Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,025)

Search Parameters:
Keywords = synchrotron X-ray

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 (registering DOI) - 31 Jul 2025
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

17 pages, 3329 KiB  
Article
Mechanistic Insights into Corrosion and Protective Coating Performance of X80 Pipeline Steel in Xinjiang’s Cyclic Freeze–Thaw Saline Soil Environments
by Gang Cheng, Yuqi Wang, Yiming Dai, Shiyi Zhang, Bin Wei, Chang Xiao and Xian Zhang
Coatings 2025, 15(8), 881; https://doi.org/10.3390/coatings15080881 - 28 Jul 2025
Viewed by 315
Abstract
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to [...] Read more.
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to quantify temporal–spatial corrosion behavior across 30 freeze–thaw cycles. Experimental results revealed a distinctive corrosion resistance pattern: initial improvement (cycles 1–10) attributed to protective oxide layer formation, followed by accelerated degradation (cycles 10–30) due to microcrack propagation and chloride accumulation. Synchrotron X-ray diffraction analyses identified sulfate–chloride ion synergism as the primary driver of localized corrosion disparities in heterogeneous soil matrices. A comparative evaluation of asphalt-coated specimens demonstrated a 62%–89% corrosion rate reduction, with effectiveness directly correlating with coating integrity and thickness (200–500 μm range). Molecular dynamics simulations using Materials Studio revealed atomic-scale ion transport dynamics at coating–substrate interfaces, showing preferential Cl permeation through coating defects. These multiscale findings establish quantitative relationships between environmental stressors, coating parameters, and corrosion kinetics, providing a mechanistic framework for optimizing protective coatings in cold-region pipeline applications. Full article
Show Figures

Figure 1

17 pages, 7162 KiB  
Article
Microbeam X-Ray Investigation of the Structural Transition from Circularly Banded to Ringless Dendritic Assemblies in Poly(Butylene Adipate) Through Dilution with Poly(Ethylene Oxide)
by Selvaraj Nagarajan, Chia-I Chang, I-Chuan Lin, Yu-Syuan Chen, Chean-Cheng Su, Li-Ting Lee and Eamor M. Woo
Polymers 2025, 17(15), 2040; https://doi.org/10.3390/polym17152040 - 26 Jul 2025
Viewed by 271
Abstract
In this study, growth mechanisms are proposed to understand how banded dendritic crystal aggregates in poly(1,4-butylene adipate) (PBA) transform into straight dendrites upon dilution with a large quantity of poly(ethylene oxide) (PEO) (25–90 wt.%). In growth packing, crystal plates are deformed in numerous [...] Read more.
In this study, growth mechanisms are proposed to understand how banded dendritic crystal aggregates in poly(1,4-butylene adipate) (PBA) transform into straight dendrites upon dilution with a large quantity of poly(ethylene oxide) (PEO) (25–90 wt.%). In growth packing, crystal plates are deformed in numerous ways, such as bending, scrolling, and twisting in self-assembly, into final aggregated morphologies of periodic bands or straight dendrites. Diluting PBA with a significant amount of PEO uncovers intricate periodic banded assemblies, facilitating better structural analysis. Both circularly banded and straight dendritic PBA aggregates have similar basic lamellar patterns. In straight dendritic PBA spherulites, crystal plates can twist from edge-on to flat-on, similar to those in ring-banded spherulites. Therefore, twists—whether continuous or discontinuous—are not limited to the conventional models proposed for classical periodic-banded spherulites. Thus, it would not be universally accurate to claim that the periodic circular bands observed in polymers or small-molecule compounds are caused by continuous lamellar helix twists. Straight dendrites, which do not exhibit optical bands, may also involve alternate crystal twists or scrolls during growth. Iridescence tests are used to compare the differences in crystal assemblies of straight dendrites vs. circularly banded PBA crystals. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

14 pages, 1607 KiB  
Article
Three-Dimensional Distribution of Titanium Hydrides After Degradation of Magnesium/Titanium Hybrid Implant Material—A Study by X-Ray Diffraction Contrast Tomography
by Vasil M. Garamus, D. C. Florian Wieland, Julian P. Moosmann, Felix Beckmann, Lars Lottermoser, Maria Serdechnova, Carsten Blawert, Mohammad Fazel, Eshwara P. S. Nidadavolu, Wolfgang Limberg, Thomas Ebel, Regine Willumeit-Römer and Berit Zeller-Plumhoff
J. Compos. Sci. 2025, 9(8), 396; https://doi.org/10.3390/jcs9080396 - 26 Jul 2025
Viewed by 243
Abstract
Hybrid implants composed of magnesium and titanium are a promising direction in orthopaedics, as these implants combine the stability of titanium with the biological activity of magnesium. These partly soluble implants require careful investigation, as the degradation of magnesium releases hydrogen, which can [...] Read more.
Hybrid implants composed of magnesium and titanium are a promising direction in orthopaedics, as these implants combine the stability of titanium with the biological activity of magnesium. These partly soluble implants require careful investigation, as the degradation of magnesium releases hydrogen, which can enter the Ti matrix and thus alter the mechanical properties. To investigate this scenario and quantify the hydrogen uptake along with its structural impacts, we employed inert gas fusion, scanning electron microscopy, X-ray diffraction, and a combination of synchrotron absorption and X-ray diffraction tomography. These techniques enabled us to investigate the concentration and distribution of hydrogen and the formation of hydrides in the samples. Titanium hydride formation was observed in a region approximately 120 µm away from the titanium surface and correlates with the amount of absorbed hydrogen. We speculate that the degradation of magnesium at the magnesium/titanium implant interface leads to the penetration of hydrogen due to a combination of electrochemical and gaseous charging. Full article
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Synthesis and Properties of Bi1.8Mn0.5Ni0.5Ta2O9-Δ Pyrochlore
by Sergey V. Nekipelov, Olga V. Petrova, Alexandra V. Koroleva, Mariya G. Krzhizhanovskaya, Kristina N. Parshukova, Nikolay A. Sekushin, Boris A. Makeev and Nadezhda A. Zhuk
Chemistry 2025, 7(4), 119; https://doi.org/10.3390/chemistry7040119 - 25 Jul 2025
Viewed by 150
Abstract
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a [...] Read more.
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a porous microstructure formed by randomly oriented oblong grains. The average crystallite size determined by X-ray diffraction is 65 nm. The charge state of transition element cations in the pyrochlore was analyzed by soft X-ray spectroscopy using synchrotron radiation. For mixed pyrochlore, a characteristic shift of Bi4f and Ta4f and Ta5p spectra to the region of lower energies by 0.25 and 0.90 eV is observed compared to the binding energy in Bi2O3 and Ta2O5 oxides. XPS Mn2p spectrum of pyrochlore has an intermediate energy position compared to the binding energy in MnO and Mn2O3, which indicates a mixed charge state of manganese (II, III) cations. Judging by the nature of the Ni2p spectrum of the complex oxide, nickel ions are in the charge state of +(2+ζ). The relative permittivity of the sample in a wide temperature (up to 350 °C) and frequency range (25–106 Hz) does not depend on the frequency and exhibits a constant low value of 25. The minimum value of 4 × 10−3 dielectric loss tangent is exhibited by the sample at a frequency of 106 Hz. The activation energy of conductivity is 0.7 eV. The electrical behavior of the sample is modeled by an equivalent circuit containing a Warburg diffusion element. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

20 pages, 1106 KiB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 286
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

18 pages, 2524 KiB  
Article
Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens
by Matthias Diez and Simon Zabler
Crystals 2025, 15(7), 605; https://doi.org/10.3390/cryst15070605 - 27 Jun 2025
Viewed by 333
Abstract
Scattered light makes up a significant amount of recorded intensities during tomographic imaging, thereby leading to severe misinterpretation and artifacts in the reconstructed volume images. Correcting artificial intensities that stem from scattered light, therefore, is of primary interest and demands quantitative measurements. While [...] Read more.
Scattered light makes up a significant amount of recorded intensities during tomographic imaging, thereby leading to severe misinterpretation and artifacts in the reconstructed volume images. Correcting artificial intensities that stem from scattered light, therefore, is of primary interest and demands quantitative measurements. While numerous methods have been developed to reduce X-ray scattering artifacts, fewer methods deal with optical scattering. In this study, a measurement method for determining optical scattering in scintillators is presented with the aim of further developing correction algorithms. A theoretical model based on internal multiple reflections was developed for this purpose. This model assumes an additive exponential kernel with a certain scattering length to the system’s point spread function. This assumption was confirmed, and the scatter length was estimated from three new different kinds of experiments (hgap, rect, and LSF) on the BM18 beamline of the European synchrotron. The experiments further revealed significant differences in scattering proportion and length when different coatings are applied to the front and back faces of crystalline LuAG scintillators. Anti-reflective coatings on the backside show an effect of reducing the scattering magnitude while reflective coatings on the front side increase the proportion of the unscattered signal and, thus, show proportionally less scattering than black coating or no front coating. In particular, roughened black coating is found to worsen optical scattering. In summary, our results indicate that a combination of reflective (front) and anti-reflective (back) coatings yields the least optical scattering and, hence, the best image quality. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

23 pages, 7515 KiB  
Article
Strategies for Suppression and Compensation of Signal Loss in Ptychography
by Ruoru Li, Zijian Xu, Sheng Chen, Shuhan Wu, Yingling Zhang, Xiangzhi Zhang and Renzhong Tai
Photonics 2025, 12(7), 636; https://doi.org/10.3390/photonics12070636 - 23 Jun 2025
Viewed by 191
Abstract
X-ray ptychography is an ultrahigh resolution imaging technique widely used in synchrotron radiation facilities. Its imaging performance relies on the quality of the acquired signals. However, the X-ray detectors used often suffer from signal loss due to sensor gaps, beamstops, defective pixels, overexposure, [...] Read more.
X-ray ptychography is an ultrahigh resolution imaging technique widely used in synchrotron radiation facilities. Its imaging performance relies on the quality of the acquired signals. However, the X-ray detectors used often suffer from signal loss due to sensor gaps, beamstops, defective pixels, overexposure, or other factors, resulting in degraded image quality. To suppress and compensate for the effects of signal loss, we proposed the known probe approach to partially recover the lost signals and introduced the high probe divergence strategy by investigating the effects of probe divergence on reconstruction quality under signal loss conditions. Both simulation and experiment results show that high probe divergence can effectively suppress the impact of signal loss on reconstruction quality while using a known probe as the initial probe for reconstruction can largely recover missing signals in Fourier space, resulting in a much better image than using a guessed initial probe. These strategies allow for high-quality imaging in the presence of signal loss without secondary data acquisition, significantly improving experimental efficiency and reducing radiation damage compared to previous strategies. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

19 pages, 2592 KiB  
Article
Investigating the Variation and Periodicity of TXS 0506+056
by Xianglin Miao and Yunguo Jiang
Universe 2025, 11(7), 204; https://doi.org/10.3390/universe11070204 - 23 Jun 2025
Viewed by 258
Abstract
TXS 0506+056 is a blazar associated with neutrino events. The study on its variation mechanics and periodicity analysis is meaningful to understand other BL Lac objects. The local cross-correlation function (LCCF) analysis presents a 3σ correlation in both the γ-ray versus [...] Read more.
TXS 0506+056 is a blazar associated with neutrino events. The study on its variation mechanics and periodicity analysis is meaningful to understand other BL Lac objects. The local cross-correlation function (LCCF) analysis presents a 3σ correlation in both the γ-ray versus optical and optical versus radio light curves. The time lag analysis suggests that the optical and γ-ray band share the same emission region, located upstream of the radio band in the jet. We use both the weighted wavelet Z-transform and generalized Lomb–Scargle methods to analyze the periodicity. We find two plausible quasi-periodic oscillations (QPOs) at 50656+133 days and 1757+15 days for the light curve of the optical band. For the γ-ray band, we find that the spectrum varies with the softer when brighter (SWB) trend, which could be explained naturally if a stable very high energy component exists. For the optical band, TXS 0506+056 exhibits a harder when brighter (HWB) trend. We discover a trend transition from HWB to SWB in the X-ray band, which could be modeled by the shift in peak frequency assuming that the X-ray emission is composed of the synchrotron and the inverse Compton (IC) components. The flux correlations of γ-ray and optical bands behave anomalously during the period of neutrino events, indicating that there are possible other hadronic components associated with neutrino. Full article
(This article belongs to the Special Issue Blazar Bursts: Theory and Observation)
Show Figures

Figure 1

13 pages, 3268 KiB  
Article
Pressure Dependence of Structural Behavior in the Polymorphs of Fe(PM–BiA)2(NCS)2
by Pulkit Prakash, Hend Shahed, Ji Qi, Andrzej Grzechnik, Manuel Angst, Jörg Voigt, Jörg Perßon, Yao Cheng, Biliana Gasharova, Yves-Laurent Mathis, Francesco Capitani, Carsten Paulmann, Charlie McMonagle, Dmitry Chernyshov and Karen Friese
Molecules 2025, 30(12), 2651; https://doi.org/10.3390/molecules30122651 - 19 Jun 2025
Viewed by 410
Abstract
The pressure dependence of structural behavior in the orthorhombic (Pccn, PI) and monoclinic (P21/c, PII) polymorphs of the compound [Fe(PM-BiA)2(NCS)2], where PM–BiA = (N–(2′–pyridylmethylene)–4-amino–bi–pheynyl), is studied with synchrotron single-crystal X-ray diffraction and [...] Read more.
The pressure dependence of structural behavior in the orthorhombic (Pccn, PI) and monoclinic (P21/c, PII) polymorphs of the compound [Fe(PM-BiA)2(NCS)2], where PM–BiA = (N–(2′–pyridylmethylene)–4-amino–bi–pheynyl), is studied with synchrotron single-crystal X-ray diffraction and vibrational spectroscopy. Both polymorphs are stable up to ∼1.5 GPa, with a spin state transition occurring only in polymorph PII under hydrostatic conditions as documented by single-crystal synchrotron diffraction. The diffraction data also provide evidence of the formation of superstructures for both PI, with a doubled c axis, and PII, with a doubled b axis, on applying pressures above 2 GPa. The LS and HS states seem to coexist at high-pressures for both polymorphs studied with synchrotron infrared spectroscopy at quasi-hydrostatic conditions. Such results indicate that the occurrence of spin-crossover transformations in [Fe(PM-BiA)2(NCS)2] might strongly depend on the stress in the sample. Full article
Show Figures

Figure 1

14 pages, 2214 KiB  
Article
Anthropogenic Influences on the Chemical and Mineral Composition in Pond Sediment by X-Ray Absorption Spectroscopy and X-Ray Powder Diffraction
by Jalal Sawas, Derek Blanco, Mary Kroll, Aleida Perez, Juergen Thieme, Eric Dooryhee, Sarah Nicholas, Paul Northrup and Dana Schaefer
Quantum Beam Sci. 2025, 9(2), 21; https://doi.org/10.3390/qubs9020021 - 19 Jun 2025
Viewed by 442
Abstract
Manmade detention ponds have historically been impacted by anthropogenic activities such as rainwater runoff, car emissions, and drainage from infrastructures, which can lead to complications for pond ecosystems. Sediment samples collected from the northern, southern, western, and eastern regions of a small pond [...] Read more.
Manmade detention ponds have historically been impacted by anthropogenic activities such as rainwater runoff, car emissions, and drainage from infrastructures, which can lead to complications for pond ecosystems. Sediment samples collected from the northern, southern, western, and eastern regions of a small pond on a suburban high school campus on Long Island, NY, were analyzed for potential chemical changes resulting from an inundation of water by a broken water main. Incorporating synchrotron X-ray techniques, sediment was analyzed using Submicron Resolution Spectroscopy, Tender Energy X-ray Spectroscopy, and X-ray Powder Diffraction to examine heavy metals, light elements, and minerals. Results include a Zn:Cu ratio increase from 4:1 to 10:1 in the eastern zone and a higher heavy metal presence in the western zone for all elements examined, with greater distribution throughout the pond post-inundation. Lighter elements appear to remain relatively unchanged. The appearance of diopside in the eastern zone post-inundation samples suggests contamination from the water main break, while the presence of carbonate minerals in the western zone is consistent with erosion of asphalt material from the adjacent parking lot. Full article
(This article belongs to the Section Spectroscopy Technique)
Show Figures

Figure 1

13 pages, 3067 KiB  
Article
In Situ Investigation of Deformation Mechanisms and Stress Evolution in Mg-3Al-1Zn (AZ31) Alloy Using Synchrotron X-Ray Microdiffraction
by Yuxin Cao, Li Li, Yong Wang, Tuo Ye and Changping Tang
Metals 2025, 15(6), 675; https://doi.org/10.3390/met15060675 - 17 Jun 2025
Viewed by 309
Abstract
This study employs synchrotron polychromatic X-ray microdiffraction (micro-XRD) to resolve the dynamic interplay between deformation mechanisms and stress redistribution in a commercial Mg-3Al-1Zn (AZ31) alloy under uniaxial tension. Submicron-resolution mapping across 13 incremental load steps (12–73 MPa) reveals sequential activation of deformation modes: [...] Read more.
This study employs synchrotron polychromatic X-ray microdiffraction (micro-XRD) to resolve the dynamic interplay between deformation mechanisms and stress redistribution in a commercial Mg-3Al-1Zn (AZ31) alloy under uniaxial tension. Submicron-resolution mapping across 13 incremental load steps (12–73 MPa) reveals sequential activation of deformation modes: basal slip initiates at 46 MPa, followed by tensile twinning at 64 MPa, and non-basal slip accommodation during twin propagation at 68 MPa. Key findings include accelerated parent grain rotation (up to 0.275° basal plane tilt) between 43–46 MPa, stress relaxation in parent grains coinciding with twin nucleation, and a ~35 MPa stress reversal within twins. The critical resolved shear stress (CRSS) ratio of twinning to basal slip is experimentally determined as 1.8, with orientation-dependent variations attributed to parent grain crystallography. These results provide unprecedented insights into microscale deformation pathways, critical for optimizing magnesium alloy formability and performance in lightweight applications. Full article
Show Figures

Figure 1

9 pages, 1673 KiB  
Article
Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide
by Tao Lv, Jia Qv, Limin Yan, Yan Li, Qiang Tao, Pinwen Zhu and Xin Wang
Materials 2025, 18(12), 2729; https://doi.org/10.3390/ma18122729 - 10 Jun 2025
Viewed by 407
Abstract
The structural evolution of Ho2Ce2O7 under high pressure was systematically investigated using synchrotron X-ray diffraction (up to 31.5 GPa) and Raman spectroscopy (up to 41.7 GPa). At ambient pressure, the compound adopts a common C-type cubic rare earth [...] Read more.
The structural evolution of Ho2Ce2O7 under high pressure was systematically investigated using synchrotron X-ray diffraction (up to 31.5 GPa) and Raman spectroscopy (up to 41.7 GPa). At ambient pressure, the compound adopts a common C-type cubic rare earth oxide structure (space group Ia-3). A pressure-induced phase transition was observed to commence at 23.8 GPa, characterized by a gradual structural evolution that persisted through the maximum experimental pressure of 31.5 GPa. This transition involves cation disordering accompanied by coordination environment modifications. High-pressure X-ray diffraction analysis reveals the coexistence of two distinct phases above the transition threshold: the parent cubic phase (Ia-3) and a metastable hexagonal phase (R-3c). Notably, the high-pressure phase configuration persists upon complete decompression to ambient conditions, demonstrating the irreversible nature of this pressure-induced structural transition. Full article
Show Figures

Figure 1

17 pages, 5508 KiB  
Review
Application of Synchrotron Radiation in Fundamental Research and Clinical Medicine
by Chao Xiao, Jinde Zhang, Yang Li, Mingyuan Xie and Dongbai Sun
Biomedicines 2025, 13(6), 1419; https://doi.org/10.3390/biomedicines13061419 - 10 Jun 2025
Viewed by 765
Abstract
Synchrotron radiation light sources have been successfully utilized in material science, biomedicine, and other fields due to their high intensity, excellent monochromaticity, coherence, and collimation. In recent years, synchrotron radiation has significantly expedited the advancement of medical applications, particularly through innovations in imaging [...] Read more.
Synchrotron radiation light sources have been successfully utilized in material science, biomedicine, and other fields due to their high intensity, excellent monochromaticity, coherence, and collimation. In recent years, synchrotron radiation has significantly expedited the advancement of medical applications, particularly through innovations in imaging and radiotherapy. For instance, synchrotron X-ray imaging has enabled high-contrast and spatial–temporal resolution images for early-stage diagnosis of breast cancer and cardiovascular diseases, offering superior diagnostic accuracy compared to conventional methods. Additionally, novel synchrotron radiation-based radiotherapy techniques, such as microbeam therapy and stereotactic radiotherapy, have shown great potential for clinical application by enabling precise tumor targeting while minimizing damage to surrounding healthy tissues. These advancements are projected to redefine imaging diagnostics and therapeutic strategies, particularly for resistant cancers, by offering enhanced precision, reduced radiation doses, and improved therapeutic outcomes. This review provides an overview of synchrotron radiation beamline characteristics, recent breakthroughs in imaging and radiotherapy, and their emerging applications in treating heart, breast, lung, bone, and brain conditions. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

12 pages, 1401 KiB  
Article
Isolation and Preliminary X-Ray Crystallographic Characterisation of the Periplasmic Ligand-Binding Domain of the Chemoreceptor Tlp3 from Campylobacter hepaticus
by Diana Kovaleva, Yue Xin, Mohammad F. Khan, Yu H. Chin and Anna Roujeinikova
Crystals 2025, 15(6), 542; https://doi.org/10.3390/cryst15060542 - 6 Jun 2025
Viewed by 610
Abstract
The Campylobacter genus includes many pathogenic species, with Campylobacter hepaticus primarily implicated in spotty liver disease in poultry. Chemotaxis is one of the well-established mechanisms of pathogenesis of Campylobacter. The chemoreceptor Tlp3, previously studied in C. jejuni, mediates responses to diverse [...] Read more.
The Campylobacter genus includes many pathogenic species, with Campylobacter hepaticus primarily implicated in spotty liver disease in poultry. Chemotaxis is one of the well-established mechanisms of pathogenesis of Campylobacter. The chemoreceptor Tlp3, previously studied in C. jejuni, mediates responses to diverse ligands. Differences between the ligand-binding pockets of Tlp3s in C. hepaticus and C. jejuni may influence ligand specificity and niche adaptation. Here, we report a method for production of the ligand-binding domain of C. hepaticus Tlp3 (Ch Tlp3-LBD) in Escherichia coli inclusion bodies that yields crystallisable protein. Size-exclusion chromatography analysis showed Ch Tlp3-LBD is a monomer in solution. Ch Tlp3-LBD was crystallised using PEG 6000 and LiCl as the precipitants. The crystal lattice symmetry was P2221, with unit cell geometry of a = 82.0, b = 137.7, c = 56.1 Å, and α = β = γ = 90°. X-ray diffraction data have been acquired to 1.6 Å resolution using synchrotron radiation. Estimation of the Matthews coefficient (VM = 2.8 Å3 Da−1) and the outcome of molecular replacement suggested the asymmetric unit is composed of two protein molecules. This work lays the foundation for studies towards understanding the structural basis of ligand recognition by C. hepaticus Tlp3 and its role in pathogenesis. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

Back to TopTop