Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (398)

Search Parameters:
Keywords = synaptic membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1141 KB  
Review
The Protonic Brain: Nanoscale pH Dynamics, Proton Wires, and Acid–Base Information Coding in Neural Tissue
by Valentin Titus Grigorean, Catalina-Ioana Tataru, Cosmin Pantu, Felix-Mircea Brehar, Octavian Munteanu and George Pariza
Int. J. Mol. Sci. 2026, 27(2), 560; https://doi.org/10.3390/ijms27020560 - 6 Jan 2026
Viewed by 88
Abstract
Emerging research indicates that neuronal activity is maintained by an architectural system of protons in a multi-scale fashion. Proton architecture is formed when organelles (such as mitochondria, endoplasmic reticulum, lysosomes, synaptic vesicles, etc.) are coupled together to produce dynamic energy domains. Techniques have [...] Read more.
Emerging research indicates that neuronal activity is maintained by an architectural system of protons in a multi-scale fashion. Proton architecture is formed when organelles (such as mitochondria, endoplasmic reticulum, lysosomes, synaptic vesicles, etc.) are coupled together to produce dynamic energy domains. Techniques have been developed to visualize protons in neurons; recent advances include near-atomic structural imaging of organelle interfaces using cryo-tomography and nanoscale resolution imaging of organelle interfaces and proton tracking using ultra-fast spectroscopy. Results of these studies indicate that protons in neurons do not diffuse randomly throughout the neuron but instead exist in organized geometric configurations. The cristae of mitochondrial cells create oscillating proton micro-domains that are influenced by the curvature of the cristae, hydrogen bonding between molecules, and localized changes in dielectric properties that result in time-patterned proton signals that can be used to determine the metabolic load of the cell and the redox state of its mitochondria. These proton patterns also communicate to the rest of the cell via hydrated aligned proton-conductive pathways at the mitochon-dria-endoplasmic reticulum junctions, through acidic lipid regions, and through nano-tethered contact sites between mitochondria and other organelles, which are typically spaced approximately 10–25 nm apart. Other proton architectures exist in lysosomes, endosomes, and synaptic vesicles. In each of these organelles, the V-ATPase generates steep concentration gradients across their membranes, controlling the rate of cargo removal from the lumen of the organelle, recycling receptors from the surface of the membrane, and loading neurotransmitters into the vesicles. Recent super-resolution pH mapping has indicated that populations of synaptic vesicles contain significant heterogeneity in the amount of protons they contain, thereby influencing the amount of neurotransmitter released per vesicle, the probability of vesicle release, and the degree of post-synaptic receptor protonation. Additionally, proton gradients in each organelle interact with the cytoskeleton: the protonation status of actin and microtubules influences filament stiffness, protein–protein interactions, and organelle movement, resulting in the formation of localized spatial structures that may possess some type of computational significance. At multiple scales, it appears that neurons integrate the proton micro-domains with mechanical tension fields, dielectric nanodomains, and phase-state transitions to form distributed computing elements whose behavior is determined by the integration of energy flow, organelle geometry, and the organization of soft materials. Alterations to the proton landscape in neurons (e.g., due to alterations in cristae structure, drift in luminal pH, disruption in the hydration-structure of the cell, or imbalance in the protonation of cytoskeletal components) could disrupt the intracellular signaling network well before the onset of measurable electrical or biochemical pathologies. This article will summarize evidence indicating that proton–organelle interaction provides a previously unknown source of energetic substrate for neural computation. Using an integrated approach combining nanoscale proton energy, organelle interface geometry, cytoskeletal mechanics, and AI-based multiscale models, this article outlines current principles and unresolved questions related to the subject area as well as possible new approaches to early detection and precise intervention of pathological conditions related to altered intracellular energy flow. Full article
(This article belongs to the Special Issue Molecular Synapse: Diversity, Function and Signaling)
Show Figures

Figure 1

20 pages, 944 KB  
Review
Does Altered Membrane Glycosylation Contribute to Neurodevelopmental Dysfunction in Autism Spectrum Disorder?
by Vinicius J. S. Osterne, Messias V. Oliveira, Vanir R. Pinto-Junior, Francisco S. B. Mota, Benildo S. Cavada and Kyria S. Nascimento
Membranes 2026, 16(1), 18; https://doi.org/10.3390/membranes16010018 - 1 Jan 2026
Viewed by 338
Abstract
Neuronal development relies on cell-surface glycoconjugates that function as complex bioinformational codes. Recently, altered glycosylation has emerged as a central mechanistic theme in the pathophysiology of autism spectrum disorder (ASD). Critically, the brain maintains a distinctively restricted glycan profile through strict biosynthetic regulation, [...] Read more.
Neuronal development relies on cell-surface glycoconjugates that function as complex bioinformational codes. Recently, altered glycosylation has emerged as a central mechanistic theme in the pathophysiology of autism spectrum disorder (ASD). Critically, the brain maintains a distinctively restricted glycan profile through strict biosynthetic regulation, creating a specialized landscape highly susceptible to homeostatic perturbation. This “membrane-centric vulnerability” spans both glycoproteins and glycolipids; however, evidence remains fragmented, obscuring their pathogenic interplay. To bridge this gap, this review synthesizes evidence for these two primary classes of membrane glycoconjugates into a unified framework. We examine how defects in key glycoproteins (such as NCAM1 and neuroligins) directly impair synaptic signaling, trafficking, and plasticity. We then demonstrate how these defects are functionally coupled to the glycolipid (ganglioside) environment, which organizes the lipid raft platforms essential for glycoprotein function. We propose that these two systems are not independent but represent a final common pathway for diverse etiological drivers. Genetic variants (e.g., MAN2A2), environmental factors (e.g., valproic acid), and epigenetic dysregulation (e.g., miRNAs) all converge on this mechanism of impaired glycan maturation. This model elucidates how distinct upstream causes can produce a common downstream synaptic pathology by compromising the integrity of the membrane signaling platform. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

30 pages, 1460 KB  
Review
Neuron–Glioma Synapses in Tumor Progression
by Cristina Cueto-Ureña, María Jesús Ramírez-Expósito and José Manuel Martínez-Martos
Biomedicines 2026, 14(1), 72; https://doi.org/10.3390/biomedicines14010072 - 29 Dec 2025
Viewed by 411
Abstract
Gliomas are the most common malignant primary brain tumors in adults. The treatment of high-grade gliomas is very limited due to their diffuse infiltration, high plasticity, and resistance to conventional therapies. Although they were long considered passive massive lesions, they are now regarded [...] Read more.
Gliomas are the most common malignant primary brain tumors in adults. The treatment of high-grade gliomas is very limited due to their diffuse infiltration, high plasticity, and resistance to conventional therapies. Although they were long considered passive massive lesions, they are now regarded as functionally integrated components of neural circuits, as they form authentic electrochemical synapses with neurons. This allows them to mimic neuronal activity to drive tumor growth and invasion. Ultrastructural studies show presynaptic vesicles in neurons and postsynaptic densities in glioma cell membranes, while electrophysiological recordings detect postsynaptic currents in tumor cells. Tumor microtubules (TMs), dynamic cytoplasmic protrusions enriched in AMPA receptors, are the structures responsible for glioma–glioma and glioma–neuron connectivity, also contributing to treatment resistance and tumor network integration. In these connections, neurons release glutamate that mainly activates their AMPA receptors in glioma cells, while gliomas release excess glutamate, causing excitotoxicity, altering the local excitatory-inhibitory balance, and promoting a hyperexcitable and pro-tumorigenic microenvironment. In addition, certain gliomas, such as diffuse midline gliomas, have altered chloride homeostasis, which makes GABAergic signaling depolarizing and growth promoting. Synaptogenic factors, such as neuroligin-3 and BDNF, further enhance glioma proliferation and synapse formation. These synaptic and paracrine interactions contribute to cognitive impairment, epileptogenesis, and resistance to surgical and pharmacological interventions. High functional connectivity within gliomas correlates with shorter patient survival. Therapies such as AMPA receptor antagonists (perampanel), glutamate release modulators (riluzole or sulfasalazine), and chloride cotransporter inhibitors (NKCC1 blockers) aim to improve outcomes for patients. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

24 pages, 2618 KB  
Article
Metal-Associated Particulate Matter (PM2.5) Induces Cognitive Dysfunction: Polygonum multiflorum Improves Neuroinflammation and Synaptic Function
by Hye Ji Choi, Hyo Lim Lee and Ho Jin Heo
Int. J. Mol. Sci. 2026, 27(1), 230; https://doi.org/10.3390/ijms27010230 - 25 Dec 2025
Viewed by 189
Abstract
Fine particulate matter (PM2.5), which contains heavy metals such as Al, Fe, Mg, and Mn, among others, induces cognitive dysfunction through oxidative stress, neuroinflammation, and impaired mitochondria. This study evaluated the neuroprotective effects of a 40% ethanol extract of Polygonum multiflorum [...] Read more.
Fine particulate matter (PM2.5), which contains heavy metals such as Al, Fe, Mg, and Mn, among others, induces cognitive dysfunction through oxidative stress, neuroinflammation, and impaired mitochondria. This study evaluated the neuroprotective effects of a 40% ethanol extract of Polygonum multiflorum (EPM) on PM2.5-induced cognitive dysfunction in a mouse model. Behavioral assessments demonstrated attenuated learning and memory impairment following EPM treatment. Redox homeostasis was restored through increased expression of superoxide dismutase (SOD) and glutathione (GSH) and decreased levels of malondialdehyde (MDA) and mitochondrial reactive oxygen species (mtROS) in the EPM group. Mitochondrial function was attenuated, as indicated by recovery of mitochondrial membrane potential and ATP levels. EPM inhibited neuroinflammation by downregulating the TLR4-MyD88-NF-κB pathway and maintaining blood–brain barrier integrity through the upregulation of tight junction proteins. It modulated neuronal apoptosis through the JNK pathway, reducing the accumulation of amyloid-beta and phosphorylated tau. Synaptic plasticity was preserved through upregulation of BDNF/TrkB signaling and cholinergic neurotransmission via regulation of acetylcholine (ACh), acetylcholinesterase (AChE), and choline acetyltransferase (ChAT). To standardize EPM, high-performance liquid chromatography (HPLC) confirmed the presence of the bioactive compound, tetrahydroxystilbene glucoside (TSG). These findings suggest that EPM may be a promising functional food candidate for mitigating PM2.5-related cognitive impairments. Full article
(This article belongs to the Special Issue Metals and Metal Ions in Human Health, Diseases, and Environment)
Show Figures

Figure 1

19 pages, 2344 KB  
Review
Re-Evaluation of the Ultrastructural Localization of Tonic GABA-A Receptors
by Abraham Rosas-Arellano
Pharmaceuticals 2026, 19(1), 25; https://doi.org/10.3390/ph19010025 - 22 Dec 2025
Viewed by 254
Abstract
Cell membrane receptors play key roles in physiological and pathological processes, yet the mechanisms governing their expression and distribution across the plasma membrane remain not completely understood. Broadly, membrane receptors can be categorized into phasic and tonic receptors. Tonic GABA-A receptors have attracted [...] Read more.
Cell membrane receptors play key roles in physiological and pathological processes, yet the mechanisms governing their expression and distribution across the plasma membrane remain not completely understood. Broadly, membrane receptors can be categorized into phasic and tonic receptors. Tonic GABA-A receptors have attracted considerable interest due to their distinct molecular composition and their capacity to mediate highly sensitive, sustained inhibitory responses in the presence of ambient GABA. Traditionally, these receptors have been described as residing in peri- and extrasynaptic regions, where they are thought to sense GABA spillover and generate tonic inhibition. However, evidence accumulated over several decades has challenged this canonical view. Multiple studies have reported activity-dependent and pathology-associated relocalization of tonic GABA-A receptor subunits from their typical peri- and extrasynaptic domains into the synaptic cleft. This phenomenon has been documented in both in vivo and in vitro models, yet major questions remain regarding its occurrence, underlying mechanisms, functional significance, and adaptive value. This review synthesizes current evidence and highlights ongoing controversies surrounding the ultrastructural localization of tonic GABA-A receptors. Based on an exhaustive search of the PubMed database, this review summarizes key findings from studies investigating the subcellular distribution of these receptors and discusses emerging perspectives on their potential synaptic presence. Full article
Show Figures

Graphical abstract

31 pages, 4758 KB  
Review
Synaptic Vesicle Disruption in Parkinson’s Disease: Dual Roles of α-Synuclein and Emerging Therapeutic Targets
by Mario Treviño, Magdalena Guerra-Crespo, Francisco J. Padilla-Godínez, Emmanuel Ortega-Robles and Oscar Arias-Carrión
Brain Sci. 2026, 16(1), 7; https://doi.org/10.3390/brainsci16010007 - 20 Dec 2025
Viewed by 404
Abstract
Evidence increasingly indicates that synaptic vesicle dysfunction emerges early in Parkinson’s disease (PD), preceding overt dopaminergic neuron loss rather than arising solely as a downstream consequence of neurodegeneration. α-Synuclein (αSyn), a presynaptic protein that regulates vesicle clustering, trafficking, and neurotransmitter release under physiological [...] Read more.
Evidence increasingly indicates that synaptic vesicle dysfunction emerges early in Parkinson’s disease (PD), preceding overt dopaminergic neuron loss rather than arising solely as a downstream consequence of neurodegeneration. α-Synuclein (αSyn), a presynaptic protein that regulates vesicle clustering, trafficking, and neurotransmitter release under physiological conditions, exhibits dose-, conformation-, and context-dependent actions that distinguish its normal regulatory roles from pathological effects observed in disease models. This narrative review synthesizes findings from a structured search of PubMed and Scopus, with emphasis on α-syn-knockout (αSynKO) and BAC transgenic (αSynBAC) mouse models, which do not recapitulate the full human PD trajectory but provide complementary insights into αSyn physiological function and dosage-sensitive vulnerability. Priority was given to studies integrating ultrastructural approaches—such as cryo-electron tomography, high-pressure freezing/freeze-substitution TEM, and super-resolution microscopy—with proteomic and lipidomic analyses. Across these methodologies, several convergent presynaptic alterations are consistently observed. In vivo and ex vivo studies associate αSyn perturbation with impaired vesicle acidification, consistent with altered expression or composition of vacuolar-type H+-ATPase subunits. Lipidomic analyses reveal age- and genotype-dependent remodeling of vesicle membrane lipids, particularly curvature- and charge-sensitive phospholipids, which may destabilize αSyn–membrane interactions. Complementary biochemical and cell-based studies support disruption of SNARE complex assembly and nanoscale release-site organization, while ultrastructural analyses demonstrate reduced vesicle docking, altered active zone geometry, and vesicle pool disorganization, collectively indicating compromised presynaptic efficiency. These findings support a synapse-centered framework in which presynaptic dysfunction represents an early and mechanistically relevant feature of PD. Rather than advocating αSyn elimination, emerging therapeutic concepts emphasize preservation of physiological vesicle function—through modulation of vesicle acidification, SNARE interactions, or membrane lipid homeostasis. Although such strategies remain exploratory, they identify the presynaptic terminal as a potential window for early intervention aimed at maintaining synaptic resilience and delaying functional decline in PD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

25 pages, 1666 KB  
Review
Pridopidine, a Potent and Selective Therapeutic Sigma-1 Receptor (S1R) Agonist for Treating Neurodegenerative Diseases
by Noga Gershoni Emek, Andrew M. Tan, Michal Geva, Andrea Fekete, Carmen Abate and Michael R. Hayden
Pharmaceuticals 2025, 18(12), 1900; https://doi.org/10.3390/ph18121900 - 17 Dec 2025
Viewed by 746
Abstract
Pridopidine is a highly selective sigma-1 receptor (S1R) agonist in clinical development for Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). The S1R is a ubiquitous chaperone protein enriched in the central nervous system and regulates multiple pathways critical for neuronal cell function [...] Read more.
Pridopidine is a highly selective sigma-1 receptor (S1R) agonist in clinical development for Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). The S1R is a ubiquitous chaperone protein enriched in the central nervous system and regulates multiple pathways critical for neuronal cell function and survival, including cellular stress responses, mitochondrial function, calcium signaling, protein folding, and autophagy. S1R has a crucial role in the ER mitochondria-associated membrane (MAM), whose dysfunction is implicated in several neurodegenerative diseases. By activating the S1R, pridopidine corrects multiple cellular pathways necessary to the cell’s ability to respond to stress, which are disrupted in neurodegenerative diseases. Pridopidine restores MAM integrity; rescues Ca2+ homeostasis and autophagy; mitigates ER stress, mitochondrial dysfunction, and oxidative damage; and enhances brain-derived neurotrophic factor (BDNF) axonal transport and secretion, synaptic plasticity, and dendritic spine density. Pridopidine demonstrates neuroprotective effects in in vivo models of neurodegenerative diseases (NDDs). Importantly, pridopidine demonstrates the biphasic dose response characteristic of S1R agonists. In clinical trials in HD and ALS, pridopidine has shown benefits across multiple endpoints. Pridopidine’s mechanism of action, modulating core cellular survival pathways, positions it as a promising candidate for disease modification for different nervous system disorders. Its broad therapeutic potential includes neurodevelopmental disorders, and rare diseases including Wolfram syndrome, Rett syndrome, and Vanishing White Matter Disease. Here, we review the experimental data demonstrating pridopidine’s S1R-mediated neuroprotective effects. These findings underscore the therapeutic relevance of S1R activation and support further investigation of pridopidine for the treatment of different neurodegenerative diseases including ALS and HD. Full article
(This article belongs to the Special Issue Current Advances in Therapeutic Potential of Sigma Receptor Ligands)
Show Figures

Figure 1

32 pages, 1040 KB  
Review
Maintenance and Decline of Neuronal Lysosomal Function in Aging
by Ruiling Zhong and Claire E. Richardson
Cells 2025, 14(24), 1976; https://doi.org/10.3390/cells14241976 - 12 Dec 2025
Viewed by 701
Abstract
Lysosomes are central effectors of cellular maintenance, integrating the degradation of damaged organelles and protein aggregates with macromolecule recycling and metabolic signaling. In neurons, lysosomes are particularly crucial due to the cells’ long lifespan, polarized architecture, and high metabolic demands. Proper regulation of [...] Read more.
Lysosomes are central effectors of cellular maintenance, integrating the degradation of damaged organelles and protein aggregates with macromolecule recycling and metabolic signaling. In neurons, lysosomes are particularly crucial due to the cells’ long lifespan, polarized architecture, and high metabolic demands. Proper regulation of lysosomal function is essential to sustain proteostasis, membrane turnover, and synaptic integrity. Although lysosomal dysfunction has been extensively studied in neurodegenerative diseases, far less is known about how lysosomal capacity and function are maintained—or fail to be maintained—with age in non-diseased neurons. In this review, we summarize current understanding of neuronal lysosomal dynamics, discuss methodological challenges in assessing lysosomal capacity and function, and highlight recent advances that reveal age-associated decline in neuronal lysosomal competence. Full article
(This article belongs to the Section Cellular Aging)
Show Figures

Figure 1

28 pages, 2088 KB  
Review
Glycosphingolipids in Dementia: Insights from Mass Spectrometry and Systems Biology Approaches
by Mirela Sarbu, Raluca Ica, Maria-Roxana Biricioiu, Liana Dehelean and Alina D. Zamfir
Biomedicines 2025, 13(12), 2854; https://doi.org/10.3390/biomedicines13122854 - 22 Nov 2025
Viewed by 695
Abstract
 This narrative literature review synthesizes recent evidence on glycosphingolipid (GSL) dysregulation in dementia, emphasizing discoveries enabled by mass spectrometry (MS) and systems biology. Focusing on the research published within the last decade, we selected studies that are relevant to GSL alterations in dementia [...] Read more.
 This narrative literature review synthesizes recent evidence on glycosphingolipid (GSL) dysregulation in dementia, emphasizing discoveries enabled by mass spectrometry (MS) and systems biology. Focusing on the research published within the last decade, we selected studies that are relevant to GSL alterations in dementia and notable for their methodological advances. The findings were conceptually integrated to emphasize key molecular, analytical, and systems-level aspects across the major dementia types. The results from MS-based glycolipidomics in Alzheimer’s disease, dementia with Lewy bodies, frontotemporal dementia, Parkinson’s disease dementia, and Huntington’s disease consistently indicate altered GSL metabolism and shared molecular vulnerabilities in neuronal lipid regulation. At the same time, distinct GSL signatures differentiate individual dementias, reflecting the disease-specific mechanisms of neurodegeneration. The literature also reveals that recent advances in high-resolution MS and integrative analytical workflows have shifted GSL research from descriptive to mechanistic, facilitating the detailed mapping of species linked to neuroinflammation, protein aggregation, and synaptic dysfunction. Systems-level analyses combining MS data with other omics approaches increasingly depict GSLs as active regulators of neuronal function rather than inert membrane components. At the same time, emerging trends position GSLs as promising early biomarkers and potential therapeutic targets, while the growing use of artificial intelligence in MS data analysis is accelerating the detection of their subtle patterns, improving cross-disease comparisons. Together, these results reinforce the major role of MS-based platforms in discovering dementia-associated GSLs, identifying therapeutic targets, and influencing future strategies for diagnosis and treatment.  Full article
Show Figures

Figure 1

29 pages, 1838 KB  
Article
Persistent and Dose-Dependent Neural and Metabolic Gene Expression Changes Induced by Transient Citalopram Exposure in Zebrafish Embryos
by Ryan J. North, Gwendolyn Cooper, Lucas Mears, Brian Bothner, Mensur Dlakić and Christa S. Merzdorf
Int. J. Mol. Sci. 2025, 26(23), 11288; https://doi.org/10.3390/ijms262311288 - 22 Nov 2025
Viewed by 530
Abstract
Citalopram, a common selective serotonin reuptake inhibitor (SSRI), has been increasingly detected in aquatic environments due to ineffective removal and improper disposal. Although developmental exposure to SSRIs is linked to neurotoxicity, little is known about the persistence of gene expression alterations following limited [...] Read more.
Citalopram, a common selective serotonin reuptake inhibitor (SSRI), has been increasingly detected in aquatic environments due to ineffective removal and improper disposal. Although developmental exposure to SSRIs is linked to neurotoxicity, little is known about the persistence of gene expression alterations following limited exposure periods. Zebrafish embryos were exposed from 2 to 24 h post-fertilization (hpf) at concentrations of citalopram hydrobromide spanning surface water to therapeutic serum levels (0.03, 0.9, 50, and 250 μg/L), followed by removal of the citalopram and development until 48 hpf. Whole-embryo RNA sequencing at 48 hpf revealed a non-linear dose–response wherein the lowest dose resulted in the induction of the highest number of differentially expressed genes (DEGs). Gene set enrichment analyses (GSEA) and overrepresentation analyses (ORAs) showed that 0.03 μg/L citalopram caused upregulation of metabolic and developmental pathway genes, but suppressed synaptic membrane genes, whereas 0.9 μg/L resulted in strong downregulation of key neurotransmitter receptors. At 50 μg/L, genes linked to oxidative stress (glutathione metabolism and ferroptosis) were upregulated, and at 250 μg/L, stress and apoptotic processes were increased, while glutamate receptor genes were repressed. All four citalopram doses suggested synaptic and neurotransmitter alterations, implying that persistent neurodevelopmental impacts resulted from a limited early window of exposure. These data highlight that transient, low-level SSRI exposures shape long-term embryonic gene expression. Full article
(This article belongs to the Special Issue Fish Genomics and Developmental Biology, 2nd Edition)
Show Figures

Figure 1

15 pages, 2013 KB  
Article
Effects of Nicotine on SH-SY5Y Cells: An NMR-Based Metabolomic Study
by Enza Napolitano, Carmen Marino, Manuela Grimaldi, Michela Buonocore and Anna Maria D’Ursi
Metabolites 2025, 15(11), 752; https://doi.org/10.3390/metabo15110752 - 20 Nov 2025
Viewed by 611
Abstract
Background/Objectives: Nicotine is a naturally occurring alkaloid primarily found in Nicotiana tabacum. This phytochemical is well known for its addictive properties, and its consumption—particularly through tobacco smoking—is strongly associated with an increased risk of malignancies, metabolic dysfunctions, and cardiovascular as well [...] Read more.
Background/Objectives: Nicotine is a naturally occurring alkaloid primarily found in Nicotiana tabacum. This phytochemical is well known for its addictive properties, and its consumption—particularly through tobacco smoking—is strongly associated with an increased risk of malignancies, metabolic dysfunctions, and cardiovascular as well as respiratory diseases. Despite these adverse effects, several studies have also reported beneficial actions of nicotine, including the enhancement of cognitive functions in several neurodegenerative diseases. Methods: To better elucidate the multiple effects of nicotine and clarify their underlying mechanisms, we performed an NMR-based metabolomic analysis of SH-SY5Y neuroblastoma cells exposed to nicotine action. Results: Our results indicate that nicotine modulates mitochondrial function and membrane turnover, thereby influencing mitochondrial bioenergetics, synaptic plasticity, and connectivity. Conclusions: Collectively, these findings may contribute, at least in part, to explaining the neuroprotective effects of nicotine described in preclinical models of neurodegenerative disease. Full article
(This article belongs to the Special Issue Advances in NMR- and MS-Based Metabolomics and Its Applications)
Show Figures

Graphical abstract

26 pages, 4723 KB  
Article
Persistent Oxidation of Mitochondrial and Transmembrane Proteins in Rat Cerebrum and Heart Regardless of Age or Nutrition
by Wangya Yang, Shipan Fan, Carina Ramallo-Guevara, Manuela Kratochwil, Sandra Thilmany, Michiru D. Sugawa, Norbert A. Dencher and Ansgar Poetsch
Int. J. Mol. Sci. 2025, 26(22), 11155; https://doi.org/10.3390/ijms262211155 - 18 Nov 2025
Viewed by 730
Abstract
Reactive oxygen species (ROS), inevitable by-products of aerobic metabolism, act both as regulators of signaling pathways and as mediators of oxidative stress and aging-related damage. Protein oxidative post-translational modifications (Ox-PTMs) are recognized hallmarks of aging and metabolic decline, yet the persistence of protein [...] Read more.
Reactive oxygen species (ROS), inevitable by-products of aerobic metabolism, act both as regulators of signaling pathways and as mediators of oxidative stress and aging-related damage. Protein oxidative post-translational modifications (Ox-PTMs) are recognized hallmarks of aging and metabolic decline, yet the persistence of protein oxidation under different physiological conditions, such as age and diet, remains unclear. Here, we applied proteomics to mitochondrial and membrane-enriched fractions of male Fischer 344 rat cerebrum and heart, comparing Ox-PTMs across young and aged animals subjected to ad libitum nutrition (AL) or calorie restriction (CR). We identified 139 mitochondrial and membrane-associated proteins consistently exhibiting high levels of oxidation, including tricarboxylic acid (TCA) cycle enzymes, respiratory chain subunits, ATP synthase components, cytoskeletal proteins, and synaptic vesicle regulators. Functional enrichment and network analyses revealed that oxidized proteins clustered in modules related to mitochondrial energy metabolism, membrane transport, and excitation–contraction coupling. Notably, many proteins remained persistently oxidized, predominantly as mono-oxidation, without significant changes during aging or CR. Moreover, the enzymatic activity of mitochondrial complexes was not only preserved but significantly enhanced in specific contexts, and the structural integrity of the respiratory chain was maintained. These findings indicate a dual strategy for coping with oxidative stress: CR reduces ROS production to limit oxidative burden, while protein and network robustness enable functional adaptation to persistent oxidation, collectively shaping mitochondrial function and cellular homeostasis under differing physiological conditions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 3546 KB  
Article
Molecular Dynamics Study of α-Synuclein Domain Deletion Mutant Monomers
by Noriyo Onishi, Nicodemo Mazzaferro, Špela Kunstelj, Daisy A. Alvarado, Anna M. Muller and Frank X. Vázquez
Biomolecules 2025, 15(11), 1577; https://doi.org/10.3390/biom15111577 - 10 Nov 2025
Cited by 1 | Viewed by 577
Abstract
Aggregates of misfolded α-synuclein proteins are key markers of Parkinson’s disease. The protein α-synuclein (aSyn) is an intrinsically disordered protein (IDP) and therefore lacks a single stable 3D structure, instead sampling multiple conformations in solution. It is primarily located in presynaptic terminals and [...] Read more.
Aggregates of misfolded α-synuclein proteins are key markers of Parkinson’s disease. The protein α-synuclein (aSyn) is an intrinsically disordered protein (IDP) and therefore lacks a single stable 3D structure, instead sampling multiple conformations in solution. It is primarily located in presynaptic terminals and is thought to help regulate synaptic vesicle trafficking and neurotransmitter release. ASyn proteins have three domains: an N-terminal domain, a hydrophobic non-amyloid-β component (NAC) core implicated in aggregation, and a proline-rich C-terminal domain. Asyn proteins with truncated C-terminal domains are known to be prone to aggregation and suggest that understanding domain–domain interactions in aSyn monomers could help elucidate the role of the flanking domains in modulating protein structure. To this end, we used Gaussian accelerated molecular dynamics (GAMD) to simulate wild-type (WT), N-terminal truncated (ΔN), C-terminal truncated (ΔC), and isolated NAC domain (isoNAC) aSyn protein variants. Using clustering and contact analysis, we found that removal of the N-terminal domain led to increased contacts between NAC and C-terminal domains and the formation of inter-domain β-sheets. Removal of either flanking domain also resulted in increased compactness of every domain. We also found that the contacts between flanking domains in the WT protein result in an electrostatic potential (ESP) that may lead to favorable interactions with anionic lipid membranes. Removal of the C-terminal domain disrupts the ESP in a way that could result in over-stabilized protein–membrane interactions. These results suggest that cooperation between the flanking domains may modulate the protein’s structure in a way that helps maintain elongation and creates an ESP that may aid favorable interactions with the membrane. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

50 pages, 1979 KB  
Review
Circadian Regulation of Neuronal Membrane Capacitance—Mechanisms and Implications for Neural Computation and Behavior
by Agnieszka Nowacka, Maciej Śniegocki, Dominika Bożiłow and Ewa Ziółkowska
Int. J. Mol. Sci. 2025, 26(21), 10766; https://doi.org/10.3390/ijms262110766 - 5 Nov 2025
Viewed by 1675
Abstract
Neuronal membrane capacitance (Cm) has traditionally been viewed as a static biophysical property determined solely by the geometric and dielectric characteristics of the lipid bilayer. Recent discoveries have fundamentally challenged this perspective, revealing that Cm exhibits robust circadian oscillations that profoundly influence neural [...] Read more.
Neuronal membrane capacitance (Cm) has traditionally been viewed as a static biophysical property determined solely by the geometric and dielectric characteristics of the lipid bilayer. Recent discoveries have fundamentally challenged this perspective, revealing that Cm exhibits robust circadian oscillations that profoundly influence neural computation and behavior. These rhythmic fluctuations in membrane capacitance are orchestrated by intrinsic cellular clocks through coordinated regulation of molecular processes including transcriptional control of membrane proteins, lipid metabolism, ion channel trafficking, and glial-mediated extracellular matrix remodeling. The dynamic modulation of Cm directly impacts the membrane time constant (τm = RmCm), thereby altering synaptic integration windows, action potential dynamics, and network synchronization across the 24 h cycle. At the computational level, circadian Cm oscillations enable neurons to shift between temporal summation and coincidence detection modes, optimizing information processing according to behavioral demands throughout the day–night cycle. These biophysical rhythms influence critical aspects of cognition including memory consolidation, attention, working memory, and sensory processing. Disruptions in normal Cm rhythmicity are increasingly implicated in neuropsychiatric and neurodegenerative disorders, including depression, schizophrenia, Alzheimer’s disease, and epilepsy, where altered membrane dynamics compromise neural circuit stability and information transfer. The integration of circadian biophysics with chronomedicine offers promising therapeutic avenues, including chronotherapeutic strategies that target membrane properties, personalized interventions based on individual chronotypes, and environmental modifications that restore healthy biophysical rhythms. This review synthesizes evidence from molecular chronobiology, cellular electrophysiology, and systems neuroscience to establish circadian Cm regulation as a fundamental mechanism linking molecular timekeeping to neural computation and behavior. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Figure 1

16 pages, 640 KB  
Review
Restoring Balance: The Role of Omega-3 Polyunsaturated Fatty Acids on the Gut–Brain Axis and Other Interconnected Biological Pathways to Improve Depression
by Floriana De Cillis, Veronica Begni, Patrizia Genini, Daniele Leo, Marco Andrea Riva and Annamaria Cattaneo
Nutrients 2025, 17(21), 3426; https://doi.org/10.3390/nu17213426 - 31 Oct 2025
Viewed by 2334
Abstract
Major depressive disorder (MDD) is a complex, multifactorial condition involving dysregulation across immune, neural, and metabolic systems. Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have emerged as promising adjunctive interventions, with evidence supporting their [...] Read more.
Major depressive disorder (MDD) is a complex, multifactorial condition involving dysregulation across immune, neural, and metabolic systems. Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have emerged as promising adjunctive interventions, with evidence supporting their efficacy in alleviating depressive symptoms. Here, we synthesize current knowledge on the interconnected biological pathways through which n-3 PUFAs may exert antidepressant effects. A growing body of evidence implicates the gut–brain axis as a central pathway through which n-3 PUFAs may exert antidepressant effects. By shaping microbiota composition and metabolite production, n-3 PUFAs influence intestinal permeability, immune activation, and vagal signaling, thereby contributing to both immunomodulatory and neurochemical effects. In combination, n-3 PUFAs modulate peripheral and central inflammation by promoting specialized pro-resolving mediators, downregulating pro-inflammatory cytokines, and influencing microglial activation. Parallel actions on neuronal membrane composition and lipid raft integrity affect neurotransmitter signaling, synaptic plasticity, and neurogenesis, with downstream effects on neural function. Additional pathways, including hypothalamic–pituitary–adrenal axis regulation and oxidative stress reduction, further integrate n-3 PUFA actions across multiple systems. Collectively, these mechanisms suggest that n-3 PUFAs act as network modulators, supporting recovery in depression. Translational research highlights the importance of EPA-predominant formulations, optimal dosing, and patient stratification. By framing n-3 PUFAs activity within a multi-level systems biology perspective, this review provides a comprehensive mechanistic understanding and underscores their potential as targeted adjunctive strategies for MDD. Full article
(This article belongs to the Special Issue Diet, Gut Health, and Clinical Nutrition)
Show Figures

Graphical abstract

Back to TopTop