Three-Century Climatology of Cold and Warm Spells and Snowfall Events in Padua, Italy (1725–2024)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Methodology
2.2.1. Cold and Warm Spells Characterization
2.2.2. Snow-Related Synoptic Situations
3. Results and Discussion
3.1. Cold and Warm Spells
3.2. Snowfall
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camuffo, D. History of the Long Series of Daily Air Temperature in Padova (1725–1998). Clim. Change 2002, 53, 7–75. [Google Scholar] [CrossRef]
- Stefanini, C.; Becherini, F.; della Valle, A.; Camuffo, D. Homogenization of the Long Instrumental Daily-Temperature Series in Padua, Italy (1725–2023). Climate 2024, 12, 86. [Google Scholar] [CrossRef]
- Añel, J.; Fernández-González, M.; Labandeira, X.; López-Otero, X.; de la Torre, L. Impact of Cold Waves and Heat Waves on the Energy Production Sector. Atmosphere 2017, 8, 209. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- von Buttlar, J.; Zscheischler, J.; Rammig, A.; Sippel, S.; Reichstein, M.; Knohl, A.; Jung, M.; Menzer, O.; Arain, M.A.; Buchmann, N.; et al. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: A systematic assessment across ecosystems and climate zones. Biogeosciences 2018, 15, 1293–1318. [Google Scholar] [CrossRef]
- Chapman, S.C.; Murphy, E.J.; Stainforth, D.A.; Watkins, N.W. Trends in Winter Warm Spells in the Central England Temperature Record. J. Appl. Meteorol. Clim. 2020, 59, 1069–1076. [Google Scholar] [CrossRef]
- Leporati, E.; Mercalli, L. Snowfall series of Turin, 1784–1992: Climatological analysis and action on structures. Ann. Glaciol. 1994, 19, 77–84. [Google Scholar] [CrossRef]
- Enzi, S.; Bertolin, C.; Diodato, N. Snowfall time-series reconstruction in Italy over the last 300 years. Holocene 2014, 24, 346–356. [Google Scholar] [CrossRef]
- Diodato, N.; Bertolin, C.; Bellocchi, G. Multi-Decadal Variability in the Snow-Cover Reconstruction at Parma Observatory (Northern Italy, 1681–2018 CE). Front. Earth Sci. 2020, 8, 2296–6463. [Google Scholar] [CrossRef]
- Colombo, N.; Valt, M.; Romano, E.; Salerno, F.; Godone, D.; Cianfarra, P.; Freppaz, M.; Maugeri, M.; Guyennon, N. Long-term trend of snow water equivalent in the Italian Alps. Climate 2022, 614A, 128532. [Google Scholar] [CrossRef]
- Avanzi, F.; Gabellani, S.; Delogu, F.; Silvestro, F.; Pignone, F.; Bruno, G.; Pulvirenti, L.; Squicciarino, G.; Fiori, E.; Rossi, L.; et al. IT-SNOW: A snow reanalysis for Italy blending modeling, in situ data, and satellite observations (2010–2021). Earth Syst. Sci. Data 2023, 15, 639–660. [Google Scholar] [CrossRef]
- Camuffo, D.; Bertolin, C.; Craievich, A.; Granziero, R.; Enzi, S. When the Lagoon was frozen over in Venice from A.D. 604 to 2012: Evidence from written documentary sources, visual arts and instrumental readings. Méditerranée 2017, 128, 35–53. [Google Scholar] [CrossRef]
- Garzena, D.; Acquaotta, F.; Fratianni, S. Analysis of the long-time climate data series for Turin and assessment of the city’s urban heat island. Weather 2019, 74, 353–359. [Google Scholar] [CrossRef]
- D’Errico, M.; Pons, F.; Yiou, P.; Tao, S.; Nardini, C.; Lunkeit, F.; Faranda, D. Present and future synoptic circulation patterns associated with cold and snowy spells over Italy. Earth Syst. Dynam. 2022, 13, 961–992. [Google Scholar] [CrossRef]
- Morlot, M.; Russo, S.; Feyen, L.; Formetta, G. Trends in heat and cold wave risks for the Italian Trentino-Alto Adige region from 1980 to 2018. Nat. Hazards Earth Syst. Sci. 2023, 23, 2593–2606. [Google Scholar] [CrossRef]
- Costanzini, S.; Boccolari, M.; Vega Parra, S.; Despini, F.; Lombroso, L.; Teggi, S. A comparative analysis of temperature trends at Modena Geophysical Observatory and Mount Cimone Observatory, Italy. Int. J. Climatol. 2024, 44, 4741–4766. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Iannarelli, A.M.; Casadio, S.; Siani, A.M. Winter warm spells over Italy: Spatial–temporal variation and large-scale atmospheric circulation. Int. J. Climatol. 2024, 44, 1262–1275. [Google Scholar] [CrossRef]
- Camuffo, D.; Bertolin, C. Recovery of the early period of long instrumental time series of air temperature in Padua, Italy (1716–2007). Phys. Chem. Earth Parts A/B/C 2012, 40–41, 23–31. [Google Scholar] [CrossRef]
- Camuffo, D.; della Valle, A.; Becherini, F.; Zanini, V. Three centuries of daily precipitation in Padua, Italy, 1713–2018: History, relocations, gaps, homogeneity and raw data. Clim. Change 2020, 162, 923–942. [Google Scholar] [CrossRef]
- della Valle, A.; Camuffo, D.; Becherini, F.; Zanini, V. Recovering, correcting, and reconstructing precipitation data affected by gaps and irregular readings: The Padua series from 1812 to 1864. Clim. Change 2023, 176, 9. [Google Scholar] [CrossRef]
- Becherini, F.; Stefanini, C.; della Valle, A.; Rech, F.; Zecchini, F.; Camuffo, D. Multi-Secular Trend of Drought Indices in Padua, Italy. Climate 2024, 12, 218. [Google Scholar] [CrossRef]
- Camuffo, D.; Cocheo, C.; Sturaro, G. Corrections of Systematic Errors, Data Homogenisation and Climatic Analysis of the Padova Pressure Series (1725–1999). Clim. Change 2006, 76, 493–514. [Google Scholar] [CrossRef]
- Valler, V.; Franke, J.; Brugnara, Y.; Samakinwa, E.; Hand, R.; Lundstad, E.; Burgdorf, A.M.; Lipfert, L.; Friedman, A.R.; Brönnimann, S. ModE-RA: A global monthly paleo-reanalysis of the modern era 1421 to 2008. Sci. Data 2024, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- EURO-CORDEX. Available online: https://www.euro-cordex.net/index.php.en (accessed on 31 January 2024).
- McCalla, R.J.; Day, E.E.D.; Millward, H.A. The relative concept of warm and cold spells of temperature: Methodology and application. Arch. Met. Geoph. Biokl. B 1978, 25, 323–336. [Google Scholar] [CrossRef]
- Ryti, N.R.I.; Guo, Y.; Jaakkola, J.J.K. Global Association of Cold Spells and Adverse Health Effects: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2016, 124, 12–22. [Google Scholar] [CrossRef]
- Lavaysse, C.; Cammalleri, C.; Dosio, A.; van der Schrier, G.; Toreti, A.; Vogt, J. Towards a monitoring system of temperature extremes in Europe. Nat. Hazards Earth Syst. Sci. 2018, 18, 91–104. [Google Scholar] [CrossRef]
- Efthymiadis, D.; Goodess, C.M.; Jones, P.D. Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Nat. Hazards Earth Syst. Sci. 2011, 11, 2199–2214. [Google Scholar] [CrossRef]
- Della Marta, P.M.; Haylock, M.R.; Luterbacher, J.; Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 2007, 112, D15103. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A.E.M. Summer temperature extremes in Europe: How does the definition affect the results? Theor. Appl. Climatol. 2020, 141, 19–30. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, inten- sity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Stefanon, M.; Dandrea, F.; Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 014023. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Mahlstein, I.; Spirig, C.; Liniger, M.A.; Appenzeller, C. Estimating daily climatologies for climate indices derived from climate model data and observations. J. Geophys. Res. Atmos. 2015, 120, 2808–2818. [Google Scholar] [CrossRef]
- loess: Local Polynomial Regression Fitting. Available online: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/loess (accessed on 10 August 2024).
- wt: Wavelet Transformation, and a Simulation Algorithm. Available online: https://www.rdocumentation.org/packages/WaveletComp/versions/1.0/topics/wt (accessed on 16 June 2024).
- dplR: Dendrochronology Program Library in R. Available online: https://www.rdocumentation.org/packages/dplR/versions/1.7.6 (accessed on 16 June 2024).
- Ouellet, V.; Mingelbier, M.; Saint-Hilaire, A.; Morin, J. Frequency Analysis as a Tool for Assessing Adverse Conditions During a Massive Fish Kill in the St. Lawrence River, Canada. Water Qual. Res. J. Can. 2010, 45, 47–57. [Google Scholar] [CrossRef]
- Aksoy, H.; Cetin, M.; Eris, E.; Burgan, H.I.; Cavus, Y.; Yildirim, I.; Sivapalan, M. Critical drought intensity-duration-frequency curves based on total probability theorem-coupled frequency analysis. Hydrol. Sci. J. 2021, 66, 1337–1358. [Google Scholar] [CrossRef]
- Paris-London Westerly Index-Monthly & Daily SLP for Paris (Back to 1670) and London (Back to 1692). Available online: https://crudata.uea.ac.uk/cru/data/parislondon/ (accessed on 14 October 2024).
- Bergström, H.; Moberg, A. Daily Air Temperature and Pressure Series for Uppsala (1722–1998). In Improved Understanding of Past Climatic Variability from Early Daily European Instrumental Sources; Camuffo, D., Jones, P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 213–252. [Google Scholar] [CrossRef]
- European Climate Assessment & Dataset. Available online: https://www.ecad.eu/dailydata/ (accessed on 31 January 2025).
- kmeans: K-Means Clustering. Available online: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans (accessed on 16 June 2024).
- Brönnimann, S.; Filipiak, J.; Chen, S.; Pfister, L. The weather of 1740, the coldest year in central Europe in 600 years. Clim. Past 2024, 20, 2219–2235. [Google Scholar] [CrossRef]
- Brugnara, Y.; Brönnimann, S. Revisiting the early instrumental temperature records of Basel and Geneva. Meteorol. Z. (Contrib. Atm. Sci.) 2023, 32, 513–527. [Google Scholar] [CrossRef]
- Camuffo, D.; della Valle, A.; Bertolin, C.; Santorelli, E. Temperature observations in Bologna, Italy, from 1715 to 1815: A comparison with other contemporary series and an overview of three centuries of changing climate. Clim. Change 2017, 142, 7–22. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C.; Walton, G.; Easterling, D.; McDaniel, L. Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett. 2009, 36, L23701. [Google Scholar] [CrossRef]
- Twardosz, R.; Łupikasza, E.; Niedźwiedź, T.; Walanus, A. Long-term variability of occurrence of precipitation forms in winter in Kraków, Poland. Clim. Change 2012, 113, 623–638. [Google Scholar] [CrossRef]
- kde2d: Two-Dimensional Kernel Density Estimation. Available online: https://www.rdocumentation.org/packages/MASS/versions/7.3-64/topics/kde2d (accessed on 1 February 2025).
- NOAA/CIRES/DOE 20th Century Reanalysis (V3). Available online: https://www.psl.noaa.gov/data/gridded/data.20thC_ReanV3.html (accessed on 16 June 2024).
- Casty, C.; Wanner, H.; Luterbacher, J.; Esper, J.; Böhm, R. Temperature and precipitation variability in the European Alps since 1500. Int. J. Climatol. 2005, 25, 1855–1880. [Google Scholar] [CrossRef]
- Valler, V.; Franke, J.; Brugnara, Y.; Brönnimann, S. An updated global atmospheric paleo-reanalysis covering the last 400 years. Geosci. Data J. 2022, 9, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Reiter, L.R. Handbook for Forecasters in the Mediterranean; Environment Prediction Research Facility, Naval Postgraduate School: Monterey, CA, USA, 1975. [Google Scholar]
- Busato, F.; Lazzarin, R.M.; Noro, M. Three years of study of the Urban Heat Island in Padua: Experimental results. Sustain. Cities Soc. 2014, 10, 251–258. [Google Scholar] [CrossRef]
- Noro, M.; Busato, F.; Lazzarin, R.M. Urban heat island in Padua, Italy: Experimental and theoretical analysis. Indoor Built Environ. 2015, 24, 514–533. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R.M. Urban heat island in Padua, Italy: Simulation analysis and mitigation strategies. Urban Clim. 2015, 14, 187–196. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R.M.; Busato, F. The Urban Corridor of Venice and The Case of Padua. In Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Musco, F., Ed.; Springer: Cham, Switzerland, 2016; pp. 201–219. [Google Scholar] [CrossRef]
- Bertolin, C.; Camuffo, D. Urban Climate and Health: Two Strictly Connected Topics in the History of Meteorology. In Sustainability in Energy and Buildings. Smart Innovation, Systems and Technologies; Littlewood, J., Howlett, R., Capozzoli, A., Jain, L., Eds.; Springer: Singapore, 2020; Volume 163. [Google Scholar] [CrossRef]
- Todeschi, V.; Pappalardo, S.E.; Zanetti, C.; Peroni, F.; De Marchi, M. Climate Justice in the City: Mapping Heat-Related Risk for Climate Change Mitigation of the Urban and Peri-Urban Area of Padua (Italy). ISPRS Int. J. Geo-Inf. 2022, 11, 490. [Google Scholar] [CrossRef]
- Pappalardo, S.E.; Zanetti, C.; Todeschi, V. Mapping urban heat islands and heat-related risk during heat waves from a climate justice perspective: A case study in the municipality of Padua (Italy) for inclusive adaptation policies. Landsc. Urban Plan. 2023, 238, 104831. [Google Scholar] [CrossRef]
Monthly Anomaly | 1725–1754 | 1965–1994 | 1995–2024 |
---|---|---|---|
<−2 °C | 23% | 4% | 0.5% |
>+2 °C | 7% | 10% | 40% |
Main Feature | Dates | Duration (Days) | Extreme Daily Anomaly (°C) | Extreme Daily Mean Value (°C) | ||
---|---|---|---|---|---|---|
Cold spells | Max duration | 14 February–5 April 1808 | 52 | −69.0 | −11.7° | −2.4° |
Max intensity | 28 January–12 March 1740 | 44 | −78.1 | −12.8° | −8.4° | |
Min daily anomaly | 28 January–26 February 1929 | 29 | −50.9 | −15.4° | −11.1° | |
Min daily value | 12 December 1788–10 January 1789 | 28 | −50.4 | −14.0° | −11.2° | |
Warm spells | Max duration Max intensity | 8 July–4 September 2024 | 55 | 112.3 | +7.5° | 30.4° |
Max daily anomaly | 31 March–12 April 2011 | 13 | 29.7 | +10.7° | 22.9° | |
Max daily value | 2–30 August 2003 | 27 | 63.0 | +8.4° | 32.1° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanini, C.; Becherini, F.; della Valle, A.; Camuffo, D. Three-Century Climatology of Cold and Warm Spells and Snowfall Events in Padua, Italy (1725–2024). Climate 2025, 13, 70. https://doi.org/10.3390/cli13040070
Stefanini C, Becherini F, della Valle A, Camuffo D. Three-Century Climatology of Cold and Warm Spells and Snowfall Events in Padua, Italy (1725–2024). Climate. 2025; 13(4):70. https://doi.org/10.3390/cli13040070
Chicago/Turabian StyleStefanini, Claudio, Francesca Becherini, Antonio della Valle, and Dario Camuffo. 2025. "Three-Century Climatology of Cold and Warm Spells and Snowfall Events in Padua, Italy (1725–2024)" Climate 13, no. 4: 70. https://doi.org/10.3390/cli13040070
APA StyleStefanini, C., Becherini, F., della Valle, A., & Camuffo, D. (2025). Three-Century Climatology of Cold and Warm Spells and Snowfall Events in Padua, Italy (1725–2024). Climate, 13(4), 70. https://doi.org/10.3390/cli13040070