Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Sun, J.; Duo, S.; Zhou, X.; Yuan, J.; Dong, S.; Yang, X.; Zeng, J.; Jiang, J.; Deng, L.; et al. Thermal and mechanical properties of Ta2O5 doped La2Ce2O7 thermal barrier coatings prepared by atmospheric plasma spraying. J. Eur. Ceram. Soc. 2019, 39, 2379–2388. [Google Scholar] [CrossRef]
- Yang, G.; El Loubani, M.; Chalaki, H.R.; Kim, J.; Keum, J.K.; Rouleau, C.M.; Lee, D. Tuning Ionic Conductivity in Fluorite Gd-Doped CeO2-Bixbyite RE2O3 (RE = Y and Sm) Multilayer Thin Films by Controlling Interfacial Strain. ACS Appl. Electron. Mater. 2023, 5, 4556–4563. [Google Scholar] [CrossRef] [PubMed]
- Kalland, L.-E.; Løken, A.; Bjørheim, T.S.; Haugsrud, R.; Norby, T. Structure, hydration, and proton conductivity in 50% La and Nd doped CeO2–La2Ce2O7 and Nd2Ce2O7–and their solid solutions. Solid State Ion. 2020, 354, 115401. [Google Scholar] [CrossRef]
- Gao, L.; Guo, H.; Gong, S.; Xu, H. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration. J. Eur. Ceram. Soc. 2014, 34, 2553–2561. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Gong, S. Thermal shock resistance and mechanical properties of La2Ce2O7 thermal barrier coatings with segmented structure. Ceram. Int. 2009, 35, 2639–2644. [Google Scholar] [CrossRef]
- Zhao, A. Novel Nanofibrous Dy2Ce2O7 as an Electrocatalyst for Methanol Oxidation. Int. J. Electrochem. Sci. 2019, 14, 8121–8130. [Google Scholar] [CrossRef]
- Ping, X.; Meng, B.; Li, C.; Lin, W.; Chen, Y.; Fang, C.; Zhang, H.; Liang, W.; Zheng, Q. Thermophysical and electrical properties of rare-earth-cerate high-entropy ceramics. J. Am. Ceram. Soc. 2022, 105, 4910–4920. [Google Scholar] [CrossRef]
- Ismail, S.A.; Han, D. Phase behavior, proton concentration, and conductivity of La2Ce2O7 doped with Y, Ho, Er, Tm, or Yb. J. Am. Ceram. Soc. 2022, 105, 7548–7557. [Google Scholar] [CrossRef]
- Han, W.; Li, Z.; Liu, H. La2Ce2O7 supported ruthenium as a robust catalyst for ammonia synthesis. J. Rare Earths 2019, 37, 492–499. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Shen, J.; Lou, Y.; Ji, Y. La2Ce2O7: A promising proton ceramic conductor in hydrogen economy. J. Alloys Compd. 2016, 659, 232–239. [Google Scholar] [CrossRef]
- Zhong, Z.; Jiang, Y.; Lian, Z.; Song, X.; Peng, K. Exploring the effects of divalent alkaline earth metals (Mg, Ca, Sr, Ba) doped Nd2Ce2O7 electrolyte for proton-conducting solid oxide fuel cells. Ceram. Int. 2020, 46, 12675–12685. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, X.; Zhong, Z.; Lian, Z.; Peng, K. Sintering and electrochemical performance of Nd2Ce2O7 electrolyte with Bi7WO13.5 sintering aid for proton conductor solid oxide fuel cells. J. Alloys Compd. 2020, 836, 155539. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and Coulombic efficiency. J. Clean. Prod. 2019, 215, 480–487. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salehi, Z.; Amiri, O.; Salavati-Niasari, M. Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. Int. J. Hydrog. Energy 2019, 44, 20110–20120. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Xu, X.; Xi, R.; Liu, Y.; Fang, X.; Wang, X. Tailoring La2Ce2O7 catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods. Catal. Today 2020, 355, 518–528. [Google Scholar] [CrossRef]
- Dolatalizadeh, M.; Behzad, M.; Khademinia, S.; Arab, A. Experimentally Designed Natural Light Induced Photocatalytic Performance of Nanostructured Eu2Ce2O7 Synthesized by a Facile Solid State Method in Removal of Environmental Pollutant Malachite Green (MG). Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2020, 91, 9–20. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. Part B Eng. 2019, 174, 106930. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Aravamudan, G.; Rao, G.V.S. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- Yamamura, H.; Nishino, H.; Kakinuma, K.; Nomura, K. Crystal Phase and Electrical Conductivity in the Pyrochlore Type Composition Systems, Ln2Ce2O7 (LnüLa, Nd, Sm, Eu, Gd, Yand Yb). J. Ceram. Soc. Jpn. 2003, 111, 902–906. [Google Scholar] [CrossRef]
- Sakata, M.; Kagayama, T.; Shimizu, K.; Matsuhira, K.; Takagi, S.; Wakeshima, M.; Hinatsu, Y. Suppression of metal-insulator transition at high pressure and pressure-induced magnetic ordering in pyrochlore oxide Nd2Ir2O7. Phys. Rev. B 2011, 83, 041102. [Google Scholar] [CrossRef]
- Tafti, F.F.; Ishikawa, J.J.; McCollam, A.; Nakatsuji, S.; Julian, S.R. Pressure-tuned insulator to metal transition inEu2Ir2O7. Phys. Rev. B 2012, 85, 205104. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, K.; Li, N.; Ma, S.; Wang, Y.; Kong, Q.; Baudelet, F.; Wang, X.; Yang, W. Tricolor Ho3+ Photoluminescence Enhancement from Site Symmetry Breakdown in Pyrochlore Ho2Sn2O7 after Pressure Treatment. Phys. Rev. Lett. 2020, 125, 245701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.X.; Tracy, C.L.; Lang, M.; Ewing, R.C. Stability of fluorite-type La2Ce2O7 under extreme conditions. J. Alloys Compd. 2016, 674, 168–173. [Google Scholar] [CrossRef]
- Tu, T.; Zhang, B.; Liu, J.; Wu, K.; Peng, K. Synthesis and conductivity behaviour of Mo-doped La2Ce2O7 proton conductors. Electrochim. Acta 2018, 283, 1366–1374. [Google Scholar] [CrossRef]
- Choudhary, B.; Anwar, S. Probing the Transport Properties, Electrophoretic Deposition, and Electrochemical Performance of La2–xSmxCe2O7 Ceramics for IT-SOFCs. ACS Appl. Energy Mater. 2023, 6, 11817–11827. [Google Scholar] [CrossRef]
- Mandal, B.P.; Roy, M.; Grover, V.; Tyagi, A.K. X-ray diffraction, μ-Raman spectroscopic studies on CeO2−RE2O3 (RE=Ho, Er) systems: Observation of parasitic phases. J. Appl. Phys. 2008, 103, 033506. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Banerji, A.; Grover, V.; Sathe, V.; Deb, S.K.; Tyagi, A.K. system: Unraveling of microscopic features by Raman spectroscopy. Solid State Commun. 2009, 149, 1689–1692. [Google Scholar] [CrossRef]
- Coduri, M.; Scavini, M.; Pani, M.; Carnasciali, M.M.; Klein, H.; Artini, C. From nano to microcrystals: Effects of different synthetic pathways on the defect architecture in heavily Gd-doped ceria. Phys. Chem. Chem. Phys. 2017, 19, 11612–11630. [Google Scholar] [CrossRef]
- Zhang, F.X.; Lian, J.; Becker, U.; Ewing, R.C.; Hu, J.; Saxena, S.K. High-pressure structural changes in the Gd2Zr2O7 pyrochlore. Phys. Rev. B 2007, 76, 214104. [Google Scholar] [CrossRef]
- Patel, M.K.; Baldinozzi, G.; Aguiar, J.A.; Valdez, J.A.; Vogel, S.C.; Sickafus, K.E. Structural analysis of Gd2Ce2O7. MRS Proc. 2015, 1743, mrsf14-1743. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Zhao, X.; Li, Y.; Tao, Q.; Zhu, P.; Wang, X. Pressure-induced structural transition of pyrochlore Tm2Sn2O7. J. Alloys Compd. 2023, 963, 171248. [Google Scholar] [CrossRef]
- Turner, K.M.; Rittman, D.R.; Heymach, R.A.; Tracy, C.L.; Turner, M.L.; Fuentes, A.F.; Mao, W.L.; Ewing, R.C. Pressure-induced structural modifications of rare-earth hafnate pyrochlore. J. Phys. Condens. Matter 2017, 29, 255401. [Google Scholar] [CrossRef]
- Liu, D.; Lei, W.W.; Zou, B.; Yu, S.D.; Hao, J.; Wang, K.; Liu, B.B.; Cui, Q.L.; Zou, G.T. High-pressure x-ray diffraction and Raman spectra study of indium oxide. J. Appl. Phys. 2008, 104, 083506. [Google Scholar] [CrossRef]
- Qi, J.; Liu, J.F.; He, Y.; Chen, W.; Wang, C. Compression behavior and phase transition of cubic In2O3 nanocrystals. J. Appl. Phys. 2011, 109, 063520. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–247. [Google Scholar] [CrossRef]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Nakajima, A.; Yoshihara, A.; Ishigame, M. Defect-induced Raman spectra in doped CeO2. Phys. Rev. B 1994, 50, 13297–13307. [Google Scholar] [CrossRef]
- Weber, W.H.; Hass, K.C.; McBride, J.R. Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 1993, 48, 178–185. [Google Scholar] [CrossRef]
- McBride, J.R.; Hass, K.C.; Poindexter, B.D.; Weber, W.H. Raman and x-ray studies of Ce1-xREXO2-y, where RE=La, Pr, Nd, Eu, Gd and Tb. J. Appl. Phys. 1994, 76, 2435–2441. [Google Scholar] [CrossRef]
Compounds | Ho2Ce2O7 (1.2 GPa) | Ho2Ce2O7 (28.8 GPa) | |
---|---|---|---|
Crystal System | Cubic | Cubic | Hexagonal |
Space group | Ia-3 (No. 206) | Ia-3 (No. 206) | R-3c (No. 167) |
a/Å | 10.7090 (6) | 10.3529 (2) | 5.6984 (12) |
b/Å | 10.7090 (6) | 10.3529 (2) | 5.6984 (12) |
c/Å | 10.7090 (6) | 10.3529 (2) | 16.2232 (09) |
Rp | 1.44% | 1.45% | |
Rwp | 2.82% | 2.62% | |
Rexp | 3.22% | 3.12% | |
χ | 0.88 | 0.84 | |
Atoms | Wyckoff (x y z) | Wyckoff (x y z) | Wyckoff (x y z) |
Ho1/Ce1 | 24d (−0.0107 (3) 0 0.25) | 24d (−0.0043 (6) 0 0.25) | 12c (0 0 0.872 (9)) |
Ho2/Ce2 | 8b (0.25 0.25 0.25) | 8b (0.25 0.25 0.25) | |
O (1) | 48e (0.381 (5) 0.138 (8) 0.362 (2)) | 48e (0.368 (8) 0.161 (6) 0.392 (9)) | 18e (0.306 (2) 0 0.25) |
O (2) | 16c (0.391 (2) 0.391 (2) 0.391 (2)) | 16c (0.484 (9) 0.484 (9) 0.484 (9)) |
Pressure (GPa) | Symmetry | a(Å) | c(Å) | V(Å3) |
---|---|---|---|---|
1.2 | Cubic | 10.7092 (6) | 1228.1 (11) | |
3 | Cubic | 10.6607 (3) | 1211.6 (5) | |
4.5 | Cubic | 10.6291 (4) | 1200.8 (2) | |
6.2 | Cubic | 10.5998 (8) | 1190.9 (07) | |
7.9 | Cubic | 10.5718 (7) | 1181.5 (3) | |
9.8 | Cubic | 10.5503 (2) | 1174.3 (5) | |
12.2 | Cubic | 10.5287 (09) | 1167.1 (4) | |
15.5 | Cubic | 10.5007 (2) | 1157.8 (3) | |
17.6 | Cubic | 10.4812 (8) | 1151.4 (6) | |
20.1 | Cubic | 10.4574 (5) | 1143.6 (8) | |
23.8 | Cubic | 10.4139 (6) | 1129.5 (5) | |
Hexagonal | 5.7075 (8) | 16.2623 (6) | 429.1 (2) | |
26.4 | Cubic | 10.3770 (3) | 1117.4 (2) | |
Hexagonal | 5.7012 (2) | 16.2381 (5) | 426.8 (14) | |
28.8 | Cubic | 10.3529 (07) | 1109.6 (3) | |
Hexagonal | 5.6984 (12) | 16.2232 (09) | 424.1 (11) | |
31.5 | Cubic | 10.3260 (9) | 1101.1 (4) | |
Hexagonal | 5.6941 (4) | 16.2059 (06) | 422.3 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, T.; Qv, J.; Yan, L.; Li, Y.; Tao, Q.; Zhu, P.; Wang, X. Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide. Materials 2025, 18, 2729. https://doi.org/10.3390/ma18122729
Lv T, Qv J, Yan L, Li Y, Tao Q, Zhu P, Wang X. Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide. Materials. 2025; 18(12):2729. https://doi.org/10.3390/ma18122729
Chicago/Turabian StyleLv, Tao, Jia Qv, Limin Yan, Yan Li, Qiang Tao, Pinwen Zhu, and Xin Wang. 2025. "Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide" Materials 18, no. 12: 2729. https://doi.org/10.3390/ma18122729
APA StyleLv, T., Qv, J., Yan, L., Li, Y., Tao, Q., Zhu, P., & Wang, X. (2025). Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide. Materials, 18(12), 2729. https://doi.org/10.3390/ma18122729