Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Scattering
2.2.1. Theory
2.2.2. Hgap Experiment
2.2.3. Rect Experiment
2.3. Modulation Transfer Function
3. Results
3.1. Hgap Experiment
3.2. Rect Experiment
3.3. Modulation Transfer Function
4. Discussion
4.1. Measurements Method
4.2. Potential Error Sources
4.3. Differences Between the Coatings
5. Conclusions
5.1. Reliable Measurement of Optical Scattering
5.2. Benefits from Coated Scintillators
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed Tomography |
FoV | Field of View |
LCID | Lens-coupled indirect detector |
CCD | Charge-Coupled Device |
No | None |
AR | Anti-reflective |
R | Reflective |
B | Black |
EB-PVD | Electron Beam Physical Vapor Deposition |
MTF | Modulation Transfer Function |
PSF | Point Spread Function |
LSF | Line Spread Function |
SPR | Scatter-to-primary energy fluence ratio |
Appendix A
Appendix A.1
4 | 0.606 | 4.70 | 2.45 |
5 | 0.524 | 5.71 | 2.68 |
6 | 0.460 | 6.71 | 2.85 |
Appendix A.2
References
- Riechert, F.; Bastian, G.; Lemmer, U. Laser speckle reduction via colloidal-dispersion-filled projection screens. Appl. Opt. 2009, 48, 3742–3749. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Y.; Yang, Y.; Jia, Z.; Tang, H.; Patel, J.B.; Lin, Q. Template-Assisted Fabrication of Flexible Perovskite Scintillators for X-Ray Detection and Imaging. Adv. Opt. Mater. 2023, 11, 2300169. [Google Scholar] [CrossRef]
- Partridge, M.; Evans, P.M.; Symonds-Tayler, J.R.N. Optical scattering in camera-based electronic portal imaging. Phys. Med. Biol. 1999, 44, 2381–2396. [Google Scholar] [CrossRef] [PubMed]
- Siewerdsen, J.H.; Jaffray, D.A. Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of X-ray scatter. Med. Phys. 2001, 28, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Engel, K.J.; Herrmann, C.; Zeitler, G. X-ray scattering in single- and dual-source CT. Med. Phys. 2007, 35, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Siewerdsen, J.H.; Moseley, D.J.; Bakhtiar, B.; Richard, S.; Jaffray, D.A. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors: Antiscatter grids in cone-beam CT. Med. Phys. 2004, 31, 3506–3520. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Tsunoo, T.; Nakamori, N.; Yoshida, K. Effect of scattered radiation on image noise in cone beam CT. Med. Phys. 2001, 28, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Seibert, J.A.; Boone, J.M. X-ray scatter removal by deconvolution. Med. Phys. 1988, 15, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Maltz, J.; Blanz, W.E.; Hristov, D.; Bani-Hashemi, A. Cone beam X-ray scatter removal via image frequency modulation and filtering. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2005; pp. 1854–1857. [Google Scholar] [CrossRef]
- Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B.; Moseley, D.J.; Richard, S.; Keller, H.; Jaffray, D.A. A simple, direct method for X-ray scatter estimation and correction in digital radiography and cone-beam CT. Med. Phys. 2005, 33, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Brown, K.; Curtis, A.; Lutz, S.S.; Howe, R.; Malone, R.; Mitchell, S.; Danielson, J.; Haines, T.; Kwiatkowski, K. Scintillator efficiency study with MeV X-rays. In Proceedings of the Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, San Diego, CA, USA, 17–21 August 2014; Burger, A., Franks, L., James, R.B., Fiederle, M., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9213, p. 92130H. [Google Scholar] [CrossRef]
- Thompson, A.C.; Attwood, D.T.; Howells, M.R.; Kortright, J.B.; Robinson, A.L.; Underwood, J.H.; Kim, K.J.; Kirz, J.; Lindau, I.; Pianetta, P.; et al. X-Ray Data Booklet; Lawrence Berkeley Laboratory, University of California: Berkeley, CA, USA, 2009. [Google Scholar]
- Vijayakumar, J.; Dejea, H.; Mirone, A.; Muzelle, C.; Meyer, J.; Jarnias, C.; Dollman, K.; Zabler, S.; Paolasini, L.; Bellier, A.; et al. Multiresolution Phase-Contrast Tomography on BM18, a New Beamline at the European Synchrotron Radiation Facility. Synchrotron Radiation News; Taylor & Francis: Abingdon, UK, 2024; pp. 1–10. [Google Scholar]
- Cianciosi, F.; Buisson, A.L.; Tafforeau, P.; Van Vaerenbergh, P. BM18, the New ESRF-EBS Beamline for Hierarchical Phase-Contrast Tomography. In Proceedings of the 11th Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation, MEDSI2020, Chicago, IL, USA, 24–29 July 2021. [Google Scholar] [CrossRef]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271. [Google Scholar] [CrossRef] [PubMed]
- Polyanskiy, M.N. Refractiveindex.info database of optical constants. Sci. Data 2024, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Raven, C.; Spanne, P.; Snigirev, A. X-ray imaging with submicrometer resolution employing transparent luminescent screens. J. Opt. Soc. Am. A 1998, 15, 1940. [Google Scholar] [CrossRef]
- Diez, M.; Saeidnezhad, N.; Tafforeau, P.; Zabler, S. Benefits of front coating crystalline scintillator screens for phase-contrast synchrotron micro-tomography. Opt. Express 2024, 32, 41790. [Google Scholar] [CrossRef] [PubMed]
- Michail, C.M.; Fountos, G.P.; Valais, I.G.; Kalyvas, N.I.; Liaparinos, P.F.; Kandarakis, I.S.; Panayiotakis, G.S. Evaluation of the Red Emitting Gd2O2S:Eu Powder Scintillator for Use in Indirect X-Ray Digital Mammography Detectors. IEEE Trans. Nucl. Sci. 2011, 58, 2503–2511. [Google Scholar] [CrossRef]
No/No | No/AR | B/AR | R/AR | |
---|---|---|---|---|
25,379 | 24,482 | 29,572 | 40,420 | |
21,732 | 21,404 | 22,342 | 36,600 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diez, M.; Zabler, S. Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens. Crystals 2025, 15, 605. https://doi.org/10.3390/cryst15070605
Diez M, Zabler S. Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens. Crystals. 2025; 15(7):605. https://doi.org/10.3390/cryst15070605
Chicago/Turabian StyleDiez, Matthias, and Simon Zabler. 2025. "Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens" Crystals 15, no. 7: 605. https://doi.org/10.3390/cryst15070605
APA StyleDiez, M., & Zabler, S. (2025). Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens. Crystals, 15(7), 605. https://doi.org/10.3390/cryst15070605