Glycosphingolipids in Dementia: Insights from Mass Spectrometry and Systems Biology Approaches
Abstract
1. Introduction
2. Alzheimer’s Disease (AD)
3. Lewy Body Dementia (LBD)
3.1. Dementia with Lewy Bodies (DLB)
3.2. Parkinson’s Disease Dementia (PDD)
4. Frontotemporal Dementia (FTD)
5. Huntington’s Disease (HD)
6. Mixed Dementia
7. Cross-Dementia Comparison of GSL Profiles: Insights and Limitations
8. Conclusions and Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s disease |
| AI | artificial intelligence |
| APP | amyloid precursor protein |
| Aβ | amyloid-β peptide |
| BBB | blood–brain barrier |
| BMP | bis(monoacylglycero)phosphate |
| bvFTD | behavioral variant FTD |
| CE | cholesteryl ester |
| CSF | cerebrospinal fluid |
| DAT-SPECT | dopamine transporter–single-photon emission computed tomography |
| DESI | desorption electrospray ionization |
| DLB | dementia with Lewy body |
| ELISA | enzyme-linked immunosorbent assay |
| ESI | electrospray ionization |
| FDG-PET | fluoro-deoxyglucose positron emission tomography |
| FTD | frontotemporal dementia |
| GalCer | galactosylceramide |
| GalSph | galactosylsphingosine |
| GCase | β-glucocerebrosidase |
| GG | ganglioside |
| GlcCer | glucosylceramide |
| GlcSph | glucosylsphingosine |
| GRN | progranulin gene |
| GroPIn | glycerophosphoinositol |
| GSL | glycosphingolipid |
| HD | Huntington’s disease |
| HDD | Huntington’s disease dementia |
| Hex1Cers | monohexosylceramides |
| HEXA | hexosaminidase subunit alpha gene |
| HexCers | hexosylceramides |
| HTT | huntingtin gene |
| IMS | ion mobility spectrometry |
| LacCer | lactosylceramide |
| LB | Lewy body |
| LBD | Lewy body dementia |
| LC-MS | liquid chromatography coupled with mass spectrometry |
| MALDI | matrix-assisted laser desorption/ionization |
| mHTT | mutant huntingtin |
| MRI | magnetic resonance imaging |
| ML | machine learning |
| MS | mass spectrometry |
| MS/MS | tandem mass spectrometry |
| MSI | mass spectrometry imaging |
| NfL | neurofilament light chain |
| NFT | neurofibrillary tangle |
| PC | phosphatidylcholine |
| PD | Parkinson’s disease |
| PDD | Parkinson’s disease dementia |
| PE | phosphatidylethanolamine |
| PET | positron emission tomography |
| PG | phosphatidylglycerol |
| PGRN | progranulin |
| PI | phosphatidylinositol |
| PS | phosphatidylserine |
| p-tau | phosphorylated tau |
| PTM | post-translational modification |
| QTOF | quadrupole time of flight |
| SHexCer | sulfatide |
| SIMS | secondary ion mass spectrometry |
| SM | sphingomyelin |
| SP | senile plaque |
| TG | triacylglycerol |
| TLC | thin-layer chromatography |
| TMM | transgenic mouse model |
| UHPLC MS/MS | ultra-high-performance liquid chromatography coupled to tandem MS |
| VD | vascular dementia |
| VLCFA | very-long-chain fatty acid |
References
- Gale, S.A.; Acar, D.; Daffner, K.R. Dementia. Am. J. Med. 2018, 131, 1161–1169. [Google Scholar] [CrossRef]
- Duara, R.; Barker, W. Heterogeneity in Alzheimer’s Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022, 19, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, N.Z.; Barnes, J.; Frost, C.; Henley, S.M.; Wild, E.J.; Macdonald, K.; Barker, R.A.; Scahill, R.I.; Fox, N.C.; Tabrizi, S.J. Onset and Progression of Pathologic Atrophy in Huntington Disease: A Longitudinal MR Imaging Study. AJNR Am. J. Neuroradiol. 2010, 31, 1036–1041. [Google Scholar] [CrossRef]
- Aarsland, D.; Kurz, M.W. The Epidemiology of Dementia Associated with Parkinson’s Disease. Brain Pathol. 2010, 20, 633–639. [Google Scholar] [CrossRef]
- Custodio, N.; Montesinos, R.; Lira, D.; Herrera-Pérez, E.; Bardales, Y.; Valeriano-Lorenzo, L. Mixed Dementia: A Review of the Evidence. Dement. Neuropsychol. 2017, 11, 364–370. [Google Scholar] [CrossRef]
- Attems, J.; Jellinger, K.A. The Overlap between Vascular Disease and Alzheimer’s Disease—Lessons from Pathology. BMC Med. 2014, 12, 206. [Google Scholar] [CrossRef]
- Vollhardt, A.; Frölich, L.; Stockbauer, A.C.; Danek, A.; Schmitz, C.; Wahl, A.-S. Towards a Better Diagnosis and Treatment of Dementia: Identifying Common and Distinct Neuropathological Mechanisms in Alzheimer’s and Vascular Dementia. Neurobiol. Dis. 2025, 208, 106638. [Google Scholar] [CrossRef]
- Mollah, S.A.; Nayak, A.; Barhai, S.; Maity, U. A Comprehensive Review on Frontotemporal Dementia: Its Impact on Language, Speech and Behavior. Dement. Neuropsychol. 2024, 18, e20230072. [Google Scholar] [CrossRef]
- Foxe, D.; Muggleton, J.; Cheung, S.C.; Mueller, N.; Ahmed, R.M.; Narasimhan, M.; Burrell, J.R.; Hwang, Y.T.; Cordato, N.J.; Piguet, O. Survival Rates in Frontotemporal Dementia and Alzheimer’s Disease. Neurodegener. Dis. Manag. 2025, 15, 191–197. [Google Scholar] [CrossRef]
- Manabe, T.; Fujikura, Y.; Mizukami, K.; Akatsu, H.; Kudo, K. Pneumonia-Associated Death in Patients with Dementia: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0213825. [Google Scholar] [CrossRef] [PubMed]
- Amoatika, D.A.; Absher, J.R.; Khan, M.T.F.; Miller, M.C. Dementia Deaths Most Commonly Result from Heart and Lung Disease: Evidence from the South Carolina Alzheimer’s Disease Registry. Biomedicines 2025, 13, 1321. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Liu, S.; Chen, Q. Mortality Rate of Pulmonary Infection in Senile Dementia Patients: A Systematic Review and Meta-Analysis. Medicine 2024, 103, e39816. [Google Scholar] [CrossRef] [PubMed]
- Walker, Z.; Possin, K.L.; Boeve, B.F.; Aarsland, D. Lewy Body Dementias. Lancet 2015, 386, 1683–1697. [Google Scholar] [CrossRef]
- Muangpaisan, W. Clinical Differences among Four Common Dementia Syndromes. Geriatr. Aging 2007, 10, 425–429. [Google Scholar]
- Harciarek, M.; Jodzio, K. Neuropsychological Differences between Frontotemporal Dementia and Alzheimer’s Disease: A Review. Neuropsychol. Rev. 2005, 15, 131–145. [Google Scholar] [CrossRef]
- He, S.; Xu, Z.; Han, X. Lipidome Disruption in Alzheimer’s Disease Brain: Detection, Pathological Mechanisms, and Therapeutic Implications. Mol. Neurodegener. 2025, 20, 11. [Google Scholar] [CrossRef]
- Osetrova, M.; Tkachev, A.; Mair, W.; Guijarro Larraz, P.; Efimova, O.; Kurochkin, I.; Stekolshchikova, E.; Anikanov, N.; Foo, J.C.; Cazenave-Gassiot, A.; et al. Lipidome Atlas of the Adult Human Brain. Nat. Commun. 2024, 15, 4455. [Google Scholar] [CrossRef]
- Grassi, S.; Giussani, P.; Mauri, L.; Prioni, S.; Sonnino, S.; Prinetti, A. Lipid Rafts and Neurodegeneration: Structural and Functional Roles in Physiologic Aging and Neurodegenerative Diseases. J. Lipid Res. 2020, 61, 636–654. [Google Scholar] [CrossRef]
- Ledeen, R.; Wu, G. Gangliosides of the Nervous System. Methods Mol. Biol. 2018, 1804, 19–55. [Google Scholar] [CrossRef]
- Blomqvist, M.; Zetterberg, H.; Blennow, K.; Månsson, J.E. Sulfatide in Health and Disease: The Evaluation of Sulfatide in Cerebrospinal Fluid as a Possible Biomarker for Neurodegeneration. Mol. Cell.Neurosci. 2021, 116, 103670. [Google Scholar] [CrossRef]
- Wei, J.; Wong, L.C.; Boland, S. Lipids as Emerging Biomarkers in Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 25, 131. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Gahl, W.A. Lysosomal Storage Diseases. Transl. Sci. Rare Dis. 2017, 2, 1–71. [Google Scholar] [CrossRef]
- Müthing, J. High-Resolution Thin-Layer Chromatography of Gangliosides Methods. J. Chromatogr. A 1996, 720, 3–25. [Google Scholar] [CrossRef]
- Nishina, K.A.; Supattapone, S. Immunodetection of Glycophosphatidylinositol-Anchored Proteins Following Treatment with Phospholipase C. Anal. Biochem. 2007, 363, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Dehelean, L.; Sarbu, M.; Petrut, A.; Zamfir, A.D. Trends in Glycolipid Biomarker Discovery in Neurodegenerative Disorders by Mass Spectrometry. Adv. Exp. Med. Biol. 2019, 1140, 703–729. [Google Scholar] [CrossRef] [PubMed]
- Touboul, D.; Gaudin, M. Lipidomics of Alzheimer’s Disease. Bioanalysis 2014, 6, 541–561. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Suzuki, M.; Ito, E.; Nitta, T.; Inokuchi, J.I. Mass Spectrometry of Gangliosides. Methods Mol. Biol. 2018, 1804, 207–221. [Google Scholar] [CrossRef]
- Shon, H.K.; Son, J.G.; Lee, S.Y.; Moon, J.H.; Lee, G.S.; Kim, K.S.; Lee, T.G. Comparison Study of Mouse Brain Tissue by Using ToF-SIMS within Static Limits and Hybrid SIMS Beyond Static Limits (Dynamic Mode). Biointerphases 2023, 18, 031005. [Google Scholar] [CrossRef]
- Sarbu, M.; Fabris, D.; Vukelić, Ž.; Clemmer, D.E.; Zamfir, A.D. Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid. Molecules 2022, 27, 743. [Google Scholar] [CrossRef]
- Biricioiu, M.R.; Sarbu, M.; Ica, R.; Vukelić, Ž.; Clemmer, D.E.; Zamfir, A.D. Human Cerebellum Gangliosides: A Comprehensive Analysis by Ion Mobility Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2024, 35, 683–695. [Google Scholar] [CrossRef]
- Ica, R.; Sarbu, M.; Biricioiu, R.; Fabris, D.; Vukelić, Ž.; Zamfir, A.D. Novel Application of Ion Mobility Mass Spectrometry Reveals Complex Ganglioside Landscape in Diffuse Astrocytoma Peritumoral Regions. Int. J. Mol. Sci. 2025, 26, 8433. [Google Scholar] [CrossRef]
- Xu, H.; Boucher, F.R.; Nguyen, T.T.; Taylor, G.P.; Tomlinson, J.J.; Ortega, R.A.; Simons, B.; Schlossmacher, M.G.; Saunders-Pullman, R.; Shaw, W.; et al. DMS as an Orthogonal Separation to LC/ESI/MS/MS for Quantifying Isomeric Cerebrosides in Plasma and Cerebrospinal Fluid. J. Lipid Res. 2019, 60, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Michno, W.; Bowman, A.; Jha, D.; Minta, K.; Ge, J.; Koutarapu, S.; Zetterberg, H.; Blennow, K.; Lashley, T.; Heeren, R.M.A.; et al. Spatial Neurolipidomics at the Single Amyloid-β Plaque Level in Postmortem Human Alzheimer’s Disease Brain. ACS Chem. Neurosci. 2024, 15, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Evers, B.M.; Rodriguez-Navas, C.; Tesla, R.J.; Prange-Kiel, J.; Wasser, C.R.; Yoo, K.S.; McDonald, J.; Cenik, B.; Ravenscroft, T.A.; Plattner, F.; et al. Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency. Cell Rep. 2017, 20, 2565–2574. [Google Scholar] [CrossRef]
- Shen, H.; Yu, Y.; Wang, J.; Nie, Y.; Tang, Y.; Qu, M. Plasma Lipidomic Signatures of Dementia with Lewy Bodies Revealed by Machine Learning, and Compared to Alzheimer’s Disease. Alzheimers Res. Ther. 2024, 16, 226. [Google Scholar] [CrossRef] [PubMed]
- Galleguillos, D.; Zhao, Y.; Pan, B.; Vandermeer, B.; Zaidi, A.; Al Hamarneh, Y.N.; Sarna, J.; Suchowersky, O.; Curtis, J.; Sipione, S. Plasma Gangliosides Correlate with Disease Stages and Symptom Severity in Huntington’s Disease Carriers. bioRxiv 2025. [Google Scholar] [CrossRef]
- Toprakcioglu, Z.; Jayaram, A.K.; Knowles, T.P.J. Ganglioside Lipids Inhibit the Aggregation of the Alzheimer’s Amyloid-β Peptide. RSC Chem. Biol. 2025, 6, 809–822. [Google Scholar] [CrossRef]
- Li, Q.; Jia, C.; Wu, H.; Liao, Y.; Yang, K.; Li, S.; Zhang, J.; Wang, J.; Li, G.; Guan, F.; et al. Nao Tan Qing Ameliorates Alzheimer’s Disease-like Pathology by Regulating Glycolipid Metabolism and Neuroinflammation: A Network Pharmacology Analysis and Biological Validation. Pharmacol. Res. 2022, 185, 106489. [Google Scholar] [CrossRef]
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef]
- Zhang, H.; Tahami Monfared, A.A.; Zhang, Q.; Honig, L.S. Incidence and prevalence of Alzheimer’s disease in Medicare beneficiaries. Neurol. Ther. 2025, 14, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Ariga, T.; Kubota, M.; Nakane, M.; Oguro, K.; Yu, R.K.; Ando, S. Anti-Chol-1 antigen, GQ1bα, antibodies are associated with Alzheimer’s disease. PLoS ONE 2013, 8, e63326. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Z.; Li, M.; Li, Q. Global incidence trends and projections of Alzheimer disease and other dementias: An age-period-cohort analysis 2021. J. Glob. Health 2025, 15, 04156. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, R.; Sun, X.; Li, J.; Wang, J.; Yue, W.; Wang, L.; Liu, H.; Shi, Y.; Zhang, D. Preferential regulation of γ-secretase-mediated cleavage of APP by ganglioside GM1 reveals a potential therapeutic target for Alzheimer’s disease. Adv. Sci. 2023, 10, e2303411. [Google Scholar] [CrossRef]
- Hirano-Sakamaki, W.; Sugiyama, E.; Hayasaka, T.; Ravid, R.; Setou, M.; Taki, T. Alzheimer’s disease is associated with disordered localization of ganglioside GM1 molecular species in the human dentate gyrus. FEBS Lett. 2015, 589, 3611–3616. [Google Scholar] [CrossRef]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Anand, S.; Barnes, J.M.; Young, S.A.; Garcia, D.M.; Tolley, H.D.; Kauwe, J.S.; Graves, S.W. Discovery and confirmation of diagnostic serum lipid biomarkers for Alzheimer’s disease using direct infusion mass spectrometry. J. Alzheimers Dis. 2017, 59, 277–290. [Google Scholar] [CrossRef]
- Han, X.; Holtzman, D.M.; McKeel, D.W., Jr.; Kelley, J.; Morris, J.C. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: Potential role in disease pathogenesis. J. Neurochem. 2002, 82, 809–818. [Google Scholar] [CrossRef]
- Yuyama, K.; Sun, H.; Sakai, S.; Mitsutake, S.; Okada, M.; Tahara, H.; Furukawa, J.-I.; Fujitani, N.; Shinohara, Y.; Igarashi, Y. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J. Biol. Chem. 2014, 289, 24488–24498. [Google Scholar] [CrossRef]
- González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J.L. Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. J. Pharm. Biomed. Anal. 2014, 98, 321–326. [Google Scholar] [CrossRef]
- Michno, W.; Wehrli, P.M.; Zetterberg, H.; Blennow, K.; Hanrieder, J. GM1 locates to mature amyloid structures implicating a prominent role for glycolipid-protein interactions in Alzheimer pathology. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 458–467. [Google Scholar] [CrossRef]
- Sarbu, M.; Ica, R.; Zamfir, A.D. Gangliosides as biomarkers of human brain diseases: Trends in discovery and characterization by high-performance mass spectrometry. Int. J. Mol. Sci. 2022, 23, 693. [Google Scholar] [CrossRef]
- Matsuzaki, K. Aβ-Ganglioside Interactions in the Pathogenesis of Alzheimer’s Disease. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183233. [Google Scholar] [CrossRef] [PubMed]
- Chi, E.Y.; Frey, S.L.; Lee, K.Y. Ganglioside GM1-mediated amyloid-beta fibrillogenesis and membrane disruption. Biochemistry 2007, 46, 1913–1924. [Google Scholar] [CrossRef] [PubMed]
- Goux, W.J.; Liu, B.; Shumburo, A.M.; Parikh, S.; Sparkman, D.R. A quantitative assessment of glycolipid and protein associated with paired helical filament preparations from Alzheimer’s diseased brain. J. AlzheimersDis. 2001, 3, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Wei, X.; Han, B.; Shi, X.; Wei, C.; Liang, R.; Sun, J.; Zhang, Z.; Han, Z.; Shen, L. Quantitative analysis of targeted lipidomics in the hippocampus of APP/PS1 mice employing the UHPLC-MS/MS method. Front. AgingNeurosci. 2025, 17, 1561831. [Google Scholar] [CrossRef]
- Chakraborty, A.; Praharaj, S.K.; Prabhu, R.K.; Prabhu, M.M. Lipidomics and cognitive dysfunction—A narrative review. Turk. J. Biochem. 2020, 45, 109–119. [Google Scholar] [CrossRef]
- Ollen-Bittle, N.; Pejhan, S.; Pasternak, S.H.; Keene, C.D.; Zhang, Q.; Whitehead, S.N. Co-registration of MALDI-MSI and histology demonstrates gangliosides co-localize with amyloid beta plaques in Alzheimer’s disease. Acta Neuropathol. 2024, 147, 105. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Sui, P.; Sun, X.H.; Gao, Y.; Wang, C.Y. MALDI mass spectrometry imaging discloses the decline of sulfoglycosphingolipid and glycerophosphoinositol species in the brain regions related to cognition in a mouse model of Alzheimer’s disease. Talanta 2024, 266, 125022. [Google Scholar] [CrossRef]
- Blank, M.; Hopf, C. Spatially resolved mass spectrometry analysis of amyloid plaque-associated lipids. J. Neurochem. 2021, 159, 330–342. [Google Scholar] [CrossRef]
- Ariga, T.; Jarvis, W.D.; Yu, R.K. Role of sphingolipid-mediated cell death in neurodegenerative diseases. J. Lipid Res. 1998, 39, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sanni, A.; Bennett, A.I.; Adeniyi, M.; Mechref, Y. Dysregulated Lipids in Alzheimer’s Disease: Insights into Biological Pathways through LC-MS/MS Analysis of Human Brain Tissues. ACS Chem. Neurosci. 2025, 16, 3694–3712. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.G.; Veillon, L.; Mechref, Y. N-Glycan Profile of Cerebrospinal Fluids from Alzheimer’s Disease Patients Using Liquid Chromatography with Mass Spectrometry. J. Proteome Res. 2019, 18, 3770–3779. [Google Scholar] [CrossRef]
- Reyes, C.D.G.; Hakim, M.A.; Atashi, M.; Goli, M.; Gautam, S.; Wang, J.; Bennett, A.I.; Zhu, J.; Lubman, D.M.; Mechref, Y. LC-MS/MS Isomeric Profiling of N-Glycans Derived from Low-Abundant Serum Glycoproteins in Mild Cognitive Impairment Patients. Biomolecules 2022, 12, 1657. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Wang, Z.; Xie, Y.; Yang, L.; Zhao, Y.; Tian, R. Mass spectrometry-based ganglioside profiling provides potential insights into Alzheimer’s disease development. J. Chromatogr. A 2022, 1676, 463196. [Google Scholar] [CrossRef]
- Wang, W.; Myers, S.J.; Ollen-Bittle, N.; Whitehead, S.N. Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 2025, 205, 106798. [Google Scholar] [CrossRef]
- Caughlin, S.; Maheshwari, S.; Agca, Y.; Agca, C.; Harris, A.J.; Jurcic, K.; Yeung, K.K.-C.; Cechetto, D.F.; Whitehead, S.N. Membrane-lipid homeostasis in a prodromal rat model of Alzheimer’s disease: Characteristic profiles in ganglioside distributions during aging detected using MALDI imaging mass spectrometry. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1327–1338. [Google Scholar] [CrossRef]
- Kaya, I.; Jennische, E.; Dunevall, J.; Lange, S.; Ewing, A.G.; Malmberg, P.; Baykal, A.T.; Fletcher, J.S. Spatial lipidomics reveals region and long chain base specific accumulations of monosialogangliosides in amyloid plaques in familial Alzheimer’s disease mice (5xFAD) brain. ACS Chem. Neurosci. 2020, 11, 14–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Liu, J.; Han, J.; Xiong, S.; Yong, W.; Zhao, Z. Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situanalysis of gangliosides in brain. Sci. Rep. 2016, 6, 25289. [Google Scholar] [CrossRef]
- Good, C.J.; Bowman, A.P.; Klein, C.; Awwad, K.; Buck, W.R.; Yang, J.; Wagner, D.S. Spatial mapping of gangliosides and proteins in amyloid beta plaques at cellular resolution using mass spectrometry imaging and MALDI-IHC. J. Mass Spectrom. 2025, 60, e5161. [Google Scholar] [CrossRef]
- Taki, T. An approach to glycobiology from glycolipidomics: Ganglioside molecular scanning in the brains of patients with Alzheimer’s disease by TLC-blot/matrix assisted laser desorption/ionization-time of flight MS. Biol. Pharm. Bull. 2012, 35, 1642–1647. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Meng, F.; Yu, J.; He, F.; Lin, Y.; Su, Y.; Hu, M.; Liu, X.; Liu, Y.; et al. Serum metabolites differentiate amnestic mild cognitive impairment from healthy controls and predict early Alzheimer’s disease via untargeted lipidomics analysis. Front. Neurol. 2021, 12, 704582. [Google Scholar] [CrossRef]
- Fantini, J.; Yahi, N.; Garmy, N. Cholesterol accelerates the binding of Alzheimer’s β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front. Physiol. 2013, 4, 120. [Google Scholar] [CrossRef] [PubMed]
- Yahi, N.; Fantini, J. Deciphering the glycolipid code of Alzheimer’s and Parkinson’s amyloid proteins allowed the creation of a universal ganglioside-binding peptide. PLoS ONE 2014, 9, e104751. [Google Scholar] [CrossRef] [PubMed]
- Kakio, A.; Nishimoto, S.I.; Yanagisawa, K.; Kozutsumi, Y.; Matsuzaki, K. Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. J. Biol. Chem. 2001, 276, 24985–24990. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef]
- Thambisetty, M.; Simmons, A.; Velayudhan, L.; Hye, A.; Campbell, J.; Zhang, Y.; Wahlund, L.-O.; Westman, E.; Kinsey, A.; Güntert, A.; et al. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch. Gen. Psychiatry 2010, 67, 739–748. [Google Scholar] [CrossRef]
- Fonseca, M.I.; Chu, S.H.; Hernandez, M.X.; Fang, M.J.; Modarresi, L.; Selvan, P.; MacGregor, G.R.; Tenner, A.J. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J. Neuroinflammation 2017, 14, 48. [Google Scholar] [CrossRef]
- Kanekiyo, T.; Bu, G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease. Front. Aging Neurosci. 2014, 6, 93. [Google Scholar] [CrossRef]
- Peng, W.; Gutierrez Reyes, C.D.; Gautam, S.; Yu, A.; Cho, B.G.; Goli, M.; Donohoo, K.; Mondello, S.; Kobeissy, F.; Mechref, Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. Mass Spectrom. Rev. 2023, 42, 577–616. [Google Scholar] [CrossRef]
- Prasad, S.; Katta, M.R.; Abhishek, S.; Sridhar, R.; Valisekka, S.S.; Hameed, M.; Kaur, J.; Walia, N. Recent advances in Lewy body dementia: A comprehensive review. Disease-a-Month 2023, 69, 101441. [Google Scholar] [CrossRef]
- McKeith, I.; Mintzer, J.; Aarsland, D.; Burn, D.; Chiu, H.; Cohen-Mansfield, J.; Dickson, D.; Dubois, B.; Duda, J.E.; Feldman, H.; et al. Dementia with Lewy bodies. Lancet Neurol. 2004, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Kasuga, K.; Nishizawa, M.; Ikeuchi, T. α-Synuclein as CSF and blood biomarker of dementia with Lewy bodies. Int. J. Alzheimers Dis. 2012, 2012, 437025. [Google Scholar] [CrossRef] [PubMed]
- Scamarcia, P.G.; Agosta, F.; Caso, F.; Filippi, M. Update on neuroimaging in non-Alzheimer’s disease dementia: A focus on the Lewy body disease spectrum. Curr. Opin. Neurol. 2021, 34, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Kantarci, K.; Lowe, V.J.; Chen, Q.; Przybelski, S.A.; Lesnick, T.G.; Schwarz, C.G.; Senjem, M.L.; Gunter, J.L.; Jack, C.R., Jr.; Graff-Radford, J.; et al. β-Amyloid PET and neuropathology in dementia with Lewy bodies. Neurology 2020, 94, e282–e291. [Google Scholar] [CrossRef]
- Senanarong, V.; Wachirutmangur, L.; Rattanabunnakit, C.; Srivanitchapoom, P.; Udomphanthurak, S. Plasma alpha synuclein (α-syn) as a potential biomarker of diseases with synucleinopathy. Alzheimers Dement. 2020, 16, e044409. [Google Scholar] [CrossRef]
- Mukaetova-Ladinska, E.B.; Monteith, R.; Perry, E.K. Cerebrospinal fluid biomarkers for dementia with Lewy bodies. Int. J. Alzheimers Dis. 2010, 2010, 536538. [Google Scholar] [CrossRef]
- Mollenhauer, B.; Schlossmacher, M.G. CSF synuclein: Adding to the biomarker footprint of dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 2010, 81, 590–591. [Google Scholar] [CrossRef]
- Bongianni, M.; Ladogana, A.; Capaldi, S.; Klotz, S.; Baiardi, S.; Cagnin, A.; Perra, D.; Poleggi, A.; Antonelli, F.; Ciccocioppo, F.; et al. Alpha-synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann. Clin. Transl. Neurol. 2019, 6, 2120–2126. [Google Scholar] [CrossRef]
- Bargar, C.; Wang, W.; Gunzler, S.A.; LeFevre, A.; Wang, Z.; Siderowf, A.; Weintraub, D.; Lieberman, A.; Hurtig, H.I.; Espay, A.J.; et al. Streamlined alpha-synuclein RT-QuIC assay for various biospecimens in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol. Commun. 2021, 9, 62. [Google Scholar] [CrossRef]
- Rossi, M.; Baiardi, S.; Teunissen, C.E.; Quadalti, C.; van de Beek, M.; Mammana, A.; Zenesini, C.; Bartoletti-Stella, A.; Baiardi, S.; Capellari, S.; et al. Diagnostic value of the CSF alpha-synuclein real-time quaking-induced conversion assay at the prodromal MCI stage of dementia with Lewy bodies. Neurology 2021, 97, e930–e940. [Google Scholar] [CrossRef]
- Mavroudis, I.; Petridis, F.; Kazis, D. Cerebrospinal fluid, imaging, and physiological biomarkers in dementia with Lewy bodies. Am. J. Alzheimers Dis. Other Dementias® 2019, 34, 421–432. [Google Scholar] [CrossRef]
- Vrillon, A.; Bousiges, O.; Götze, K.; Demuynck, C.; Muller, C.; Ravier, A.; Schorr, B.; Philippi, N.; Hourregue, C.; Cognat, E.; et al. Plasma biomarkers of amyloid, tau, axonal, and neuroinflammation pathologies in dementia with Lewy bodies. Alzheimers Res. Ther. 2024, 16, 146. [Google Scholar] [CrossRef]
- Peña-Bautista, C.; Bolsewig, K.; Gonzalez, M.C.; Ashton, N.J.; Aarsland, D.; Zetterberg, H.; Westman, E.; Bousiges, O.; Blanc, F.; E Teunissen, C.; et al. The association between plasma and MRI biomarkers in dementia with Lewy bodies. Alzheimers Res. Ther. 2025, 17, 197. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, W.; Xu, W.; Li, J.-Q.; Hou, X.-H.; Ou, Y.-N.; Yu, J.-T.; Tan, L. Neurofilament light chain in cerebrospinal fluid and blood as a biomarker for neurodegenerative diseases: A systematic review and meta-analysis. J. Alzheimers Dis. 2019, 72, 1353–1361. [Google Scholar] [CrossRef]
- Lourenco, M.V.; Ribeiro, F.C.; Santos, L.E.; Beckman, D.; Melo, H.M.; Sudo, F.K.; Drummond, C.; Assunção, N.; Vanderborght, B.; Tovar-Moll, F.; et al. Cerebrospinal fluid neurotransmitters, cytokines, and chemokines in Alzheimer’s and Lewy body diseases. J. Alzheimers Dis. 2021, 82, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Savica, R.; Murray, M.E.; Persson, X.M.; Kantarci, K.; Parisi, J.E.; Dickson, D.W.; Petersen, R.C.; Ferman, T.J.; Boeve, B.F.; Mielke, M.M. Plasma sphingolipid changes with autopsy-confirmed Lewy body or Alzheimer’s pathology. Alzheimers Dement. 2016, 3, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Lerche, S.; Wurster, I.; Valente, E.M.; Avenali, M.; Samaniego, D.; Martínez-Vicente, M.; Hernández-Vara, J.; Laguna, A.; Sturchio, A.; Svenningsson, P.; et al. CSF d18:1 sphingolipid species in Parkinson disease and dementia with Lewy bodies with and without GBA1 variants. npjPark. Dis. 2024, 10, 198. [Google Scholar] [CrossRef]
- Miglis, M.G.; Adler, C.H.; Antelmi, E.; Arnaldi, D.; Baldelli, L.; Boeve, B.F.; Cesari, M.; Dall’ANtonia, I.; Diederich, N.J.; Doppler, K.; et al. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol. 2021, 20, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Gomperts, S.N. Lewy body dementias: Dementia with Lewy bodies and Parkinson disease dementia. Continuum 2016, 22, 435–463. [Google Scholar] [CrossRef]
- Yamashita, K.Y.; Bhoopatiraju, S.; Silverglate, B.D.; Grossberg, G.T. Biomarkers in Parkinson’s disease: A state of the art review. Biomark. Neuropsychiatry 2023, 9, 100074. [Google Scholar] [CrossRef]
- Hely, M.A.; Reid, W.G.; Adena, M.A.; Halliday, G.M.; Morris, J.G. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Mov. Disord. 2008, 23, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Andersen, K.; Larsen, J.P.; Lolk, A.; Kragh-Sørensen, P. Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study. Arch. Neurol. 2003, 60, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Savica, R.; Knopman, D.S. Dementia with Lewy bodies. In Neurodegeneration; Schapira, A., Wszolek, Z., Dawson, T.M., Wood, N., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 83–92. [Google Scholar] [CrossRef]
- Zardini Buzatto, A.; Tatlay, J.; Bajwa, B.; Mung, D.; Camicioli, R.; Dixon, R.A.; Li, L. Comprehensive serum lipidomics for detecting incipient dementia in Parkinson’s disease. J. Proteome Res. 2021, 20, 4053–4067. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.; Jacquemin, C.; Villain, N.; Fenaille, F.; Lamari, F.; Becher, F. Mass spectrometry for neurobiomarker discovery: The relevance of post-translational modifications. Cells 2022, 11, 1279. [Google Scholar] [CrossRef]
- Schmid, A.W.; Fauvet, B.; Moniatte, M.; Lashuel, H.A. Alpha-synuclein post-translational modifications as potential biomarkers for Parkinson disease and other synucleinopathies. Mol. Cell.Proteom. 2013, 12, 3543–3558. [Google Scholar] [CrossRef]
- Anderson, J.P.; Walker, D.E.; Goldstein, J.M.; de Laat, R.; Banducci, K.; Caccavello, R.J.; Barbour, R.; Huang, J.; Kling, K.; Lee, M.; et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 2006, 281, 29739–29752. [Google Scholar] [CrossRef]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef]
- Wesseling, H.; Mair, W.; Kumar, M.; Schlaffner, C.N.; Tang, S.; Beerepoot, P.; Fatou, B.; Guise, A.J.; Cheng, L.; Takeda, S.; et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 2020, 183, 1699–1713.e13. [Google Scholar] [CrossRef]
- Mielke, M.M.; Maetzler, W.; Haughey, N.J.; Bandaru, V.V.R.; Savica, R.; Deuschle, C.; Gasser, T.; Hauser, A.-K.; Gräber-Sultan, S.; Schleicher, E.; et al. Plasma ceramide and glucosylceramide metabolism is altered in sporadic Parkinson’s disease and associated with cognitive impairment: A pilot study. PLoS ONE 2013, 8, e73094. [Google Scholar] [CrossRef]
- Xing, Y.; Tang, Y.; Zhao, L.; Wang, Q.; Qin, W.; Ji, X.; Zhang, J.; Jia, J. Associations between plasma ceramides and cognitive and neuropsychiatric manifestations in Parkinson’s disease dementia. J. Neurol. Sci. 2016, 370, 82–87. [Google Scholar] [CrossRef]
- Galper, J.; Mori, G.; McDonald, G.; Rastegar, D.A.; Pickford, R.; Lewis, S.J.G.; Halliday, G.M.; Kim, W.S.; Dzamko, N. Prediction of motor and non-motor Parkinson’s disease symptoms using serum lipidomics and machine learning: A 2-year study. npjPark. Dis. 2024, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Avisar, H.; Guardia-Laguarta, C.; Area-Gomez, E.; Surface, M.; Chan, A.K.; Alcalay, R.N.; Lerner, B. Lipidomics prediction of Parkinson’s disease severity: A machine-learning analysis. J. Park. Dis. 2021, 11, 1141–1155. [Google Scholar] [CrossRef]
- Raz, L.; Knoefel, J.; Bhaskar, K. The neuropathology and cerebrovascular mechanisms of dementia. J. Cereb. Blood Flow Metab. 2016, 36, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Peet, B.T.; Spina, S.; Mundada, N.; La Joie, R. Neuroimaging in frontotemporal dementia: Heterogeneity and relationships with underlying neuropathology. Neurotherapeutics 2021, 18, 728–752. [Google Scholar] [CrossRef] [PubMed]
- Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2018, 10, a033118. [Google Scholar] [CrossRef]
- Lashley, T.; Rohrer, J.D.; Mead, S.; Revesz, T. An update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol. Appl. Neurobiol. 2015, 41, 858–881. [Google Scholar] [CrossRef]
- Ambaw, Y.A.; Ljubenkov, P.A.; Singh, S.; Hamed, A.; Boland, S.; Boxer, A.L.; Walther, T.C.; Farese, R.V. Plasma lipidome dysregulation in frontotemporal dementia reveals shared, genotype-specific, and severity-linked alterations. AlzheimersDement. 2025, 21, e70631. [Google Scholar] [CrossRef]
- Marian, O.C.; Matis, S.; Dobson-Stone, C.; Kim, W.S.; Kwok, J.B.; Piguet, O.; Halliday, G.M.; Landin-Romero, R.; Don, A.S. Reduced plasma hexosylceramides in frontotemporal dementia are a biomarker of white matter integrity. Alzheimers Dement. 2025, 17, e70131. [Google Scholar] [CrossRef]
- Boland, S.; Swarup, S.; Ambaw, Y.A.; Malia, P.C.; Richards, R.C.; Fischer, A.W.; Singh, S.; Aggarwal, G.; Spina, S.; Nana, A.L.; et al. Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis. Nat. Commun. 2022, 13, 5924. [Google Scholar] [CrossRef]
- Kamp, P.E.; den Hartog Jager, W.A.; Maathuis, J.; de Groot, P.A.; de Jong, J.M.; Bolhuis, P.A. Brain gangliosides in the presenile dementia of Pick. J. Neurol. Neurosurg. Psychiatry 1986, 49, 881–885. [Google Scholar] [CrossRef]
- Kim, W.S.; Jary, E.; Pickford, R.; He, Y.; Ahmed, R.M.; Piguet, O.; Hodges, J.R.; Halliday, G.M. Lipidomics analysis of behavioral variant frontotemporal dementia: A scope for biomarker development. Front. Neurol. 2018, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Marian, O.C.; Teo, J.D.; Lee, J.Y.; Song, H.; Kwok, J.B.; Landin-Romero, R.; Halliday, G.; Don, A.S. Disrupted myelin lipid metabolism differentiates frontotemporal dementia caused by GRN and C9orf72 gene mutations. Acta Neuropathol. Commun. 2023, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Arrant, A.E.; Roth, J.R.; Boyle, N.R.; Kashyap, S.N.; Hoffmann, M.Q.; Murchison, C.F.; Ramos, E.M.; Nana, A.L.; Spina, S.; Grinberg, L.T.; et al. Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations. Acta Neuropathol. Commun. 2019, 7, 218. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Phan, K.; Bhatia, S.; Pickford, R.; Fu, Y.; Yang, Y.; Hodges, J.R.; Piguet, O.; Halliday, G.M.; Kim, W.S. Increased VLCFA-lipids and ELOVL4 underlie neurodegeneration in frontotemporal dementia. Sci. Rep. 2021, 11, 21348. [Google Scholar] [CrossRef]
- Aqel, S.; Ahmad, J.; Saleh, I.; Fathima, A.; Al Thani, A.A.; Mohamed, W.M.Y.; Shaito, A.A. Advances in Huntington’s disease biomarkers: A 10-year bibliometric analysis and a comprehensive review. Biology 2025, 14, 129. [Google Scholar] [CrossRef]
- Seeley, C.; Kegel-Gleason, K.B. Taming the Huntington’s disease proteome: What have we learned? J. Huntingt. Dis. 2021, 10, 239–257. [Google Scholar] [CrossRef]
- Peavy, G.M.; Jacobson, M.W.; Goldstein, J.L.; Hamilton, J.M.; Kane, A.; Gamst, A.C.; Lessig, S.L.; Lee, J.C.; Corey-Bloom, J. Cognitive and functional decline in Huntington’s disease: Dementia criteria revisited. Mov. Disord. 2010, 25, 1163–1169. [Google Scholar] [CrossRef]
- Snowden, J.S.; Craufurd, D.; Thompson, J.; Neary, D. Psychomotor, executive, and memory function in preclinical Huntington’s disease. J. Clin. Exp. Neuropsychol. 2002, 24, 133–145. [Google Scholar] [CrossRef]
- Hamilton, J.M.; Salmon, D.P.; Corey-Bloom, J.; Gamst, A.; Paulsen, J.S.; Jerkins, S.; Jacobson, M.W.; Peavy, G. Behavioural abnormalities contribute to functional decline in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 120–122. [Google Scholar] [CrossRef]
- McGarry, A.; Gaughan, J.; Hackmyer, C.; Lovett, J.; Khadeer, M.; Shaikh, H.; Pradhan, B.; Ferraro, T.N.; Wainer, I.W.; Moaddel, R. Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington’s disease for participants of varying functional disability: A pilot study. Sci. Rep. 2020, 10, 20490, Erratum in Sci. Rep. 2021, 11, 9947. https://doi.org/10.1038/s41598-021-89167-7. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.; Demarais, N.J.; Faull, R.L.M.; Grey, A.C.; Curtis, M.A. An imaging mass spectrometry atlas of lipids in the human neurologically normal and Huntington’s disease caudate nucleus. J. Neurochem. 2021, 157, 2158–2172. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.R.; Saville, J.T.; Hancock, S.E.; Brown, S.H.J.; Jenner, A.M.; McLean, C.; Fuller, M.; Newell, K.A.; Mitchell, T.W. The long and the short of Huntington’s disease: How the sphingolipid profile is shifted in the caudate of advanced clinical cases. BrainCommun. 2021, 4, fcab303. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.R.; Hancock, S.E.; Brown, S.H.J.; Jenner, A.M.; Kreilaus, F.; Newell, K.A.; Mitchell, T.W. Cholesteryl ester levels are elevated in the caudate and putamen of Huntington’s disease patients. Sci. Rep. 2020, 10, 20314. [Google Scholar] [CrossRef]
- Maglione, V.; Marchi, P.; Di Pardo, A.; Lingrell, S.; Horkey, M.; Tidmarsh, E.; Sipione, S. Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. J. Neurosci. 2010, 30, 4072–4080. [Google Scholar] [CrossRef]
- Di Pardo, A.; Maglione, V.; Alpaugh, M.; Horkey, M.; Atwal, R.S.; Sassone, J.; Ciammola, A.; Steffan, J.S.; Fouad, K.; Truant, R.; et al. Ganglioside GM1 Induces Phosphorylation of Mutant Huntingtin and Restores Normal Motor Behavior in Huntington Disease Mice. Proc. Natl. Acad. Sci. USA 2012, 109, 3528–3533. [Google Scholar] [CrossRef]
- Alpaugh, M.; Galleguillos, D.; Forero, J.; Morales, L.C.; Lackey, S.W.; Kar, P.; Di Pardo, A.; Holt, A.; Kerr, B.J.; Todd, K.G.; et al. Disease-modifying effects of ganglioside GM1 in Huntington’s disease models. EMBO Mol. Med. 2017, 9, 1537–1557. [Google Scholar] [CrossRef]
- Byrne, L.M.; Rodrigues, F.B.; Johnson, E.B.; Wijeratne, P.A.; De Vita, E.; Alexander, D.C.; Palermo, G.; Czech, C.; Schobel, S.; Scahill, R.I.; et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci. Transl. Med. 2018, 10, eaat7108. [Google Scholar] [CrossRef]
- Ghofrani-Jahromi, M.; Poudel, G.R.; Razi, A.; Abeyasinghe, P.M.; Paulsen, J.S.; Tabrizi, S.J.; Saha, S.; Georgiou-Karistianis, N. Prognostic enrichment for early-stage Huntington’s disease: An explainable machine learning approach for clinical trial. Neuroimage Clin. 2024, 43, 103650. [Google Scholar] [CrossRef]
- Ganesh, S.; Chithambaram, T.; Krishnan, N.R.; Vincent, D.R.; Kaliappan, J.; Srinivasan, K. Exploring Huntington’s disease diagnosis via artificial intelligence models: A comprehensive review. Diagnostics 2023, 13, 3592. [Google Scholar] [CrossRef]
- Meneses, A.; Koga, S.; O’Leary, J.; Dickson, D.W.; Bu, G.; Zhao, N. TDP-43 pathology in Alzheimer’s disease. Mol. Neurodegener. 2021, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Parisi, J.E.; Boeve, B.F.; Cha, R.H.; Apaydin, H.; Salviati, A.; Edland, S.D.; Rocca, W.A. Vascular dementia in a population-based autopsy study. Arch. Neurol. 2003, 60, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Buciuc, M.; Whitwell, J.L.; Boeve, B.F.; Ferman, T.J.; Graff-Radford, J.; Savica, R.; Kantarci, K.; Fields, J.A.; Knopman, D.S.; Petersen, R.C.; et al. TDP-43 is associated with a reduced likelihood of rendering a clinical diagnosis of dementia with Lewy bodies in autopsy-confirmed cases of transitional/diffuse Lewy body disease. J. Neurol. 2020, 267, 1444–1453. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Pan, K.Y.; Xu, H.; Qi, X.; Buchman, A.S.; Bennett, D.A.; Xu, W. Association of cardiovascular risk burden with risk of dementia and brain pathologies: A population-based cohort study. Alzheimers Dement. 2021, 17, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Leocadi, M.; Canu, E.; Paldino, A.; Agosta, F.; Filippi, M. Awareness impairment in Alzheimer’s disease and frontotemporal dementia: A systematic MRI review. J. Neurol. 2023, 270, 1880–1907. [Google Scholar] [CrossRef]
- Rowley, P.A.; Samsonov, A.A.; Betthauser, T.J.; Pirasteh, A.; Johnson, S.C.; Eisenmenger, L.B. Amyloid and Tau PET imaging of Alzheimer disease and other neurodegenerative conditions. Semin. Ultrasound CT MRI 2020, 41, 572–583. [Google Scholar] [CrossRef]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef]
- Manjavong, M.; Kang, J.M.; Diaz, A.; Ashford, M.T.; Eichenbaum, J.; Aaronson, A.; Miller, M.J.; Mackin, S.; Tank, R.; Weiner, M.; et al. Performance of plasma biomarkers combined with structural MRI to identify candidate participants for Alzheimer’s disease-modifying therapy. J. Prev. Alzheimers Dis. 2024, 11, 1198–1205. [Google Scholar] [CrossRef]
- Mok, V.C.T.; Cai, Y.; Markus, H.S. Vascular cognitive impairment and dementia: Mechanisms, treatment, and future directions. Int. J. Stroke 2024, 19, 838–856. [Google Scholar] [CrossRef]
- Wong, E.C.; Chui, H.C. Vascular cognitive impairment and dementia. Continuum 2022, 28, 750–780. [Google Scholar] [CrossRef]
- Tisher, A.; Salardini, A. A comprehensive update on treatment of dementia. Semin. Neurol. 2019, 39, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Kapasi, A.; James, B.D.; Yu, L.; Sood, A.; Arvanitakis, Z.; Bennett, D.A.; Boyle, P.; Schneider, J.A. Mixed pathologies and cognitive outcomes in persons considered for anti-amyloid treatment eligibility assessment: A community-based study. Neurology 2025, 105, e214004. [Google Scholar] [CrossRef] [PubMed]
- Alrouji, M.; Alshammari, M.S.; Tasqeeruddin, S.; Shamsi, A. Interplay between aging and tau pathology in Alzheimer’s disease: Mechanisms and translational perspectives. Antioxidants 2025, 14, 774. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Wasnik, S.; Shandilya, C.; Srivastava, V.; Khan, S.; Singh, K.K. Pathogenic synergy: Dysfunctional mitochondria and neuroinflammation in neurodegenerative diseases associated with aging. Front. Aging 2025, 6, 1615764. [Google Scholar] [CrossRef]
- Yu, W.; Ying, J.; Wang, X.; Liu, X.; Zhao, T.; Yoon, S.; Zheng, Q.; Fang, Y.; Yang, D.; Hua, F. The involvement of lactosylceramide in central nervous system inflammation related to neurodegenerative disease. Front. Aging Neurosci. 2021, 13, 691230. [Google Scholar] [CrossRef]
- Teunissen, C.E.; Kimble, L.; Bayoumy, S.; Bolsewig, K.; Burtscher, F.; Coppens, S.; Das, S.; Gogishvili, D.; Fernandes Gomes, B.; Gómez de San José, N.; et al. Methods to discover and validate biofluid-based biomarkers in neurodegenerative dementias. Mol. Cell. Proteom. 2023, 22, 100629. [Google Scholar] [CrossRef]
- Yilmaz, A.; Ashrafi, N.; Ashrafi, R.; Akyol, S.; Saiyed, N.; Kerševičiūtė, I.; Gabrielaite, M.; Gordevicius, J.; Graham, S.F. Lipid profiling of Parkinson’s disease brain highlights disruption in lysophosphatidylcholines, and triacylglycerol metabolism. npjPark. Dis. 2025, 11, 159. [Google Scholar] [CrossRef]
- Kelley, A.R. Mass spectrometry-based analysis of lipid involvement in Alzheimer’s disease pathology—A review. Metabolites 2022, 12, 510. [Google Scholar] [CrossRef]
- Cilento, E.M.; Jin, L.; Stewart, T.; Shi, M.; Sheng, L.; Zhang, J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer’s and Parkinson’s diseases. J. Neurochem. 2019, 151, 397–416. [Google Scholar] [CrossRef]
- Lam, S.M.; Wang, Y.; Duan, X.; Wenk, M.R.; Kalaria, R.N.; Chen, C.P.; Lai, M.K.; Shui, G. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia. Neurobiol. Aging 2014, 35, 2369–2381. [Google Scholar] [CrossRef]
- Hendriks, T.F.E.; Krestensen, K.K.; Mohren, R.; Vandenbosch, M.; De Vleeschouwer, S.; Heeren, R.M.A.; Cuypers, E. MALDI-MSI-LC-MS/MS workflow for single-section single step combined proteomics and quantitative lipidomics. Anal. Chem. 2024, 96, 4266–4274. [Google Scholar] [CrossRef] [PubMed]
- Noel, A.; Ingrand, S.; Barrier, L. Ganglioside and related-sphingolipid profiles are altered in a cellular model of Alzheimer’s disease. Biochimie 2017, 137, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Chua, X.Y.; Torta, F.; Chong, J.R.; Venketasubramanian, N.; Hilal, S.; Wenk, M.R.; Chen, C.P.; Arumugam, T.V.; Herr, D.R.; Lai, M.K.P. Lipidomics profiling reveals distinct patterns of plasma sphingolipid alterations in Alzheimer’s disease and vascular dementia. Alzheimers Res. Ther. 2023, 15, 214. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, V.C.; Lauer, A.A.; Haupenthal, V.; Stahlmann, C.P.; Mett, J.; Grösgen, S.; Hundsdörfer, B.; Rothhaar, T.; Endres, K.; Eckhardt, M.; et al. A bidirectional link between sulfatide and Alzheimer’s disease. Cell Chem. Biol. 2024, 31, 265–283.e7. [Google Scholar] [CrossRef]
- Reza, S.; Ugorski, M.; Suchański, J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology 2021, 31, 1416–1434. [Google Scholar] [CrossRef]
- Pujol-Lereis, L.M. Alteration of sphingolipids in biofluids: Implications for neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20, 3564. [Google Scholar] [CrossRef]
- Koal, T.; Klavins, K.; Seppi, D.; Kemmler, G.; Humpel, C. Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-β42, tau, and phospho-tau-181 levels. J. Alzheimers Dis. 2015, 44, 1193–1201. [Google Scholar] [CrossRef]
- Montine, T.J.; Morrow, J.D. Fatty acid oxidation in the pathogenesis of Alzheimer’s disease. Am. J. Pathol. 2005, 166, 1283–1289. [Google Scholar] [CrossRef]
- Caughlin, S.; Hepburn, J.D.; Park, D.H.; Jurcic, K.; Yeung, K.K.-C.; Cechetto, D.F.; Whitehead, S.N. Increased expression of simple ganglioside species GM2 and GM3 detected by MALDI imaging mass spectrometry in a combined rat model of Aβ toxicity and stroke. PLoS ONE 2015, 10, e0130364. [Google Scholar] [CrossRef]



| Disorder | Dementia of Alzheimer’s Type (AD) | Dementia with Lewy Body (DLB) | Frontotemporal Dementia (FTD) | Parkinson’s Disease Dementia (PDD) | Huntington’s Disease (HD) | Mixed Dementia | |
|---|---|---|---|---|---|---|---|
| Features | |||||||
| Onset | Presenile or senile | Senile | Presenile | Late onset | Presenile | Senile onset | |
| Age at diagnosis | <65 s or >65 s | 50 s–80 s | 40 s and early 60 s | >70 s | 30 s or 40 s | >65 | |
| Patient profile | Predominantly female | Slight male predominance | Male predominance | Male predominance | No gender preference | No gender preference | |
| Brain abnormalities | Accumulation of amyloid plaques and tau tangles | α-synuclein aggregation in cortical and subcortical Lewy bodies (LBs); often coexists with AD | Abnormal tau and TDP-43 proteins in the frontal and temporal lobes | Accumulation of α-synuclein in LBs | Specific inherited gene mutation | Accumulation of tau and amyloid plaques | |
| Cerebral damage | Diffuse cerebral atrophy | Widespread LBpathology; variable cortical atrophy | Severe atrophy | Atrophy in subcortical regions and cortical LB pathology | Neuronal loss in caudate nucleus and putamen | Combination of AD and vascular lesions | |
| Prominent symptoms | Memory dysfunction | Fluctuating cognition, visual hallucinations, and parkinsonism | Personality and language disturbances | Impaired attention, executive dysfunction, memory issues | Cognitive decline with behavioral disturbances | Memory loss, cognitive decline, executive dysfunction | |
| Visuospatial abilities | Severely impaired | Markedly impaired | Preserved | Moderately impaired | Impaired | Often impaired | |
| Language problems | Understanding; speaking | Speaking | Thinking; understanding; reading | Thinking; speaking | Speaking | Variable; may mirror AD difficulties | |
| Mood | Depression, anxiety, suspiciousness | Depression, anxiety, apathy, confusion | Marked irritability, lack of guilt, alexithymia euphoria, apathy | Depression, anxiety, apathy | Depression, irritability, aggression, apathy | Depression, anxiety, apathy | |
| Intellectual deficit | Yes | Yes | No | Yes | Yes | Yes | |
| Psychotic features | Delusion of misidentification or prejudice secondary to memory impairment type | Prominent visual hallucinations, delusions | Rare persecutory delusionsand bizarre behaviors | Visual hallucinations, paranoid delusions | Psychosis | Possible delusions and hallucinations | |
| Appetite, dietary change | Anorexia and weight loss | Weight loss | Increased appetite, carbohydrate craving 80%, weight gain | Weight loss | Weight loss | Variable (weight loss or gain) | |
| Progression to death | 11.8 ± 0.6 years | 5–8 years after diagnosis | 8.7 ± 1.2 years | 5–10 years after onset | 15–20 years after onset | Variable (faster than single dementia types) | |
| Cause of death | Aspiration pneumonia | Aspiration pneumonia, complications of immobility, and infections | Physical changes that can cause skin, urinary tract, and/or lung infections | Complications from immobility, aspiration pneumonia | Complications from immobility, infections, aspiration pneumonia | Cardiovascular disease, pneumonia, infections | |
| Platform/Workflow | Key Features | Advantages | Limitations | Typical Use Cases |
|---|---|---|---|---|
| LC-MS/MS with Orbitrap/QuadrupoleTime of Flight (QTOF) | Chromatographic separation High-resolution tandem MS (MS/MS) | Quantitative, robust, reduces isobaric interference Structural info on fatty acyl chains Sensitive | Requires optimized chromatography Need for derivatization or specialized columns | Discovery and validation |
| Shotgun Lipidomics (Direct Infusion, Orbitrap/TripleTOF) | Rapid, high-throughput profiling Direct infusion, no LC | Broad coverage Quick surveys Minimal preparation | Ion suppression Poor isomer/isobar separation Less quantitative | Initial screening before separation |
| MALDI-MSI | Spatial tissue mapping Moderate to high resolution | Links molecular and anatomical data Enables regional distribution analysis High sensitivity with derivatization and high-resolution analyzers | Lower quantitation than LC-MS Matrix/analyte suppression | Mapping Correlation with plaques, vessels, microinfarcts |
| Desorption Electrospray Ionization (DESI)–MSI and Secondary Ion Mass Spectrometry (SIMS) Imaging | Ambient ionization (DESI) Utra-high-resolution imaging (SIMS) | Minimal sample preparation (DESI) Sub-micron resolution (SIMS) | Limited mass range and fragmentation (SIMS) Complex data analysis | Subcellular mapping Complementary spatial lipidomics |
| IMS-MS | Separates isomers and isobars by shape/size | Resolves complex GGs High confidence in structural identification Boosts discovery | Requires specialized instruments | Biomarker discovery Detailed structural assignment |
| Targeted Derivatization and Glycan-Specific Workflows | Chemical modifications Specialized columns | Improves chromatographic behavior and MS sensitivity Resolves isomers | Extra sample preparation complexity | Quantifying disease-relevant isomers |
| Quantitative MSI and LC-MS Hybrid | Combines MSI with microextraction and LC-MS/MS | Spatial localization and quantitative data Emerging gold standard | Complex workflow | Tissue-to-histopathology mapping Anatomical and quantitative mapping |
| Glycolipid Class | Representative Species | Relevance to Mixed Dementia | Representative Citation |
|---|---|---|---|
| GGs (mono-/di-/tri-sialo) | GM1 (d18:1/18:0); GM2; GM3 (d18:1/16:0; d18:1/18:0); GD1a; GD1b; GT1b | Abundant in neuronal membranes and synapses Altered sialylation indicates membrane degradation and inflammation GM2/GM3 elevated near plaques and in white matter | [66] |
| Sulfatides (sulfated galactocerebrosides) | ST (d18:1/24:0) | Enriched in myelin Early loss linked to AD and vascular myelin injury Sensitive marker of demyelination | [166] |
| GalCer/GlcCer | GalCer (d18:1/24:0); GlcCer species | Core myelin lipids Shifts indicate demyelination in ischemic regions Reflect altered GSL metabolism | [167] |
| Ceramides | Cer (d18:1/16:0); Cer (d18:1/24:1) | Products of SM breakdown Elevated in neurodegeneration and vascular inflammation Promote apoptosis and Aβ production | [168] |
| Sphingomyelins | SM (d18:1/18:0); SM (36:1) | Structural membrane lipids SM/ceramide ratio changes reflect membrane injury Altered in mixed dementia tissue | [169] |
| GG degradation intermediates | GM2; lactosylceramides (LacCer) | Indicate increased glycosidase activity Reflect lysosomal/autophagy dysfunction Accumulate around plaques and ischemic zones | [66] |
| Glycolipid oxidized/ truncated forms | Oxidized ceramides; truncated GGs | Markers of oxidative stress and lipid peroxidation Elevated near microinfarcts and plaques | [170] |
| Dementia Type | Most Promising GSL Biomarkers | Direction of Change | References |
|---|---|---|---|
| AD | GM1, GM2, GM3, GD1a, GD1b, GD2, GD3, GT1a, GT1b, GQ1b, GQ1bα, di-O-Ac-GT1a, O-Ac-GD1b, ShexCer, GalNAc-GD1a, GGs (d18:1) | ↑ GM1 (d18:1/18:0), GM2, GM3, GD2, GD3, GT1a, GQ1b, GQ1bα, di-O-Ac-GT1a, O-Ac-GD1b, GGs (d18:1), TG, CE, PE ↓ GD1a, GD1b, GT1b, ShexCer, GalNAc-GD1a | [42,45,51,65,66,70,71,121,122,136,137,138,171] |
| DLB | GM1 and GD1a, Cer (d18:1/18:0), GlcCer (d18:1/18:0), SphM (d18:1/18:0), GlcSph (d18:1), GalSph (d18:1) | ↑ GM2, GM3 ↓ GM1 and GD1a, GalSph and Cer vs. controls/PD | [98] |
| PDD | Cer 24:1, 14:0, 18:0, 20:0 | ↓ Cer 24:1, 14:0 ↑ Cer 18:0, 20:0 | [122] |
| FTD | GM1, GM2, GM3, GD1, GD2, GD3, GT1a, GalNAc-GD1a, HexCers (22:0 GlcCer, GalCer) | ↑ GM1, GM2, GM3GD1, GD2, GD3, GT1a, GT3, GQ1c ↓GalNAc-GD1a, HexCers (22:0 GlcCer, GalCer) | [120,121,122] |
| HD | Ceramides (chain length shift), SM, GM1 | Loss of very-long-chain Cer/SM Enrichment inlong-chain Cer/SM ↓ GM1, GM2, GD1a, and GD1b; improvement with exogenous GM1 | [134,136,138] |
| Mixed dementia | GM2, GM3, Cer (d16:1/24:0), Cer (d18:1/16:0), Hex2Cer (d16:1/16:0), HexCer (d18:1/18:0), SM (d16:1/16:0, 20:0), SM (d18:2/22:0), GlcCer, GalCer, sphingolipids (d16:1, d18:1) | ↑ GM2, GM3 (in/around Aβ plaques) ↑GM3 and membrane breakdown markers in mixed dementia ↓Sphingolipid d16:1 (VD), GM1, GD1a, and GT1b ↑Sphingolipid d18:1 (AD) | [66,162,165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarbu, M.; Ica, R.; Biricioiu, M.-R.; Dehelean, L.; Zamfir, A.D. Glycosphingolipids in Dementia: Insights from Mass Spectrometry and Systems Biology Approaches. Biomedicines 2025, 13, 2854. https://doi.org/10.3390/biomedicines13122854
Sarbu M, Ica R, Biricioiu M-R, Dehelean L, Zamfir AD. Glycosphingolipids in Dementia: Insights from Mass Spectrometry and Systems Biology Approaches. Biomedicines. 2025; 13(12):2854. https://doi.org/10.3390/biomedicines13122854
Chicago/Turabian StyleSarbu, Mirela, Raluca Ica, Maria-Roxana Biricioiu, Liana Dehelean, and Alina D. Zamfir. 2025. "Glycosphingolipids in Dementia: Insights from Mass Spectrometry and Systems Biology Approaches" Biomedicines 13, no. 12: 2854. https://doi.org/10.3390/biomedicines13122854
APA StyleSarbu, M., Ica, R., Biricioiu, M.-R., Dehelean, L., & Zamfir, A. D. (2025). Glycosphingolipids in Dementia: Insights from Mass Spectrometry and Systems Biology Approaches. Biomedicines, 13(12), 2854. https://doi.org/10.3390/biomedicines13122854
