heatwaves linked to atmospheric blocking events and intense rainfall episodes [...] Read more.
Brazil is increasingly affected by extreme weather events due to climate change, with pronounced regional differences in temperature and precipitation patterns. The southeast region is particularly vulnerable, frequently experiencing severe droughts and extreme heatwaves linked to atmospheric blocking events and intense rainfall episodes driven by the South Atlantic Convergence Zone (SACZ). These phenomena contribute to recurring climate-related disasters. The country’s heavy reliance on hydropower heightens its susceptibility to droughts, while growing evidence points to intensifying dry spells and wildfires across multiple regions, threatening agricultural output and food security. Urban areas, particularly, are experiencing more frequent and severe heatwaves, posing serious health risks to vulnerable populations. This study investigates the links between global teleconnection indices and synoptic-scale systems, specifically blocking events and SACZ activity, and their influence on Brazil’s extreme heat, drought conditions, and river flow variability over the past 30 to 40 years. By clarifying these interactions, the research aims to enhance understanding of how large-scale atmospheric dynamics shape climate extremes and to assess their broader implications for water resource management, energy production, and regional climate variability. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

20 pages, 7606 KiB  
Article
Convection-Permitting Ability in Simulating an Extratropical Cyclone Case over Southeastern South America
by Matheus Henrique de Oliveira Araújo Magalhães, Michelle Simões Reboita, Rosmeri Porfírio da Rocha, Thales Chile Baldoni, Geraldo Deniro Gomes and Enrique Vieira Mattos
Atmosphere 2025, 16(6), 675; https://doi.org/10.3390/atmos16060675 - 2 Jun 2025
Viewed by 664
Abstract
Between 14 and 16 June 2023, an extratropical cyclone affected the south-southeastern coast of Brazil, causing significant damage and loss of life. In the state of Rio Grande do Sul, Civil Defense authorities reported at least 16 fatalities. Although numerical models can simulate [...] Read more.
Between 14 and 16 June 2023, an extratropical cyclone affected the south-southeastern coast of Brazil, causing significant damage and loss of life. In the state of Rio Grande do Sul, Civil Defense authorities reported at least 16 fatalities. Although numerical models can simulate the general characteristics of extratropical cyclones, they often struggle to accurately represent the intensity and timing of strong winds and heavy precipitation. One approach to improving such simulations is the use of convective-permitting models (CPMs), in which convection is explicitly resolved. In this context, the main objective of this study is to assess the performance of the Weather Research and Forecasting (WRF) model in CP mode, nested in the ERA5 reanalysis, in representing both the synoptic and mesoscale structures of the cyclone, as well as its associated strong winds and precipitation. The WRF-CP successfully simulated the cyclone’s track, though with some discrepancies in the cyclone location during the first 12 h. Comparisons with radar-based precipitation estimates indicated that the WRF-CP captured the location of the observed precipitation bands. During the cyclone’s occlusion phase—when precipitation was particularly intense—hourly simulated precipitation and 10 m wind (speed, zonal, and meridional components) were evaluated against observations from meteorological stations. WRF-CP demonstrated strong skill in simulating both the timing and intensity of precipitation, with correlation coefficients exceeding 0.4 and biases below 0.5 mm h−1. Some limitations were observed in the simulation of 10 m wind speed, which tended to be overestimated. However, the model performed well in simulating the wind components, particularly the zonal component, as indicated by predominantly high correlation values (most above 0.4), suggesting a good representation of wind direction, which is a function of the zonal and meridional components. Overall, the simulation highlights the potential of WRF-CP for studying extreme weather events, including the small-scale structures embedded within synoptic-scale cyclones responsible for producing adverse weather. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
Show Figures

Figure 1

21 pages, 19457 KiB  
Article
Comparative Analysis of Hydrodynamic Characteristics off Shandong Under the Influence of Two Types of Storm Surges
by Wenwen Liu, Qingdan Zheng, Zhizu Wang and Juncheng Zuo
J. Mar. Sci. Eng. 2025, 13(6), 1054; https://doi.org/10.3390/jmse13061054 - 27 May 2025
Viewed by 351
Abstract
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model [...] Read more.
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model to conduct numerical simulations and comparative analyses of two 2022 surge events, Typhoon Muifa (tropical) and the “221003” extratropical surge. The results demonstrate that hydrodynamic responses exhibit strong dependence on surge-generating meteorological regimes. Tropical surge dynamics correlate closely with typhoon track geometry, intensity gradients, and asymmetric wind field structures, manifesting rightward-biased energy intensification relative to storm motion. Conversely, extratropical surge variations align with evolving wind-pressure configurations during cold air advection, driven by synoptic-scale atmospheric reorganization. The hydrodynamic environmental response in the sea areas surrounding Jiaodong and Laizhou Bay is particularly pronounced, influenced by the intensity of wind stress on the sea surface, as well as the bathymetry and coastal geometry. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

19 pages, 5635 KiB  
Article
Catastrophic Precipitation in the City of Bielsko-Biała (Polish Carpathian Mountains) and Their Synoptic Circumstances (1951–2024)
by Robert Twardosz, Izabela Guzik and Marta Cebulska
Water 2025, 17(11), 1611; https://doi.org/10.3390/w17111611 - 26 May 2025
Viewed by 826
Abstract
Catastrophic precipitation is an inherent feature of temperate climates. Its occurrence is a manifestation of climate change, but also of the variability of atmospheric circulation. Mountainous areas may be particularly vulnerable as they receive more precipitation and are also areas where relief plays [...] Read more.
Catastrophic precipitation is an inherent feature of temperate climates. Its occurrence is a manifestation of climate change, but also of the variability of atmospheric circulation. Mountainous areas may be particularly vulnerable as they receive more precipitation and are also areas where relief plays an important role in modifying the distribution of precipitation. One such area is the Polish Western Carpathian Mountains, especially the area around the city of Bielsko-Biała, located at their foot and directly exposed to rain-bearing winds. In 2024, two episodes of unusually heavy precipitation in quick succession occurred in this area, resulting in severe damage to infrastructure. This painful experience inspired a study focusing on the frequency of such catastrophic precipitation events and their synoptic circumstances spanning the period from the mid-20th century to the present day. Daily precipitation totals covering the study period of 74 years were used to identify a category of catastrophic precipitation (here set at above 100 mm). The six events identified to match the criteria appeared from May to September, always accompanied by cyclonic circulation types with advection from the northern sector and with a cyclonic trough situation over southern Poland. The study showed that the leading role in their formation was played by deep convection, especially a Genoa low moving along the Vb Van Bebber track. The damage and destruction suffered as a result were a consequence of the cumulative impact of high-intensity rainfall, itself caused by a combination of specific synoptic thermodynamic and orographic conditions. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

16 pages, 11579 KiB  
Article
Characteristic Analysis of the Extreme Precipitation over South China During the Dragon-Boat Precipitation in 2022
by Meixia Chen, Yufeng Xue, Juliao Qiu, Chunlei Liu, Shuqin Zhang, Jianjun Xu and Ziye Zhu
Atmosphere 2025, 16(5), 619; https://doi.org/10.3390/atmos16050619 - 19 May 2025
Viewed by 471
Abstract
Using multi-source precipitation datasets including NASA GPM (IMERG), GPCP, ECMWF ERA5, and station precipitation data from the China Meteorological Administration (CMA), along with ERA5 reanalysis fields for atmospheric circulation analysis, this study investigates the extreme precipitation events during the “Dragon-Boat Precipitation” period from [...] Read more.
Using multi-source precipitation datasets including NASA GPM (IMERG), GPCP, ECMWF ERA5, and station precipitation data from the China Meteorological Administration (CMA), along with ERA5 reanalysis fields for atmospheric circulation analysis, this study investigates the extreme precipitation events during the “Dragon-Boat Precipitation” period from 20 May to 21 June over South China in 2022 using the synoptic diagnostic method. The results indicate that the total precipitation during this period significantly exceeded the climatological average, with multiple large-scale extreme rainfall events characterized by high intensity, extensive coverage, and prolonged duration. The spatial distribution of precipitation exhibited a north-more-south-less pattern, with the maximum rainfall center located in the Nanling Mountains, particularly in the Shaoguan–Qingyuan–Heyuan region of Guangdong Province, where peak precipitation exceeded 1100 mm, and the mean precipitation was approximately 1.7 times the climatology from the GPM data. The average daily precipitation throughout the period was 17.5 mm/day, which was 6 mm/day higher than the climatological mean, while the heaviest rainfall on 13 June reached 39 mm/day above the average, exceeding two standard deviations. The extreme precipitation during the “Dragon-Boat Precipitation” period in 2022 was associated with an anomalous deep East Asian trough, an intensified South Asian High, a stronger-than-usual Western Pacific Subtropical High, an enhanced South Asian monsoon and South China Sea monsoon, and the dominance of a strong Southwesterly Low-Level Jet (SLLJ) over South China. Two major moisture transport pathways were established: one from the Bay of Bengal to South China and another from the South China Sea, with the latter contributing a little higher amount of water vapor transport than the former. The widespread extreme precipitation on 13 June 2022 was triggered by the anomalous atmospheric circulation conditions. In the upper levels, South China was located at the northwestern periphery of the slightly stronger-than-normal Western Pacific Subtropical High, intersecting with the base of a deep trough associated with an anomalous intense Northeast China Cold Vortex (NCCV). At lower levels, the region was positioned along a shear line formed by anomalous southwesterly and northerly winds, where exceptionally strong southwesterly moisture transport, significant moisture convergence, and intense vertical updraft led to the widespread extreme rainfall event on that day. Full article
(This article belongs to the Special Issue Climate Change and Extreme Weather Disaster Risks (2nd Edition))
Show Figures

Figure 1

15 pages, 24025 KiB  
Article
Investigating the Trend Changes in Temperature Extreme Indices in Iran
by Saeedeh Kamali, Ebrahim Fattahi and Maral Habibi
Atmosphere 2025, 16(4), 483; https://doi.org/10.3390/atmos16040483 - 21 Apr 2025
Cited by 1 | Viewed by 773
Abstract
It is necessary to evaluate the response of extreme events to global warming across different climates and geographical regions. This study aims to examine the trend changes of 13 temperature extreme indices over a 30-year statistical period from 1990 to 2020, using daily [...] Read more.
It is necessary to evaluate the response of extreme events to global warming across different climates and geographical regions. This study aims to examine the trend changes of 13 temperature extreme indices over a 30-year statistical period from 1990 to 2020, using daily maximum and minimum temperature data from 37 synoptic stations in Iran. The Mann–Kendall trend test was employed to analyze the data trends. The results indicate that, except for the two indices, frost days (FDs) and ice days (IDs), the temperature extreme indices show an increasing trend across the country. The forward and backward graphs of the Mann–Kendall test reveal that the trend of the indices is significant at the 0.05 significance level, with the two indices TNn and TXn intersecting in 2009. This indicates that a mutation occurred in that year, where the increasing slope of the trend after the mutation is greater than the slope of the trend before the mutation. Moreover, the decadal changes of the indices in the three decades 1990–2000, 2000–2010, and 2010–2020 demonstrate that the highest increasing trend in temperature occurred in the second and third decades. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

23 pages, 11213 KiB  
Article
Three-Century Climatology of Cold and Warm Spells and Snowfall Events in Padua, Italy (1725–2024)
by Claudio Stefanini, Francesca Becherini, Antonio della Valle and Dario Camuffo
Climate 2025, 13(4), 70; https://doi.org/10.3390/cli13040070 - 30 Mar 2025
Viewed by 1834
Abstract
Regular meteorological observations in Padua started in 1725 and have continued unbroken up to the present, making the series one of the longest in the world. Daily mean temperatures and precipitation amounts have recently been homogenized for the entire 1725–2024 period, making it [...] Read more.
Regular meteorological observations in Padua started in 1725 and have continued unbroken up to the present, making the series one of the longest in the world. Daily mean temperatures and precipitation amounts have recently been homogenized for the entire 1725–2024 period, making it possible to add new measurements without further work. Starting from the temperature series, the trends of cold and warm spells are investigated in this paper. The ongoing warming that started in the 1970s is extensively analyzed on the basis of the variability of the mean values and a magnitude index that captures both the duration and intensity of a spell and by investigating the frequency of extreme events by means of Intensity–Duration–Frequency curves. The periods with the greatest deviation from the climatological average are analyzed in detail: February 1740 and April 1755, the months with the largest negative and positive temperature anomalies, respectively, in the 300-year-long series. Moreover, the analysis of snow occurrences extracted from the original logs, together with the pressure observations from the long series of London and Uppsala, made it possible to evaluate the most typical synoptic situations leading to snow events in Padua for the whole period. Full article
(This article belongs to the Special Issue The Importance of Long Climate Records (Second Edition))
Show Figures

Figure 1

Back to TopTop