Re-Evaluation of the Ultrastructural Localization of Tonic GABA-A Receptors
Abstract
1. Introduction
1.1. Tonic Activity
1.2. Subcellular Distribution of Tonic Resources
1.3. γ-Aminobutyric Acid
1.4. γ-Aminobutyric Acid Sub-Type a Receptors
1.5. Molecular Identity of GABA-A Tonic Subunits
1.6. Summary of the Characteristics of Each GABA-A Tonic Subunit
1.6.1. GABA-A α4
1.6.2. GABA-A α5
1.6.3. GABA-A α6
1.6.4. GABA-A β3
1.6.5. GABA-A δ
1.6.6. GABA-A ρ1
1.6.7. GABA-A ρ2
1.6.8. GABA-A ρ3
2. Discussion
2.1. Are Tonic GABA-ARs Homogeneously Compartmentalized in the Cell Membrane?
2.2. Are GABA-A Tonics Suitable for the Development of Targeted Therapies?
2.3. Some Alterations in the Expression of GABA-A Tonic Subunits
2.4. Relocation or Overexpression and Redistribution of Tonic GABA-A Receptors? The Study Has Had Limitations
3. Future Directions
What Can We Expect from the Dynamic Synaptic Allocation of Tonic GABA-A Resources in the Future?
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATD | Amino terminal domain |
| Ax | Axon |
| CTD | Carboxi terminal domain |
| Den | dendrite |
| EC-50 | half-maximal effective concentration |
| GABA | γ-Aminobutyric acid |
| GAD | glutamate decarboxylase |
| gc | glial cell |
| HD | Huntington disease |
| mt | mitochondria |
| mvb | multivesicular bodies |
| NC-IUPHAR | Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology |
| nf | neurofilaments |
| PALM | Photo-Activated Localization Microscopy |
| PrSm | presynaptic membrane |
| PrS | presynaptic terminals |
| PtSm | postsynaptic membrane |
| SCl | synaptic cleft |
| SMLM | single-molecule localization microscopy |
| sv | synaptic vesicles |
| TM (1-4) | Transmembrane domain |
References
- Cavelier, P.; Hamann, M.; Rossi, D.; Mobbs, P.; Attwell, D. Tonic excitation and inhibition of neurons: Ambient transmitter sources and computational consequences. Prog. Biophys. Mol. Biol. 2005, 87, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Sallard, E.; Letourneur, D.; Legendre, P. Electrophysiology of ionotropic GABA receptors. Cell. Mol. Life Sci. 2021, 78, 5341–5370. [Google Scholar] [CrossRef]
- Cherubini, E. Phasic GABAA-Mediated Inhibition. In Jasper’s Basic Mechanisms of the Epilepsies [Internet], 4th ed.; Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. [Google Scholar] [PubMed]
- Walker, M.C.; Kullmann, D.M. Tonic GABAA Receptor-Mediated Signaling in Epilepsy. In Jasper’s Basic Mechanisms of the Epilepsies [Internet], 4th ed.; Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. [Google Scholar] [PubMed]
- Polenzani, L.; Woodwardt, R.M.; Miledi, R. Expression of mammalian y-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes (retina/membrane current/bicuculline sensitvity/barbiturates/picrotoxin) [Internet]. Proc. Nati. Acad. Sci. USA 1991, 88, 4318–4322. [Google Scholar] [CrossRef]
- Boumhaouad, S.; Makowicz, E.A.; Choi, S.; Bouhaddou, N.; Balla, J.; Taghzouti, K.; Sulzer, D.; Mosharov, E.V. Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice. ACS Chem. Neurosci. 2025, 16, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Arellano, A.; Parodi, J.; Machuca-Parra, A.I.; Sánchez-Gutiérrez, A.; Inestrosa, N.C.; Miledi, R.; Martínez-Torres, A. The GABA(A)ρ receptors in hippocampal spontaneous activity and their distribution in hippocampus, amygdala and visual cortex. Neurosci. Lett. 2011, 500, 20–25. [Google Scholar] [CrossRef]
- Rodgers, E.; Krenz, W.D.C.; Baro, D.J. Tonic dopamine induces persistent changes in the transient potassium current through translational regulation. J. Neurosci. 2011, 31, 13046–13056. [Google Scholar] [CrossRef]
- Chen, H.X.; Roper, S.N. Tonic activity of metabotropic glutamate receptors is involved in developmental modification of short-term plasticity in the neocortex. J. Neurophysiol. 2004, 92, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Kobilka, B.K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta Biomembr. 2007, 1768, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Arellano, A.; Estrada-Mondragón, A.; Mantellero, C.; Tejeda-Guzmán, C.; Castro, M. The adjustment of γ-aminobutyric acidA tonic subunits in Huntington’s disease: From transcription to translation to synaptic levels into the neostriatum. Neural Regen. Res. 2018, 13, 584–590. [Google Scholar] [CrossRef]
- The Fine Structure of the Nervous System. Neurons and their Supporting Cells. 3rd edition. J. Neuropathol. Exp. Neurol. 1991, 50, 282. [Google Scholar] [CrossRef]
- Triller, A.; Choquet, D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: And yet they do move! Trends Neurosci. 2005, 28, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Lévi, S.; Triller, A. Neurotransmitter Dynamics. In The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology; Kittler, J.T., Moss, S.J., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2006; Chapter 8. [Google Scholar] [PubMed]
- Kaufmann, W.A.; Matsui, K.; Jeromin, A.; Nerbonne, J.M.; Ferraguti, F. Kv4.2 potassium channels segregate to extrasynaptic domains and influence intrasynaptic NMDA receptor NR2B subunit expression. Brain Struct. Funct. 2013, 218, 1115–1132. [Google Scholar] [CrossRef]
- Nusserl, Z.; David, J.; Roberts’, B.; Baude, A.; Grayson Richards, J.; Sieghart, W.; Somogyi, P. lmmunocytochemical Localization of the a1 and p2/3 Subunits of the GABAA Receptor in Relation to Specific GABAergic Synapses in the Dentate Gyrus. Eur. J. Neurosci. 1995, 7, 630–646. [Google Scholar] [CrossRef]
- Rosas-Arellano, A.; Tejeda-Guzmán, C.; Lorca-Ponce, E.; Palma-Tirado, L.; Mantellero, C.A.; Rojas, P.; Missirlis, F.; Castro, M.A. Huntington’s disease leads to decrease of GABA-A tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol. Dis. 2018, 110, 142–153. [Google Scholar] [CrossRef]
- Fukaya, M.; Tsujita, M.; Yamazaki, M.; Kushiya, E.; Abe, M.; Akashi, K.; Natsume, R.; Kano, M.; Kamiya, H.; Watanabe, M.; et al. Abundant distribution of TARP gamma-8 in synaptic and extrasynaptic surface of hippocampal neurons and its major role in AMPA receptor expression on spines and dendrites. Eur. J. Neurosci. 2006, 24, 2177–2190. [Google Scholar] [CrossRef]
- Kumar, S.; Punekar, N.S. The metabolism of 4-aminobutyrate (GABA) in fungi. Mycol. Res. 1997, 101, 403–409. [Google Scholar] [CrossRef]
- Braga, J.D.; Thongngam, M.; Kumrungsee, T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut–brain axis. npj Sci. Food 2024, 8, 16. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Fang, W.; Fu, X.; Cao, F.; Liu, S. Gamma-Aminobutyric Acid: A Novel Biomolecule to Improve Plant Resistance and Fruit Quality. Plants 2025, 14, 2162. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.-S.; Zhou, L.; Wu, J.Y.; Rao, Y. Cellular and Molecular Guidance of GABAergic Neuronal Migration from an Extracortical Origin to the Neocortex. Neuron 1999, 23, 473–485. [Google Scholar] [CrossRef]
- Ben-Ari, Y. Excitatory actions of GABA during development: The nature of the nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Jobson, M.A.; Valdez, C.M.; Gardner, J.; Garcia, L.R.; Jorgensen, E.M.; Beg, A.A. Spillover transmission is mediated by the excitatory GABA receptor LGC-35 in C. elegans. J. Neurosci. 2015, 35, 2803–2816. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.; Frankel, S. gamma-Aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem. 1950, 187, 55–63. [Google Scholar] [CrossRef]
- Bowery, N.G.; Brown, D.A. Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br. J. Pharmacol. 1974, 50, 205–218. [Google Scholar] [CrossRef]
- Krnjevic, K.; Phillis, J.W. Actions of certain amines on cerebral cortical neurones. Br. J. Pharmacol. Chemother. 1963, 20, 471–490. [Google Scholar] [CrossRef]
- Roberts, E.; Frankel, S.; Harman, P. Amino Acids of Nervous Tissue. Proc. Soc. Exp. Biol. Med. 1950, 74, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Hepsomali, P.; Groeger, J.A.; Nishihira, J.; Scholey, A. Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front. Neurosci. 2020, 14, 923. [Google Scholar] [CrossRef]
- D’Hulst, C.; Atack, J.R.; Kooy, R.F. The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov. Today 2009, 14, 866–875. [Google Scholar] [CrossRef]
- Olsen, R.W.; Sieghart, W. GABAA receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology 2009, 56, 141–148. [Google Scholar] [CrossRef]
- Gasiorowska, A.; Wydrych, M.; Drapich, P.; Zadrozny, M.; Steczkowska, M.; Niewiadomski, W.; Niewiadomska, G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front. Aging Neurosci. 2021, 13, 654931. [Google Scholar] [CrossRef]
- Yoon, B.E.; Woo, J.; Chun, Y.E.; Chun, H.; Jo, S.; Bae, J.Y.; An, H.; Min, J.O.; Oh, S.J.; Han, K.S.; et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J. Physiol. 2014, 592, 4951–4968. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Arellano, A.; Estrada-Mondragón, A.; Martínez-Torres, A.; Reyes-Haro, D. GABAA-ρ Receptors in the CNS: Their Functional, Pharmacological, and Structural Properties in Neurons and Astroglia. Neuroglia 2023, 4, 239–252. [Google Scholar] [CrossRef]
- Ceballos, C.C.; Ma, L.; Qin, M.; Zhong, H. Widespread co-release of glutamate and GABA throughout the mouse brain. Commun. Biol. 2024, 7, 1502. [Google Scholar] [CrossRef]
- Hill, D.R.; Bowery, N.G. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature 1981, 290, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.A.; Borowsky, B.; Tamm, J.A.; Craig, D.A.; Durkin, M.M.; Dai, M.; Yao, W.-J.; Johnson, M.; Gunwaldsen, C.; Huang, L.-Y.J.N. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 1998, 396, 674–679. [Google Scholar] [CrossRef]
- Barnard, E.A. Receptor classes and the transmitter-gated ion channels. Trends Biochem. Sci. 1992, 17, 368–374. [Google Scholar] [CrossRef]
- Delgado-Lezama, R.; Loeza-Alcocer, E.; Andrés, C.; Aguilar, J.; Guertin, P.A.; Felix, R. Extrasynaptic GABA(A) receptors in the brainstem and spinal cord: Structure and function. Curr. Pharm. Des. 2013, 19, 4485–4497. [Google Scholar] [CrossRef]
- López-Chávez, A.; Miledi, R.; Martínez-Torres, A. Cloning and functional expression of the bovine GABAC ρ2 subunit: Molecular evidence of a widespread distribution in the CNS. Neurosci. Res. 2005, 53, 421–427. [Google Scholar] [CrossRef]
- Waldvogel, H.J.; Baer, K.; Faull, R.L.M. Distribution of GABAA Receptor Subunits in the Human Brain. In GABA and Sleep: Molecular, Functional and Clinical Aspects; Monti, J.M., Pandi-Perumal, S.R., Möhler, H., Eds.; Springer: Basel, Switzerland, 2010; pp. 73–93. [Google Scholar] [CrossRef]
- Olsen, R.W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 2008, 60, 243–260. [Google Scholar] [CrossRef]
- Martínez-Delgado, G.; Estrada-Mondragón, A.; Miledi, R.; Martínez-Torres, A. An Update on GABA Receptors. Curr. Neuropharmacol. 2010, 8, 422–433. [Google Scholar] [CrossRef]
- Belelli, D.; Hales, T.G.; Lambert, J.J.; Luscher, B.; Olsen, R.; Peters, J.A.; Rudolph, U.; Sieghart, W. GABAA receptors in GtoPdb v.2023.1. IUPHAR/BPS Guide Pharmacol. CITE 2023, 2023, 1–20. [Google Scholar] [CrossRef]
- Sinkkonen, S.T.; Hanna, M.C.; Kirkness, E.F.; Korpi, E.R. GABA A Receptor and Subunits Display Unusual Structural Variation between Species and Are Enriched in the Rat Locus Ceruleus. J. Neurosci. 2000, 20, 3588–3595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Li, W.; Salovska, B.; Zhang, J.; Li, T.; Li, H.; Liu, Y.; Kaczmarek, L.K.; Pusztai, L.; et al. GABAA receptor π forms channels that stimulate ERK through a G-protein-dependent pathway. Mol. Cell 2025, 85, 166–176.e5. [Google Scholar] [CrossRef]
- Milligan, C.J.; Buckley, N.J.; Garret, M.; Deuchars, J.; Deuchars, S.A. Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons. J. Neurosci. 2004, 24, 7241–7250. [Google Scholar] [CrossRef]
- Sieghart, W. Unraveling the function of GABA(A) receptor subtypes. Trends Pharmacol. Sci. 2000, 21, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Torres, A.; Miledi, R. Expression of functional receptors by the human gamma-aminobutyric acid A gamma 2 subunit. Proc. Natl. Acad. Sci. USA 2004, 101, 3220–3223. [Google Scholar] [CrossRef] [PubMed]
- Kullmann, D.M.; Ruiz, A.; Rusakov, D.M.; Scott, R.; Semyanov, A.; Walker, M.C. Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: Where and why? Prog. Biophys. Mol. Biol. 2005, 87, 33–46. [Google Scholar] [CrossRef]
- Belelli, D.; Harrison, N.L.; Maguire, J.; Macdonald, R.L.; Walker, M.C.; Cope, D.W. Extrasynaptic GABAa receptors: Form, pharmacology, and function. J. Neurosci. 2009, 29, 12757–12763. [Google Scholar] [CrossRef] [PubMed]
- Brickley, S.G.; Mody, I. Extrasynaptic GABA A Receptors: Their Function in the CNS and Implications for Disease. Neuron 2012, 73, 23–34. [Google Scholar] [CrossRef]
- Jacob, T.C. Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors. Front. Mol. Neurosci. 2019, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Weiss, D.S. Homomeric rho 1 GABA channels: Activation properties and domains. Recept. Channels 1994, 2, 227–236. [Google Scholar]
- Lu, J.C.; Hsiao, Y.T.; Chiang, C.W.; Wang, C.T. GABAA receptor-mediated tonic depolarization in developing neural circuits. Mol. Neurobiol. 2014, 49, 702–723. [Google Scholar] [CrossRef] [PubMed]
- Egawa, K.; Fukuda, A. Pathophysiological power of improper tonic GABAAconductances in mature and immature models. Front Neural Circuits 2013, 7, 170. [Google Scholar] [CrossRef]
- Kilb, W.; Kirischuk, S.; Luhmann, H.J. Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front. Neural Circuits 2013, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.S. α4βδ GABAA receptors and tonic inhibitory current during adolescence: Effects on mood and synaptic plasticity. Front Neural Circuits 2013, 7, 135. [Google Scholar] [CrossRef]
- Olsen, R.W.; Liang, J. Role of GABAA receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model Tim Bliss. Mol. Brain 2017, 10, 45. [Google Scholar] [CrossRef]
- Griswold, A.J.; Van Booven, D.; Cuccaro, M.L.; Haines, J.L.; Gilbert, J.R.; Pericak-Vance, M.A. Identification of rare noncoding sequence variants in gamma-aminobutyric acid A receptor, alpha 4 subunit in autism spectrum disorder. Neurogenetics 2018, 19, 17–26. [Google Scholar] [CrossRef]
- Sente, A.; Desai, R.; Naydenova, K.; Malinauskas, T.; Jounaidi, Y.; Miehling, J.; Zhou, X.; Masiulis, S.; Hardwick, S.W.; Chirgadze, D.Y.; et al. Differential assembly diversifies GABAA receptor structures and signalling. Nature 2022, 604, 190–194. [Google Scholar] [CrossRef]
- Belelli, D.; Hales, T.G.; Lambert, J.J.; Luscher, B.; Olsen, R.; Peters, J.A.; Rudolph, U.; Sieghart, W. GABAA receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide Pharmacol. CITE 2021, 2021, 3. [Google Scholar] [CrossRef]
- Caraiscos, V.B.; Elliott, E.M.; You-Ten, K.E.; Cheng, V.Y.; Belelli, D.; Newell, J.G.; Jackson, M.F.; Lambert, J.J.; Rosahl, T.W.; Wafford, K.A.; et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by 5 subunit-containing-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. USA 2004, 110, 3662–3667. [Google Scholar] [CrossRef]
- Santhakumar, V.; Hanchar, H.J.; Wallner, M.; Olsen, R.W.; Otis, T.S. Contributions of the GABAA receptor α6 subunit to phasic and tonic inhibition revealed by a naturally occurring polymorphism in the α6 gene. J. Neurosci. 2006, 26, 3357–3364. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.J.; Yasuda, R.P.; Vicini, S. GABA A receptor β3 subunit expression regulates tonic current in developing striatopallidal medium spiny neurons. Front. Cell Neurosci. 2011, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Limon, A.; Reyes-Ruiz, J.M.; Miledi, R. GABAergic drugs and Alzheimer’s disease. Future Med. Chem. 2011, 3, 149–153. [Google Scholar] [CrossRef]
- Dibbens, L.M.; Feng, H.J.; Richards, M.C.; Harkin, L.A.; Hodgson, B.L.; Scott, D.; Jenkins, M.; Petrou, S.; Sutherland, G.R.; Scheffer, I.E.; et al. GABRD encoding a protein for extra- or peri- synaptic GABAA receptors is susceptibility locus for generalized epilepsies. Hum. Mol. Genet. 2004, 13, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Harvey, V.L.; Duguid, I.C.; Krasel, C.; Stephens, G.J. Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells. J. Physiol. 2006, 577, 127–139. [Google Scholar] [CrossRef]
- Pan, Y.; Ripps, H.; Qian, H. Random assembly of GABA ρ1 and ρ2 subunits in the formation of heteromeric GABA C receptors. Cell Mol. Neurobiol. 2006, 26, 289–305. [Google Scholar] [CrossRef]
- Rosas-Arellano, A.; MacHuca-Parra, A.I.; Reyes-Haro, D.; Miledi, R.; Martínez-Torres, A. Expression of GABA ρ receptors in the neostriatum: Localization in aspiny, medium spiny neurons and GFAP-positive cells. J. Neurochem. 2012, 122, 900–910. [Google Scholar] [CrossRef]
- Martínez-Delgado, G.; Reyes-Haro, D.; Espino-Saldaña, A.E.; Rosas-Arellano, A.; Pétriz, A.; Juárez-Mercado, P.; Miledi, R.; Martínez-Torres, A. Dynamics of GABAρ2 receptors in retinal bipolar neurons and cerebellar astrocytes. Neuroreport 2011, 22, 4–9. [Google Scholar] [CrossRef]
- Ogurusu, T.; Eguchi, G.; Shingai, R. Localization of gamma-aminobutyric acid (GABA) receptor rho 3 subunit in rat retina. Neuroreport 1997, 8, 925–927. [Google Scholar] [CrossRef] [PubMed]
- Ogurusu, T.; Yanagi, K.; Watanabe, M.; Fukaya, M.; Shingai, R. Localization of GABA receptor rho 2 and rho 3 subunits in rat brain and functional expression of homooligomeric rho 3 receptors and heterooligomeric rho 2 rho 3 receptors. Recept. Channels 1999, 6, 463–475. [Google Scholar]
- Ruiz, A.; Campanac, E.; Scott, R.S.; Rusakov, D.A.; Kullmann, D.M. Presynaptic GABA A receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat. Neurosci. 2010, 13, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.X.; Akasu, T. Presynaptic GABAA Receptors in Vertebrate Synapses. Kurume Med. J. 1996, 43, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Mcbain, C.J.; Dichiara, T.J.; Kauer, J.A. Activation of lhetabotropic Glutamate Receptors Differentially Affects Two Classes of Hippocampal Interneurons and Potentiates Excitatory Synaptic Transmission. J. Neurosci. 1994, 14, 4433–4445. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, I.D.; Clements, J.D. Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J. Physiol. 1990, 429, 1–16. [Google Scholar] [CrossRef]
- George, S.; Chiou, T.T.; Kanamalla, K.; De Blas, A.L. Recruitment of Plasma Membrane GABA-A Receptors by Submembranous Gephyrin/Collybistin Clusters. Cell Mol. Neurobiol. 2022, 42, 1585–1604. [Google Scholar] [CrossRef]
- Schmerl, B.; Gimber, N.; Kuropka, B.; Stumpf, A.; Rentsch, J.; Kunde, S.A.; von Sivers, J.; Ewers, H.; Schmitz, D.; Freund, C.; et al. The synaptic scaffold protein MPP2 interacts with GABAA receptors at the periphery of the postsynaptic density of glutamatergic synapses. PLoS Biol. 2022, 20, e3001503. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, S.; Zhang, J.; Li, X.; Zhang, Z.; Song, X.; Shan, Y. Analyzing the distribution of cell membrane receptors in real-time based on multiple molecule force spectroscopy. Talanta 2025, 294, 128242. [Google Scholar] [CrossRef]
- Li, Z.X.; Yu, H.M.; Jiang, K.W. Tonic GABA inhibition in hippocampal dentate granule cells: Its regulation and function in temporal lobe epilepsies. Acta Physiol. 2013, 209, 199–211. [Google Scholar] [CrossRef]
- Rudolph, U.; Möhler, H. GABAA receptor subtypes: Therapeutic potential in down syndrome, affective disorders, schizophrenia, and autism. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 483–507. [Google Scholar] [CrossRef]
- Whissell, P.D.; Lecker, I.; Wang, D.S.; Yu, J.; Orser, B.A. Altered expression of δgABAA receptors in health and disease. Neuropharmacology 2015, 88, 24–35. [Google Scholar] [CrossRef]
- Schipper, S.; Aalbers, M.W.; Rijkers, K.; Swijsen, A.; Rigo, J.M.; Hoogland, G.; Vles, J.S.H. Tonic GABA A Receptors as Potential Target for the Treatment of Temporal Lobe Epilepsy. Mol. Neurobiol. 2016, 53, 5252–5265. [Google Scholar] [CrossRef]
- Feng, Y.F.; Zhou, Y.Y.; Duan, K.M. The Role of Extrasynaptic GABA Receptors in Postpartum Depression. Mol. Neurobiol. 2024, 61, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Ade, K.K.; Janssen, M.J.; Ortinski, P.I.; Vicini, S. Differential tonic GABA conductances in striatal medium spiny neurons. J. Neurosci. 2008, 28, 1185–1197. [Google Scholar] [CrossRef]
- Santhakumar, V.; Jones, R.T.; Mody, I. Developmental regulation and neuroprotective effects of striatal tonic GABAA currents. Neuroscience 2010, 167, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Tertrais, M.; Courtand, G.; Leste-Lasserre, T.; Cardoit, L.; Masmejean, F.; Halgand, C.; Cho, Y.H.; Garret, M. Differential alteration in expression of striatal GABAA R subunits in mouse models of huntington’s disease. Front. Mol. Neurosci. 2017, 10, 198. [Google Scholar] [CrossRef]
- Kumar, U.; Heer, M.; Somvanshi, R.K. Regional and subcellular distribution of GABAC ρ3 receptor in brain of R6/2 mouse model of Huntington’s disease. Neurosci. Lett. 2017, 640, 81–87. [Google Scholar] [CrossRef]
- Fan, C.; Cowgill, J.; Howard, R.J.; Lindahl, E. Cryo-EM structures of ρ1 GABAA receptors with antagonist and agonist drugs. Nat. Commun. 2025, 16, 7077. [Google Scholar] [CrossRef]
- Lee, C.Y.; Liou, H.H. GABAergic tonic inhibition is regulated by developmental age and epilepsy in the dentate gyrus. Neuroreport 2013, 24, 515–519. [Google Scholar]
- Pangratz-Fuehrer, S.; Sieghart, W.; Rudolph, U.; Parada, I.; Huguenard, J.R. Early postnatal switch in GABA A receptor-subunits in the reticular thalamic nucleus. J. Neurophysiol. 2016, 115, 1183–1195. [Google Scholar]
- Serwanski, D.R.; Miralles, C.P.; Christie, S.B.; Mehta, A.K.; Li, X.; De Blas, A.L. Synaptic and nonsynaptic localization of GABAA receptors containing the α5 subunit in the rat brain. J. Comp. Neurol. 2006, 499, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.M.; Knoflach, F.; Hernandez, M.C.; Bischofberger, J. Dendrite-targeting interneurons control synaptic NMDA-receptor activation via nonlinear α5-GABAA receptors. Nat. Commun. 2018, 9, 3576. [Google Scholar] [CrossRef]
- Davenport, C.M.; Rajappa, R.; Katchan, L.; Taylor, C.R.; Tsai, M.C.; Smith, C.M.; de Jong, J.W.; Arnold, D.B.; Lammel, S.; Kramer, R.H. Relocation of an Extrasynaptic GABAA Receptor to Inhibitory Synapses Freezes Excitatory Synaptic Strength and Preserves Memory. Neuron 2021, 109, 123–134.e4. [Google Scholar] [CrossRef] [PubMed]
- Bohnsack, J.P.; Carlson, S.L.; Morrow, A.L. Differential regulation of synaptic and extrasynaptic α4 GABA(A) receptor populations by protein kinase A and protein kinase C in cultured cortical neurons. Neuropharmacology 2016, 105, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Zulueta Diaz, Y.L.M.; Arnspang, E.C. Super-resolution microscopy to study membrane nanodomains and transport mechanisms in the plasma membrane. Front. Mol. Biosci. 2024, 11, 1455153. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.K.; Takeuchi, S.; Kalay, Z.; Nagai, Y.; Tsunoyama, T.A.; Kalkbrenner, T.; Iwasawa, K.; Ritchie, K.P.; Suzuki, K.G.N.; Kusumi, A. Development of ultrafast camera-based single fluorescent-molecule imaging for cell biology. J. Cell Biol. 2023, 222, e202110160. [Google Scholar] [CrossRef]




| Subunit(s) | Method | Experimental Model | Disease or Age | Ref. |
|---|---|---|---|---|
| α5, β3, δ, ρ2, ρ3 | Immunogold | mouse | Huntington’s disease model | [17] |
| α5 | Immunogold | rat | Between 35 and 70 days old | [93] |
| α5 | Optogenetic | mouse | 5 to 10-week-old | [94] |
| α5 | Optogenetic | mouse | 2 weeks to 6 months of age | [95] |
| α4 | Membrane fractionation | rat primary cortical cell culture neuron | 18 days in vitro | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rosas-Arellano, A. Re-Evaluation of the Ultrastructural Localization of Tonic GABA-A Receptors. Pharmaceuticals 2026, 19, 25. https://doi.org/10.3390/ph19010025
Rosas-Arellano A. Re-Evaluation of the Ultrastructural Localization of Tonic GABA-A Receptors. Pharmaceuticals. 2026; 19(1):25. https://doi.org/10.3390/ph19010025
Chicago/Turabian StyleRosas-Arellano, Abraham. 2026. "Re-Evaluation of the Ultrastructural Localization of Tonic GABA-A Receptors" Pharmaceuticals 19, no. 1: 25. https://doi.org/10.3390/ph19010025
APA StyleRosas-Arellano, A. (2026). Re-Evaluation of the Ultrastructural Localization of Tonic GABA-A Receptors. Pharmaceuticals, 19(1), 25. https://doi.org/10.3390/ph19010025

