Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,373)

Search Parameters:
Keywords = symmetric integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1623 KB  
Article
The Photodynamic Antibacterial Potential of New Tetracationic Zinc(II) Phthalocyanines Bearing 4-((Diethylmethylammonium)methyl)phenoxy Substituents
by Gennady Meerovich, Dmitry Bunin, Ekaterina Akhlyustina, Igor Romanishkin, Vladimir Levkin, Sergey Kharnas, Maria Stepanova, Alexander Martynov, Victor Loschenov, Yulia Gorbunova and Marina Strakhovskaya
Int. J. Mol. Sci. 2025, 26(19), 9414; https://doi.org/10.3390/ijms26199414 - 26 Sep 2025
Abstract
Photodynamic inactivation and antimicrobial photodynamic therapy (PDI/APDT) based on the toxic properties of reactive oxygen species (ROS), which are generated by a number of photoexcited dyes, are promising for preventing and treating infections, especially those associated with drug-resistant pathogens. The negatively charged bacterial [...] Read more.
Photodynamic inactivation and antimicrobial photodynamic therapy (PDI/APDT) based on the toxic properties of reactive oxygen species (ROS), which are generated by a number of photoexcited dyes, are promising for preventing and treating infections, especially those associated with drug-resistant pathogens. The negatively charged bacterial cell surface attracts polycationic photosensitizers, which contribute to the vulnerability of the bacterial plasma membrane to ROS. The integrity of the plasma membrane is critical for the viability of the bacterial cell. Polycationic phthalocyanines are regarded as promising photosensitizers due to their high quantum yields of ROS generation (mainly singlet oxygen), high extinction coefficients in the far-red spectral range, and low dark toxicity. For application in PDI/APDT, the wide range of possibilities of modifying the chemical structure of phthalocyanines is particularly valuable, especially by introducing various peripheral and non-peripheral substituents into the benzene rings. Depending on the type and location of such substituents, it is possible to obtain photosensitizers with different photophysical properties, photochemical activity, solubility in an aqueous medium, biocompatibility, and tropism for certain structures of photoinactivation targets. In this study, we tested novel water-soluble Zn (II) phthalocyanines bearing four 4-((diethylmethylammonium)methyl)phenoxy substituents with symmetric and asymmetric charge distributions for photodynamic antibacterial activity and compared them with those of water-soluble octacationic zinc octakis(cholinyl)phthalocyanine. The obtained results allow us to conclude that the studied tetracationic aryloxy-substituted Zn(II) phthalocyanines effectively bind to the oppositely charged cell wall of the Gram-negative bacteria E. coli. This finding is supported by data on bacteria’s zeta potential neutralization in the presence of phthalocyanine derivatives and fluorescence microscopy images of stained bacterial cells. Asymmetric substitution influences the aggregation and fluorescent characteristics but has little effect on the ability of the studied tetracationic phthalocyanines to sensitize the bioluminescent E. coli K12 TG1 strain. Both symmetric and asymmetric aryloxy-substituted phthalocyanines are no less effective in PDI than the water-soluble zinc octakis(cholinyl)phthalocyanine, a photosensitizer with proven antibacterial activity, and have significant potential for further studies as antibacterial photosensitizers. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

17 pages, 32387 KB  
Article
Neural Network Architectures for Secure and Sustainable Data Processing in E-Government Systems
by Shadi AlZu’bi, Fatima Quiam, Ala’ M. Al-Zoubi and Muder Almiani
Algorithms 2025, 18(10), 601; https://doi.org/10.3390/a18100601 - 25 Sep 2025
Abstract
In the digital transformation of public services, reliable and secure data handling has become central to effective E-government operations. This study introduces a symmetry-driven neural network architecture tailored for secure, scalable, and energy-efficient data processing. The model integrates weight-sharing and symmetrical configurations to [...] Read more.
In the digital transformation of public services, reliable and secure data handling has become central to effective E-government operations. This study introduces a symmetry-driven neural network architecture tailored for secure, scalable, and energy-efficient data processing. The model integrates weight-sharing and symmetrical configurations to enhance efficiency and resilience. Experimental validation on three E-government datasets (95,000–230,000 records) demonstrates that the proposed model improves processing speed by up to 40% and enhances adversarial robustness by maintaining accuracy reductions below 2.5% under attack scenarios. Compared with baseline neural networks, the architecture achieves higher accuracy (up to 95.1%), security (up to 98% attack prevention), and efficiency (processing up to 1600 records/sec). These results confirm the model’s applicability for large-scale, real-time E-government systems, providing a practical path for sustainable and secure digital public administration. Full article
(This article belongs to the Special Issue Artificial Intelligence in Sustainable Development)
Show Figures

Figure 1

30 pages, 668 KB  
Article
Symmetry-Aware Transformers for Asymmetric Causal Discovery in Financial Time Series
by Wenxia Zheng and Wenhe Liu
Symmetry 2025, 17(10), 1591; https://doi.org/10.3390/sym17101591 - 24 Sep 2025
Viewed by 111
Abstract
Financial markets exhibit fundamental asymmetries in temporal causality, where policy interventions create asymmetric transmission patterns that traditional symmetric modeling approaches fail to capture. This work introduces a mathematical framework that exploits the inherent symmetries of transformer architectures while preserving essential asymmetric temporal relationships [...] Read more.
Financial markets exhibit fundamental asymmetries in temporal causality, where policy interventions create asymmetric transmission patterns that traditional symmetric modeling approaches fail to capture. This work introduces a mathematical framework that exploits the inherent symmetries of transformer architectures while preserving essential asymmetric temporal relationships in financial causal inference. We develop CausalFormer, a symmetry-aware neural architecture that maintains the permutation equivariance properties of self-attention mechanisms while enforcing strict temporal asymmetry constraints for causal discovery. The framework incorporates three mathematically principled components: (1) a symmetric attention matrix construction with asymmetric temporal masking that preserves the mathematical elegance of transformer operations while ensuring causal consistency, (2) a multi-scale convolution module with symmetric kernel initialization but asymmetric temporal receptive fields that captures policy transmission effects across heterogeneous time horizons, and (3) enhanced Nelson–Siegel decomposition that maintains the symmetric factor structure while modeling the evolution dynamics of asymmetric factors. Our mathematical formulation establishes the formal symmetry properties of the attention mechanism under temporal transformations while proving asymmetric convergence behaviors in policy transmission scenarios. The integration of symmetric optimization landscapes with asymmetric causal constraints enables simultaneous achievement of mathematical elegance and economic interpretability. Comprehensive experiments on monetary policy datasets demonstrate that the symmetry-aware design achieves a 15.3% improvement in the accuracy of causal effect estimations and a 12.7% enhancement in the predictive performance compared to those for existing methods while maintaining 91.2% causal consistency scores. The framework successfully identifies asymmetric policy transmission mechanisms, revealing that monetary tightening exhibits 40% faster propagation than easing policies, establishing new mathematical insights into the temporal asymmetries in financial systems. This work demonstrates how principled exploitation of architectural symmetries combined with domain-specific asymmetric constraints opens up new directions for mathematically rigorous yet economically interpretable deep learning in financial econometrics, with broad applications spanning computational finance, economic forecasting, and policy analysis. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

23 pages, 3485 KB  
Article
MSGS-SLAM: Monocular Semantic Gaussian Splatting SLAM
by Mingkai Yang, Shuyu Ge and Fei Wang
Symmetry 2025, 17(9), 1576; https://doi.org/10.3390/sym17091576 - 20 Sep 2025
Viewed by 436
Abstract
With the iterative evolution of SLAM (Simultaneous Localization and Mapping) technology in the robotics domain, the SLAM paradigm based on three-dimensional Gaussian distribution models has emerged as the current state-of-the-art technical approach. This research proposes a novel MSGS-SLAM system (Monocular Semantic Gaussian Splatting [...] Read more.
With the iterative evolution of SLAM (Simultaneous Localization and Mapping) technology in the robotics domain, the SLAM paradigm based on three-dimensional Gaussian distribution models has emerged as the current state-of-the-art technical approach. This research proposes a novel MSGS-SLAM system (Monocular Semantic Gaussian Splatting SLAM), which innovatively integrates monocular vision with three-dimensional Gaussian distribution models within a semantic SLAM framework. Our approach exploits the inherent spherical symmetries of isotropic Gaussian distributions, enabling symmetric optimization processes that maintain computational efficiency while preserving geometric consistency. Current mainstream three-dimensional Gaussian semantic SLAM systems typically rely on depth sensors for map reconstruction and semantic segmentation, which not only significantly increases hardware costs but also limits the deployment potential of systems in diverse scenarios. To overcome this limitation, this research introduces a depth estimation proxy framework based on Metric3D-V2, which effectively addresses the inherent deficiency of monocular vision systems in depth information acquisition. Additionally, our method leverages architectural symmetries in indoor environments to enhance semantic understanding through symmetric feature matching. Through this approach, the system achieves robust and efficient semantic feature integration and optimization without relying on dedicated depth sensors, thereby substantially reducing the dependency of three-dimensional Gaussian semantic SLAM systems on depth sensors and expanding their application scope. Furthermore, this research proposes a keyframe selection algorithm based on semantic guidance and proxy depth collaborative mechanisms, which effectively suppresses pose drift errors accumulated during long-term system operation, thereby achieving robust global loop closure correction. Through systematic evaluation on multiple standard datasets, MSGS-SLAM achieves comparable technical performance to existing three-dimensional Gaussian model-based semantic SLAM systems across multiple key performance metrics including ATE RMSE, PSNR, and mIoU. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 344 KB  
Article
Novel Weighted Dynamic Hardy-Type Inequalities in the Framework of Delta Conformable Calculus on Time Scales
by Haytham M. Rezk, Ahmed R. El-Saeed, Mohamed Mousa and Karim A. Mohamed
Symmetry 2025, 17(9), 1573; https://doi.org/10.3390/sym17091573 - 19 Sep 2025
Viewed by 181
Abstract
This work presents new results concerning weighted Hardy-type inequalities within the framework of delta conformable fractional integrals on arbitrary time scales. The proposed approach unifies the treatment of inequalities across continuous and discrete domains, enabling the derivation of original forms in both settings. [...] Read more.
This work presents new results concerning weighted Hardy-type inequalities within the framework of delta conformable fractional integrals on arbitrary time scales. The proposed approach unifies the treatment of inequalities across continuous and discrete domains, enabling the derivation of original forms in both settings. The obtained results exhibit symmetry with classical inequalities, and several integral and discrete inequalities arise as special cases. These findings extend and generalize known results and enrich the theory of integral inequalities in fractional and dynamic calculus, providing a versatile platform for further developments in symmetric and weighted inequality analysis. Full article
(This article belongs to the Section Mathematics)
24 pages, 9925 KB  
Article
Seventeen-Year Reconstruction of Tropical Forest Aboveground Biomass Dynamics in Borneo Using GEDI L4B and Multi-Sensor Data Fusion
by Chao Yang, Aobo Liu and Yating Chen
Remote Sens. 2025, 17(18), 3231; https://doi.org/10.3390/rs17183231 - 18 Sep 2025
Viewed by 279
Abstract
Forest aboveground biomass (AGB) is a key component of terrestrial carbon storage, essential for understanding the carbon cycle and evaluating carbon sink potential. However, estimating long-term AGB in tropical forests and detecting its spatial and temporal trends remain challenging due to observational gaps [...] Read more.
Forest aboveground biomass (AGB) is a key component of terrestrial carbon storage, essential for understanding the carbon cycle and evaluating carbon sink potential. However, estimating long-term AGB in tropical forests and detecting its spatial and temporal trends remain challenging due to observational gaps and methodological constraints. Here, we integrate GEDI L4B gridded biomass data with features from MODIS, PALSAR/PALSAR-2, SRTM, and climate datasets, and apply the AutoGluon ensemble learning framework to develop AGB retrieval models. We generated annual AGB maps at 1 km resolution for Borneo’s forests from 2007 to 2023, achieving high predictive accuracy (R2 = 0.92, RMSE = 32.84 Mg/ha, rRMSE = 21.06%). Residuals were generally balanced and close to a symmetric distribution, indicating no strong bias within the moderate biomass range (50–350 Mg/ha). However, in very high-biomass stands, the model tended to underestimate AGB, reflecting saturation effects that persist despite clear improvements over existing products. Estimated mean AGB values ranged from 180.52 to 214.09 Mg/ha, with total AGB varying between 13.05 and 14.10 Pg. Trend analysis using Sen’s slope and the Mann–Kendall test revealed significant AGB trends in 31.31% of forested areas, with 68.76% showing increases. This study offers a robust and scalable framework for continuous tropical forest carbon monitoring, providing critical support for carbon accounting, forest management, and policy-making. Full article
(This article belongs to the Special Issue Advances in Multi-Sensor Remote Sensing for Vegetation Monitoring)
Show Figures

Graphical abstract

25 pages, 2383 KB  
Article
Application of the Finite Element Method in Stress and Strain Analysis of Spherical Tank for Fluid Storage
by Halima Onalla S. Ali, Vladimir Dedić, Jelena Živković, Nenad Todić and Radovan Petrović
Symmetry 2025, 17(9), 1565; https://doi.org/10.3390/sym17091565 - 18 Sep 2025
Viewed by 217
Abstract
Symmetry plays a key role in the study of stress and strain analysis of spherical tanks, as described in detail in the main text. The inherent geometric symmetry of a spherical tank–being uniform in all directions from its center–allows for significant simplification of [...] Read more.
Symmetry plays a key role in the study of stress and strain analysis of spherical tanks, as described in detail in the main text. The inherent geometric symmetry of a spherical tank–being uniform in all directions from its center–allows for significant simplification of finite element models. This radial symmetry means that the stress and strain fields under uniform internal pressure are also symmetrical, reducing the computational domain to a small, representative portion of the tank rather than the entire structure. By using these symmetry principles, the study not only ensures the accuracy of its predictions but also achieves a high degree of computational efficiency, making complex engineering problems easier and more accessible. The application of symmetry, therefore, is not just a theoretical concept but a practical tool that underlies the methodology and success of this analysis. This study investigates the mechanical behavior of a spherical tank subjected to internal fluid pressure, utilizing the finite element method (FEM) as a primary analytical tool. Spherical tanks are widely used for the storage of various fluids, including liquefied natural gas (LNG), compressed gases, and water. Their design is critical to ensure structural integrity and safety. This research aims to provide a comprehensive stress and strain analysis of a typical spherical tank, focusing on the hoop and meridian stresses, and their distribution across the tank’s geometry. A 3D finite element model of a spherical tank will be developed using commercial FEA software. The model will incorporate realistic material properties (e.g., steel alloy) and boundary conditions that simulate the support structure and internal fluid pressure. The analysis will consider both linear elastic and potentially non-linear material responses to explore the tank’s behavior under various operational and overpressure scenarios. The primary objectives of this study are as follows: (1) determine the maximum principal stresses and strains within the tank wall, (2) analyze the stress concentration at critical points, such as support connections and nozzle penetrations, and (3) validate the FEM results against classical analytical solutions for thin-walled spherical pressure vessels. The findings will provide valuable insights into the structural performance of these tanks, highlighting potential areas of concern and offering a robust numerical approach for design optimization and safety assessment. This research demonstrates the power and utility of FEM in engineering design, offering a more detailed and accurate analysis than traditional analytical methods. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

24 pages, 2616 KB  
Article
Symmetric Affix–Context Co-Attention: A Dual-Gating Framework for Robust POS Tagging in Low-Resource MRLs
by Yuan Qi, Samat Ali and Alim Murat
Symmetry 2025, 17(9), 1561; https://doi.org/10.3390/sym17091561 - 18 Sep 2025
Viewed by 296
Abstract
Part-of-speech (POS) tagging in low-resource, morphologically rich languages (LRLs/MRLs) remains challenging due to extensive affixation, high out-of-vocabulary (OOV) rates, and pervasive polysemy. We propose MRL-POS, a unified Transformer-CRF framework that dynamically selects informative affix features and integrates them with deep contextual embeddings via [...] Read more.
Part-of-speech (POS) tagging in low-resource, morphologically rich languages (LRLs/MRLs) remains challenging due to extensive affixation, high out-of-vocabulary (OOV) rates, and pervasive polysemy. We propose MRL-POS, a unified Transformer-CRF framework that dynamically selects informative affix features and integrates them with deep contextual embeddings via a novel dual-gating co-attention mechanism. First, a Dynamic Affix Selector adaptively adjusts n-gram ranges and frequency thresholds based on word length to ensure high-precision affix segmentation. Second, the Affix–Context Co-Attention Module employs two gating functions that conditionally amplify contextual dimensions with affix cues and vice versa, enabling robust disambiguation of complex and ambiguous forms. Third, Layer-Wise Attention Pooling aggregates multi-layer XLM-RoBERTa representations, emphasizing those most relevant for morphological and syntactic tagging. Evaluations on Uyghur, Kyrgyz, and Uzbek show that MRL-POS achieves an average F1 of 84.10%, OOV accuracy of 84.24%, and Poly-F1 of 72.14%, outperforming strong baselines by up to 8 F1 points. By explicitly modeling the symmetry between morphological affix cues and sentence-level context through a dual-gating co-attention mechanism, MRL-POS achieves a balanced fusion that both preserves local structure and captures global dependencies. Interpretability analyses confirm that 89.1% of the selected affixes align with linguistic expectations. This symmetric design not only enhances robustness in low-resource and agglutinative settings but also offers a general paradigm for symmetry-aware sequence labeling tasks. Full article
Show Figures

Figure 1

30 pages, 14149 KB  
Article
Heterogeneous Group Adaptive Defense Model Based on Symmetry-Breaking and Skin Effect
by Yunzhuo Ma, Peng Yu, Meijuan Li and Xue-Bo Chen
Symmetry 2025, 17(9), 1555; https://doi.org/10.3390/sym17091555 - 17 Sep 2025
Viewed by 231
Abstract
Collective intelligence systems have demonstrated considerable potential in dynamic adversarial environments due to their distributed, self-organizing, and highly robust characteristics. The crux of an efficacious defense lies in establishing a dynamically adjustable, non-uniform defense structure through the differentiation of internal member roles. The [...] Read more.
Collective intelligence systems have demonstrated considerable potential in dynamic adversarial environments due to their distributed, self-organizing, and highly robust characteristics. The crux of an efficacious defense lies in establishing a dynamically adjustable, non-uniform defense structure through the differentiation of internal member roles. The proposed model is a heterogeneous-swarm adaptive-defense model based on symmetry breaking and skin effect. The model draws from symmetry theory, incorporating the skin effect of conductor currents and the hierarchical structural characteristics of biological groups, such as starlings. The construction of a radially symmetric dynamic hierarchical swarm structure is achieved by assigning different types of individuals with distinct safety radius preferences. Secondly, the principle of symmetry breaking is employed to establish a phase transition mechanism from radial symmetry to directed defense, thereby achieving an adaptive barrier formation algorithm. This algorithm enables the defensive group to assess threat characteristics and dynamically adjust defense resource deployment. The simulation results obtained from this study validate the phase transition process from continuous rotational symmetry to directed defense. This process demonstrates the barrier formation mechanism and ensures the safety and integrity of the core units within the group. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

35 pages, 6812 KB  
Article
Modeling Transient Waveforms of Offshore Wind Power AC/DC Transmission Faults: Unveiling Symmetry–Asymmetry Mechanisms
by Yi Zheng, Qi You, Yujie Chen, Haoming Guo, Hao Yang, Shuang Liang and Xin Pan
Symmetry 2025, 17(9), 1551; https://doi.org/10.3390/sym17091551 - 16 Sep 2025
Viewed by 261
Abstract
This paper aims to unveil the symmetry–asymmetry transition mechanisms in transient fault waveforms of offshore wind power AC/DC transmission systems, addressing the critical limitation of traditional simulation methods of the fact that they cannot characterize the dynamic evolution of system symmetry, such as [...] Read more.
This paper aims to unveil the symmetry–asymmetry transition mechanisms in transient fault waveforms of offshore wind power AC/DC transmission systems, addressing the critical limitation of traditional simulation methods of the fact that they cannot characterize the dynamic evolution of system symmetry, such as static impedance adjustment failing to capture transient asymmetry caused by parameter imbalance or converter control. It proposes a fault waveform simulation approach integrating mechanism analysis, scenario extraction, and model optimization. Key contributions include clarifying the quantitative links between key system parameters like submarine cable capacitance and inductance and symmetry–asymmetry characteristics, defining the transient decay rate oscillation frequency and voltage peak as core indicators to quantify symmetry breaking intensity; classifying typical fault scenarios into a symmetry-breaking type with synchronous three-phase imbalance and a persistent asymmetry type with zero-sequence and negative-sequence distortion based on symmetry evolution dynamics and revising grid-connection test indices such as lowering the low-voltage ride-through threshold and specifying the voltage type for different test objectives; and constructing a simplified embedded RLC second-order model with symmetry–asymmetry constraints to reproduce the whole process of symmetric steady state–fault symmetry breaking–recovery symmetry reconstruction. Simulation results verify the method’s effectiveness, with symmetry indicator reproduction errors ≤ 5% and asymmetric feature fitting goodness R2 ≥ 0.92, which confirms that the method can effectively reveal the symmetry–asymmetry mechanisms of offshore wind power fault transients and provides reliable technical support for improving offshore wind power fault simulation accuracy and grid-connection test reliability, laying a theoretical basis for the grid-connection testing of offshore wind turbines and promoting the stable operation of offshore wind power systems. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 1603 KB  
Article
Adaptive Fault-Tolerant Sliding Mode Control Design for Robotic Manipulators with Uncertainties and Actuator Failures
by Yujuan Wang and Mingyu Wang
Symmetry 2025, 17(9), 1547; https://doi.org/10.3390/sym17091547 - 16 Sep 2025
Viewed by 297
Abstract
This research proposes a novel adaptive robust fault-tolerant controller for symmetrical robotic manipulators subject to model uncertainties and actuator failures. The key innovation lies in the design of a new sliding manifold that effectively integrates the advantages of a hyperbolic tangent function-based practical [...] Read more.
This research proposes a novel adaptive robust fault-tolerant controller for symmetrical robotic manipulators subject to model uncertainties and actuator failures. The key innovation lies in the design of a new sliding manifold that effectively integrates the advantages of a hyperbolic tangent function-based practical sliding manifold and a fast terminal sliding manifold. This structure not only eliminates the reaching phase and accelerates error convergence but also significantly enhances system robustness while mitigating chattering. Moreover, the proposed manifold ensures the global non-singularity of the equivalent control law, thereby improving overall stability. Another major contribution is an adjustable adaptive strategy that dynamically estimates the unknown bounds of fault information and external disturbances, reducing the reliance on prior knowledge. The stability and convergence of the robotic system under the proposed scheme are theoretically analyzed and guaranteed. Finally, simulation experiments demonstrate the superior performance of the proposed scheme. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

18 pages, 1241 KB  
Article
Identifying AI-Driven Emerging Trends in Service Innovation and Digitalized Industries Using the Circular Picture Fuzzy WASPAS Approach
by Yingshan Xu and Dongdong Zhang
Symmetry 2025, 17(9), 1546; https://doi.org/10.3390/sym17091546 - 16 Sep 2025
Viewed by 253
Abstract
In the current digital era, as global industries transform due to technological advancements, tracking trends in emerging services has assumed increased significance. This study proposes an innovative model that integrates circular picture fuzzy sets (CPFSs) with the Weighted Aggregated Sum Product Assessment (WASPAS) [...] Read more.
In the current digital era, as global industries transform due to technological advancements, tracking trends in emerging services has assumed increased significance. This study proposes an innovative model that integrates circular picture fuzzy sets (CPFSs) with the Weighted Aggregated Sum Product Assessment (WASPAS) method to evaluate and rank various AI-driven trends within the service industry. The CPFS approach offers enhanced responses to uncertainty, symmetric information, indecision, and varying expert opinions, while the WASPAS method ensures a dependable system for ranking prominent trends. To facilitate the evaluation process, experts and relevant studies were consulted to establish criteria that address technological developments, organizational dynamics, and market fluctuations. A hybrid fuzzy Multi-Criteria Decision-Making (MCDM) framework enabled the analysis of several potential innovations related to AI and their prioritization in the context of digitalized sectors, including healthcare, finance, online shopping, retail, and logistics. This framework is a well-structured and flexible tool for professionals and policymakers seeking to navigate the challenges of identifying new trends within unpredictable digital environments. The findings indicate that the circular picture fuzzy WASPAS approach significantly enhances trend prioritization and fosters strategic thinking in digital innovation. Furthermore, the research provides valuable insights into the complexities of fuzzy decision-making and the promotion of AI-based innovation management. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

34 pages, 1319 KB  
Article
Case Order Effects in Legal Decision-Making
by Paul Troop and David Lagnado
Behav. Sci. 2025, 15(9), 1250; https://doi.org/10.3390/bs15091250 - 14 Sep 2025
Viewed by 361
Abstract
Case order effects, where decision-makers resolve dilemmas differently depending on the order in which cases are presented, are well established in the psychology of moral decision-making. Yet this type of order effect has rarely been studied in a legal context. Given the integral [...] Read more.
Case order effects, where decision-makers resolve dilemmas differently depending on the order in which cases are presented, are well established in the psychology of moral decision-making. Yet this type of order effect has rarely been studied in a legal context. Given the integral importance of consistency and precedent to the law, we sought to test for the existence of case order effects in legal decisions. Participants across five studies (total n = 1023) were given pairs of life-or-death legal cases to decide, consisting of one decision generally viewed positively in isolation, and one decision negatively viewed, with the order of presentation being varied (positive before negative vs. negative before positive). Studies included civil and criminal cases and individual and group decision-making. Results demonstrated that the case order effects previously seen in the moral context also held in the legal context. Order effects were asymmetric, with responses to one case remaining stable while responses to the other being labile, depending on the order presented. A particularly novel finding was of responses to labile cases becoming less, rather than more, similar to responses to preceding cases. Order effects can be readily triggered in the context of legal decision-making, suggesting legal precedent may be partially dependent on the order in which cases are determined. The asymmetric and previously undiscovered direction of these order effects is not consistent with existing consistency-type theories which predict effects to be symmetrical and more similar to previous cases and the findings are only partially consistent with salience-type theories. Full article
(This article belongs to the Special Issue Forensic and Legal Cognition)
Show Figures

Figure 1

24 pages, 5195 KB  
Article
Design and Experimental Research on an Automated Force-Measuring Device for Plug Seedling Extraction
by Tengyuan Hou, Xinxin Chen, Jianping Hu, Wei Liu, Junpeng Lv, Youheng Tan and Fengpeng Li
Agriculture 2025, 15(18), 1939; https://doi.org/10.3390/agriculture15181939 - 13 Sep 2025
Viewed by 347
Abstract
Existing force-measuring devices lack versatility in studying the dynamic coupling process between the seedling-picking device and the plug seedling pot during automatic transplanting. This research developed a universal force-measuring device featuring a centrally symmetrical clamping needle layout and a simultaneous insertion and clamping [...] Read more.
Existing force-measuring devices lack versatility in studying the dynamic coupling process between the seedling-picking device and the plug seedling pot during automatic transplanting. This research developed a universal force-measuring device featuring a centrally symmetrical clamping needle layout and a simultaneous insertion and clamping mechanism. The force-measuring device enables the flexible adjustment of the number of clamping needles (2/3/4 needles) via a modular structure. It can also modify the insertion depth and angle of the clamping needles to accommodate three specifications of plug seedlings, namely 50-hole, 72-hole, and 128-hole plug seedlings. A real-time monitoring system with dual pull-pressure sensors is integrated to precisely acquire the dynamic response curves of the clamping force (FJ) and the disengaging force (FN) of the plug seedling pot during the seedling-picking process. Taking water spinach plug seedlings as the research object and combining with EDEM-RecurDyn coupling simulation, the interaction mechanism between the clamping needle and the plug seedling pot was elucidated. The performance of the force-measuring device was verified through systematic force-measuring experiments. The main research findings are as follows: The force-measuring device designed in this study can successfully obtain the mechanical characteristic curve of the relevant seedling plug pot throughout the automatic seedling-picking process. The simulation results show high consistency with the experimental results, indicating that the force-measuring device can effectively reveal the dynamic coupling process between the seedling-picking device and the plug seedling pot. The verification experiment demonstrates that the force-measuring device can effectively quantify the mechanical properties of the of plug seedling pots under different plug seedlings specifications and different clamping needles configurations. Reducing the hole size and increasing the number of clamping needles can effectively decrease the peak value of the disengaging force (FNmax). The peak clamping force (FJmax) is approximately inversely proportional to the needle number, with the four-needle layout providing the most uniform force distribution. The force-measuring device developed in this study is functional, applicable, and versatile, offering a general force-measuring tool and a theoretical foundation for optimal seedling-picking device design. Full article
Show Figures

Figure 1

28 pages, 587 KB  
Article
The Lyra–Schwarzschild Spacetime
by M. C. Bertin, R. R. Cuzinatto, J. A. Paquiyauri and B. M. Pimentel
Universe 2025, 11(9), 315; https://doi.org/10.3390/universe11090315 - 12 Sep 2025
Viewed by 349
Abstract
In this paper, we provide a complete analysis of the most general spherical solution of the Lyra scalar-tensor (LyST) gravitational theory based on the proper definition of a Lyra manifold. Lyra’s geometry features the metric tensor and a scale function as fundamental fields, [...] Read more.
In this paper, we provide a complete analysis of the most general spherical solution of the Lyra scalar-tensor (LyST) gravitational theory based on the proper definition of a Lyra manifold. Lyra’s geometry features the metric tensor and a scale function as fundamental fields, resulting in generalizations of geometrical quantities such as the affine connection, curvature, torsion, and non-metricity. A proper action is defined considering the correct invariant volume element and the scalar curvature, obeying the symmetry of Lyra’s reference frame transformations and resulting in a generalization of the Einstein–Hilbert action. The LyST gravity assumes zero torsion in a four-dimensional metric-compatible spacetime. In this work, geometrical quantities are presented and solved via Cartan’s technique for a spherically symmetric line element. Birkhoff’s theorem is demonstrated so that the solution is proven to be static, resulting in the Lyra–Schwarzschild metric, which depends on both the geometrical mass (through a modified version of the Schwarzschild radius rS) and an integration constant dubbed the Lyra radius rL. We study particle and light motion in Lyra–Schwarzschild spacetime using the Hamilton–Jacobi method. The motion of massive particles includes the determination of the rISCO and the periastron shift. The study of massless particle motion shows the last photon’s unstable orbit. Gravitational redshift in Lyra–Schwarzschild spacetime is also reviewed. We find a coordinate transformation that casts Lyra–Schwarzschild spacetime in the form of the standard Schwarzschild metric; the physical consequences of this fact are discussed. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

Back to TopTop