Investigating the Variation and Periodicity of TXS 0506+056
Abstract
1. Introduction
2. Data Collection
2.1. γ-Ray Observation: Fermi-LAT
2.2. X-Ray Observations: Swift XRT
2.3. Optical Observation: KAIT, ZTF, ASSA-SN
2.4. Radio Observation: OVRO
2.5. Light Curves
3. Correlation Analysis
3.1. Analysis Methods
3.2. Time Lag and Relative Distance
4. Periodicity Analysis
4.1. The Weighted Wavelet Z-Transform
4.2. Periodicity
5. Spectral Variability
5.1. γ-Ray Photon Index
5.2. CI and Optical Spectral Index
5.3. X-Ray HR
6. The Flux Correlation Between -Ray and Optical Bands
7. Conclusions
- Using the LCCF, we found that the correlation between -ray versus optical and optical versus radio band are beyond the 3 level. We calculated time lags between different wavebands. The result of relative distance suggests that the -rays and optical band roughly share the same emission regions, both located upstream of the radio band.
- Using both the WWZ and GLS methods, we analyzed the QPOs in the optical r bands. We found two weak QPOs at days and days from the WWZ method. The GLS results are consistent with the WWZ results within the error range. These findings support that the QPO are possibly due to the jet precession driven by a SMBBH.
- We conducted an analysis of the spectral index variations across the multiwavelength. The -ray PI exhibits a SWB behavior, and the optical spectral index shows a HWB trend. This could be explained that the optical emissions are mainly of synchrotron radiation, while the -ray emissions may originate from multiple components. The trend of X-ray HR shows a transition. It could be explained that the X-ray emission is composed of synchrotron and IC components, and the trend transition is due to the the shift in peak frequency.
- For this target, by analyzing the flux correlations, we obtain that the -ray emission is dominated by different processes at different epochs. The EC process with B dominance and a component not associated with the synchrotron component can both explain the non-correlation between the -ray and optical fluxes. During the flare associated with the neutrino event, there are excess -ray emissions compared with flares at other epochs. This suggests that the extra hadronic process also contributes to the -ray radiation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | https://fermi.gsfc.nasa.gov/ssc/ (accessed on 11 May 2024) |
2 | http://www.swift.psu.edu/monitoring (accessed on 11 May 2024) |
3 | https://asas-sn.osu.edu/(accessed on 11 May 2024) |
4 | http://www.astro.caltech.edu/ovroblazars/(accessed on 1 September 2018) |
References
- Urry, C.M.; Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Stickel, M.; Fried, J.W.; Kuehr, H.; Padovani, P.; Urry, C.M. The complete sample of 1 Jansky BL Lacertae objects. I. Summary properties. Astrophys. J. 1991, 374, 431. [Google Scholar] [CrossRef]
- Weymann, R.J.; Morris, S.L.; Foltz, C.B.; Hewett, P.C. Comparisons of the Emission-Line and Continuum Properties of Broad Absorption Line and Normal Quasi-stellar Objects. Astrophys. J. 1991, 373, 23–53. [Google Scholar] [CrossRef]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and hadronic modeling offermi-detected blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars? Astrophys. J. 1994, 421, 153. [Google Scholar] [CrossRef]
- Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67–76. [Google Scholar] [CrossRef]
- Cerruti, M.; Zech, A.; Boisson, C.; Inoue, S. A hadronic origin for ultra-high-frequency-peaked BL Lac objects. Mon. Not. R. Astron. Soc. 2015, 448, 910–927. [Google Scholar] [CrossRef]
- Padovani, P.; Giommi, P.; Resconi, E.; Glauch, T.; Arsioli, B.; Sahakyan, N.; Huber, M. Dissecting the region around IceCube-170922A: The blazar TXS 0506+056 as the first cosmic neutrino source. Mon. Not. R. Astron. Soc. 2018, 480, 192–203. [Google Scholar] [CrossRef]
- De Bruijn, O.; Bartos, I.; Biermann, P.L.; Tjus, J.B. Recurrent Neutrino Emission from Supermassive Black Hole Mergers. Astrophys. J. Lett. 2020, 905, L13. [Google Scholar] [CrossRef]
- Véron-Cetty, M.P.; Véron, P. A catalogue of quasars and active nuclei: 12th edition. Astron. Astrophys. 2006, 455, 773–777. [Google Scholar] [CrossRef]
- Healey, S.E.; Romani, R.W.; Taylor, G.B.; Sadler, E.M.; Ricci, R.; Murphy, T.; Ulvestad, J.S.; Winn, J.N. CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources. Astrophys. J. Suppl. Ser. 2007, 171, 61–71. [Google Scholar] [CrossRef]
- Padovani, P.; Oikonomou, F.; Petropoulou, M.; Giommi, P.; Resconi, E. TXS 0506+056, the first cosmic neutrino source, is not a BL Lac. Mon. Not. R. Astron. Soc. Lett. 2019, 484, L104–L108. [Google Scholar] [CrossRef]
- Abdollahi, S.; Ajello, M.; Baldini, L.; Ballet, J.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Berretta, A.; Bissaldi, E.; Bonino, R.; et al. The Fermi-LAT Lightcurve Repository. Astrophys. J. Suppl. Ser. 2023, 265, 31. [Google Scholar] [CrossRef]
- Stroh, M.C.; Falcone, A.D. Swift X-ray telescope monitoring of fermi-lat gamma-ray sources of interest. Astrophys. J. Suppl. Ser. 2013, 207, 28. [Google Scholar] [CrossRef]
- Shappee, B.J.; Prieto, J.L.; Grupe, D.; Kochanek, C.S.; Stanek, K.Z.; Rosa, G.D.; Mathur, S.; Zu, Y.; Peterson, B.M.; Pogge, R.W.; et al. The man behind the curtain: X-rays drive the UV through nir variability in the 2013 active galactic nucleus outburst in ngc 2617. Astrophys. J. 2014, 788, 48. [Google Scholar] [CrossRef]
- Li, W.; Filippenko, A.V.; Chornock, R.; Jha, S. The Katzman Automatic Imaging Telescope Gamma-Ray Burst Alert System, and Observations of GRB 020813. Publ. Astron. Soc. Pac. 2003, 115, 844. [Google Scholar] [CrossRef]
- Masci, F.J.; Laher, R.R.; Rusholme, B.; Shupe, D.L.; Groom, S.; Surace, J.; Jackson, E.; Monkewitz, S.; Beck, R.; Flynn, D.; et al. The Zwicky Transient Facility: Data Processing, Products, and Archive. Publ. Astron. Soc. Pac. 2018, 131, 018003. [Google Scholar] [CrossRef]
- Bellm, E.C.; Kulkarni, S.R.; Graham, M.J.; Dekany, R.; Smith, R.M.; Riddle, R.; Masci, F.J.; Helou, G.; Prince, T.A.; Adams, S.M.; et al. The Zwicky Transient Facility: System Overview, Performance, and First Results. Publ. Astron. Soc. Pac. 2018, 131, 018002. [Google Scholar] [CrossRef]
- Richards, J.L.; Max-Moerbeck, W.; Pavlidou, V.; King, O.G.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.; Shepherd, M.C.; Stevenson, M.A.; Weintraub, L.C.; et al. Blazars in the Fermi Era: The OVRO 40 m Telescope Monitoring Program. Astrophys. J. Suppl. Ser. 2011, 194, 29. [Google Scholar] [CrossRef]
- Ballet, J.; Burnett, T.H.; Digel, S.W.; Lott, B. Fermi Large Area Telescope Fourth Source Catalog Data Release 2. arXiv 2020. [Google Scholar] [CrossRef]
- Atwood, W.; Albert, A.; Baldini, L.; Tinivella, M.; Bregeon, J.; Pesce-Rollins, M.; Sgrò, C.; Bruel, P.; Charles, E.; Drlica-Wagner, A.; et al. Pass 8: Toward the Full Realization of the Fermi-LAT Scientific Potential. arXiv 2013. [Google Scholar] [CrossRef]
- Bruel, P.; Burnett, T.H.; Digel, S.W.; Johannesson, G.; Omodei, N.; Wood, M. Fermi-LAT improved Pass~8 event selection. arXiv 2018. [Google Scholar] [CrossRef]
- Mattox, J.R.; Bertsch, D.L.; Chiang, J.; Dingus, B.L.; Digel, S.; Esposito, J.; Fierro, J.M.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; et al. The Likelihood Analysis of EGRET Data. Astrophys. J. 1996, 461, 396. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Arnaud, K.A. XSPEC: The First Ten Years. In Astronomical Data Analysis Software and Systems V; ASP Conference Series; Jacoby, G.H., Barnes, J., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1996; Volume 101, p. 17. Available online: https://adsabs.harvard.edu/full/1996ASPC..101...17A (accessed on 19 June 2025).
- Kalberla, P.M.W.; Burton, W.B.; Hartmann, D.; Arnal, E.M.; Bajaja, E.; Morras, R.; Pöppel, W.G.L. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 2005, 440, 775–782. [Google Scholar] [CrossRef]
- HI4PI Collaboration; Ben Bekhti, N.; Flöer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M.R.; Dedes, L.; et al. HI4PI: A full-sky H I survey based on EBHIS and GASS. Astron. Astrophys. 2016, 594, A116. [Google Scholar] [CrossRef]
- Kochanek, C.S.; Shappee, B.J.; Stanek, K.Z.; Holoien, T.W.S.; Thompson, T.A.; Prieto, J.L.; Dong, S.; Shields, J.V.; Will, D.; Britt, C.; et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 2017, 129, 104502. [Google Scholar] [CrossRef]
- Yuk, H.; Dai, X.; Jayasinghe, T.; Fu, H.; Mishra, H.D.; Kochanek, C.S.; Shappee, B.J.; Stanek, K. Variability Selected Active Galactic Nuclei from ASAS-SN Survey: Constraining the Low Luminosity AGN Population. Astrophys. J. 2022, 930, 110. [Google Scholar] [CrossRef]
- Acciari, V.A.; Aniello, T.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; et al. Investigating the Blazar TXS 0506+056 through Sharp Multiwavelength Eyes During 2017–2019. Astrophys. J. 2022, 927, 197. [Google Scholar] [CrossRef]
- IceCube Collaboration; Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Atlee, D.W.; Baccus, J.; Bahcall, J.N.; Bai, X.; et al. First year performance of the IceCube neutrino telescope. Astropart. Phys. 2006, 26, 155–173. [Google Scholar] [CrossRef]
- Hovatta, T.; Lindfors, E.; Kiehlmann, S.; Max-Moerbeck, W.; Hodges, M.; Liodakis, I.; Lähteemäki, A.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.A.; et al. Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsähovi Radio Observatories. Astron. Astrophys. 2021, 650, A83. [Google Scholar] [CrossRef]
- Wang, Y.F.; Jiang, Y.G. A Comprehensive Study on the Variation Phenomena of AO 0235+164. Astrophys. J. 2020, 902, 41. [Google Scholar] [CrossRef]
- Edelson, R.A.; Krolik, J.H. The Discrete Correlation Function: A New Method for Analyzing Unevenly Sampled Variability Data. Astrophys. J. 1988, 333, 646. [Google Scholar] [CrossRef]
- Max-Moerbeck, W.; Richards, J.L.; Hovatta, T.; Pavlidou, V.; Pearson, T.J.; Readhead, A.C.S. A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series. Mon. Not. R. Astron. Soc. 2014, 445, 437–459. [Google Scholar] [CrossRef]
- Welsh, W.F. On the Reliability of Cross-Correlation Function Lag Determinations in Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1999, 111, 1347–1366. [Google Scholar] [CrossRef]
- Cohen, D.P.; Romani, R.W.; Filippenko, A.V.; Cenko, S.B.; Lott, B.; Zheng, W.; Li, W. Temporal correlations between optical and gamma-ray activity in blazars. Astrophys. J. 2014, 797, 137. [Google Scholar] [CrossRef]
- Timmer, J.; König, M. On generating power law noise. Astron. Astrophys. 1995, 300, 707. [Google Scholar]
- Shao, X.; Jiang, Y.; Chen, X. Curvature-induced polarization and spectral index behavior for PKS 1502+106. Astrophys. J. 2019, 884, 15. [Google Scholar] [CrossRef]
- Peterson, B.; Wanders, I.; Horne, K.; Collier, S.; Alexander, T.; Kaspi, S.; Maoz, D. On Uncertainties in Cross-Correlation Lags and the Reality of Wavelength-dependent Continuum Lags in Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1998, 110, 660–670. [Google Scholar] [CrossRef]
- Pushkarev, A.B.; Hovatta, T.; Kovalev, Y.Y.; Lister, M.L.; Lobanov, A.P.; Savolainen, T.; Zensus, J.A. MOJAVE: Monitoring of Jets in Active galactic nuclei with VLBA Experiments: IX. Nuclear opacity. Astron. Astrophys. 2012, 545, A113. [Google Scholar] [CrossRef]
- Paiano, S.; Falomo, R.; Treves, A.; Scarpa, R. The Redshift of the BL Lac Object TXS 0506+056. Astrophys. J. Lett. 2018, 854, L32. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Ros, E.; Savolainen, T. Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies. Astrophys. J. 2021, 923, 30. [Google Scholar] [CrossRef]
- Zechmeister, M.; Kürster, M. The generalised Lomb-Scargle periodogram-a new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 2009, 496, 577–584. [Google Scholar] [CrossRef]
- Foster, G. Wavelets for period analysis of unevenly sampled time series. Astron. J. 1996, 112, 1709–1729. [Google Scholar] [CrossRef]
- Chen, Z.H.; Jiang, Y. Quasi-periodic oscillation analysis for a sample of blazars at the optical band. Astron. Astrophys. 2024, 689, A35. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of hardy functions into square integrable wavelets of constant shape. Siam J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Roychowdhury, A.; Meyer, E.T.; Georganopoulos, M.; Breiding, P.; Petropoulou, M. Circumnuclear Dust in AP Librae and the source of its VHE emission. Astrophys. J. 2022, 924, 57. [Google Scholar] [CrossRef]
- Aharonian, F.; Benkhali, F.A.; Aschersleben, J.; Ashkar, H.; Backes, M.; Martins, V.B.; Barnard, J.; Batzofin, R.; Becherini, Y.; Berge, D.; et al. The vanishing of the primary emission region in PKS 1510–089. Astrophys. J. Lett. 2023, 952, L38. [Google Scholar] [CrossRef]
- Tramacere, A.; Giommi, P.; Massaro, E.; Perri, M.; Nesci, R.; Colafrancesco, S.; Tagliaferri, G.; Chincarini, G.; Falcone, A.; Burrows, D.N.; et al. SWIFT observations of TeV BL Lacertae objects. Astron. Astrophys. 2007, 467, 501–508. [Google Scholar] [CrossRef]
- Wang, C.Z.; Jiang, Y.G. Revealing the Variation Mechanism of ON 231 via the Two-component Shock-in-jet Model. Astrophys. J. 2024, 966, 65. [Google Scholar] [CrossRef]
- Chen, L. Curvature of the spectral energy distributions of blazars. Astrophys. J. 2014, 788, 179. [Google Scholar] [CrossRef]
- Kiehlmann, S.; Blinov, D.; Liodakis, I.; Pavlidou, V.; Readhead, A.; Angelakis, E.; Casadio, C.; Hovatta, T.; Kylafis, N.; Mahabal, A.; et al. The time-dependent distribution of optical polarization angle changes in blazars. Mon. Not. R. Astron. Soc. 2021, 507, 225–243. [Google Scholar] [CrossRef]
- Blinov, D.; Kiehlmann, S.; Pavlidou, V.; Panopoulou, G.; Skalidis, R.; Angelakis, E.; Casadio, C.; Einoder, E.; Hovatta, T.; Kokolakis, K.; et al. RoboPol: AGN polarimetric monitoring data. Mon. Not. R. Astron. Soc. 2021, 501, 3715–3726. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, Y. The Spectral Variation Behavior of Fermi-LAT Blazars. Astrophys. J. 2025, 983, 128. [Google Scholar] [CrossRef]
- Gu, M.F.; Ai, Y. The optical variability of flat-spectrum radio quasars in the SDSS stripe 82 region. Astron. Astrophys. 2011, 528, A95. [Google Scholar] [CrossRef]
- Max-Moerbeck, W.; Hovatta, T.; Richards, J.L.; King, O.G.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.; Shepherd, M.C.; Stevenson, M.A.; Angelakis, E.; et al. Time correlation between the radio and gamma-ray activity in blazars and the production site of the gamma-ray emission. Mon. Not. R. Astron. Soc. 2014, 445, 428–436. [Google Scholar] [CrossRef]
- Xiong, D.; Zhang, H.; Zhang, X.; Yi, T.; Bai, J.; Wang, F.; Liu, H.; Zheng, Y. Multi-color optical monitoring of MRK 501 from 2010 to 2015. Astrophys. J. Suppl. Ser. 2016, 222, 24. [Google Scholar] [CrossRef]
- Vagnetti, F.; Trevese, D.; Nesci, R. Spectral Slope Variability of BL Lac Objects in the Optical Band. Astrophys. J. 2008, 590, 123. [Google Scholar] [CrossRef]
- Kudryavtseva, N.A.; Gabuzda, D.C.; Aller, M.F.; Aller, H.D. A new method for estimating frequency-dependent core shifts in active galactic nucleus jets. Mon. Not. R. Astron. Soc. 2011, 415, 1631–1637. [Google Scholar] [CrossRef]
- Ikejiri, Y.; Uemura, M.; Sasada, M.; Ito, R.; Yamanaka, M.; Sakimoto, K.; Arai, A.; Fukazawa, Y.; Ohsugi, T.; Kawabata, K.S.; et al. Photopolarimetric Monitoring of Blazars in the Optical and Near-Infrared Bands with the Kanata Telescope. I. Correlations between Flux, Color, and Polarization. Publ. Astron. Soc. Jpn. 2011, 63, 639–675. [Google Scholar] [CrossRef]
- Bonning, E.; Megan Urry, C.; Bailyn, C.; Buxton, M.; Chatterjee, R.; Coppi, P.; Fossati, G.; Isler, J.; Maraschi, L. Smarts optical and infrared monitoring of 12 gamma-ray bright blazars. Astrophys. J. 2012, 756, 13. [Google Scholar] [CrossRef]
- Wierzcholska, A.; Ostrowski, M.; Stawarz, Ł.; Wagner, S.; Hauser, M. Longterm optical monitoring of bright BL Lacertae objects with ATOM: Spectral variability and multiwavelength correlations. Astron. Astrophys. 2014, 573, A69. [Google Scholar] [CrossRef]
- Zibecchi, L.; Andruchow, I.; Marchesini, E.J.; Cellone, S.A.; Combi, J.A. Optical monitoring in southern blazars. Analysis of variability and spectral colour behaviours. Mon. Not. R. Astron. Soc. 2024, 535, 3262–3282. [Google Scholar] [CrossRef]
- Chatterjee, R.; Bailyn, C.D.; Bonning, E.W.; Buxton, M.; Coppi, P.; Fossati, G.; Isler, J.; Maraschi, L.; Urry, C.M. Similarity of the Optical-Infrared and γ-Ray Time Variability of Fermi Blazars. Astrophys. J. 2012, 749, 191. [Google Scholar] [CrossRef]
Correlation | Time Lag (Days) | Relative Distance (pc) | ||||
---|---|---|---|---|---|---|
-ray versus Radio | ||||||
-ray versus Optical(V) | ||||||
-ray versus Optical(R+r) | ||||||
Optical(V) versus Radio | ||||||
Optical(R+r) versus Radio |
Epoch | Slope | Pearson’s r | p-Value |
---|---|---|---|
(a) | |||
(b) | |||
(c) | |||
(d) | <10−10 | ||
(e) | |||
all | <10−10 |
Period | CI vs. | vs. | ||||
---|---|---|---|---|---|---|
Slope | Pearson’s | -Value | Slope | Pearson’s | -Value | |
(c) | 0.330 | 0.167 | 0.446 | 0.043 | ||
(d) | 0.831 | <0.001 | 0.831 | <0.001 | ||
(e) | 0.214 | 0.239 | 0.526 | 0.313 | ||
All | 0.461 | <0.001 | 0.403 | <0.001 |
Epoch | Slope | Pearson’s r | p-Value |
---|---|---|---|
-ray versus g band | |||
All | 1.018 ± 0.170 | 0.431 | 0.000 |
(b) | 1.875 ± 0.666 | 0.514 | 0.010 |
(c) | 0.167 ± 0.634 | 0.066 | 0.796 |
(d) | 0.529 ± 0.285 | 0.361 | 0.076 |
(e) | 1.395 ± 0.547 | 0.694 | 0.038 |
-ray versus V band | |||
All | 0.759 ± 0.271 | 0.337 | 0.007 |
(a) | 0.224 ± 3.058 | 0.033 | 0.945 |
(b) | 2.346 ± 0.560 | 0.595 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, X.; Jiang, Y. Investigating the Variation and Periodicity of TXS 0506+056. Universe 2025, 11, 204. https://doi.org/10.3390/universe11070204
Miao X, Jiang Y. Investigating the Variation and Periodicity of TXS 0506+056. Universe. 2025; 11(7):204. https://doi.org/10.3390/universe11070204
Chicago/Turabian StyleMiao, Xianglin, and Yunguo Jiang. 2025. "Investigating the Variation and Periodicity of TXS 0506+056" Universe 11, no. 7: 204. https://doi.org/10.3390/universe11070204
APA StyleMiao, X., & Jiang, Y. (2025). Investigating the Variation and Periodicity of TXS 0506+056. Universe, 11(7), 204. https://doi.org/10.3390/universe11070204