Next Article in Journal
Exact Solutions of Maxwell Vacuum Equations in Petrov Homogeneous Non-Null Spaces
Previous Article in Journal
Angle-of-Attack, Induced Attitude Evolution in a Coupled Crater, and Plugging Penetration of Thin Concrete Targets
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Novel Weighted Dynamic Hardy-Type Inequalities in the Framework of Delta Conformable Calculus on Time Scales

1
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
2
Department of Mathematics and Statistics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
3
Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt
4
Department of Basic Sciences, Faculty of Engineering Technology, ElSewedy University of Technology, Cairo 44916, Egypt
*
Author to whom correspondence should be addressed.
Symmetry 2025, 17(9), 1573; https://doi.org/10.3390/sym17091573
Submission received: 11 August 2025 / Revised: 6 September 2025 / Accepted: 12 September 2025 / Published: 19 September 2025
(This article belongs to the Section Mathematics)

Abstract

This work presents new results concerning weighted Hardy-type inequalities within the framework of delta conformable fractional integrals on arbitrary time scales. The proposed approach unifies the treatment of inequalities across continuous and discrete domains, enabling the derivation of original forms in both settings. The obtained results exhibit symmetry with classical inequalities, and several integral and discrete inequalities arise as special cases. These findings extend and generalize known results and enrich the theory of integral inequalities in fractional and dynamic calculus, providing a versatile platform for further developments in symmetric and weighted inequality analysis.

1. Introduction

In [1], Hardy demonstrated that if Ψ 0 is an integrable function over 0 ,   η and β > 1 , then
0 1 η β 0 η Ψ ( ζ ) d ζ β d η β β 1 β 0 Ψ β ( η ) d η ,
where ( β / ( β 1 ) ) β is sharp. In [2], Hardy also showed that if β r > 1 , then
0 1 η r 0 η Ψ ( ζ ) d ζ β d η β r 1 β 0 1 η r β Ψ β ( η ) d η .
In [3], Levinson established that if Ψ ( η ) 0 , and ψ ( η ) > 0 is absolutely continuous, then for β > 1 , if there exist δ > 0 such that
β β 1 + ψ ( η ) ψ ( η ) 1 δ > 0 , η > 0 ,
it follows that
0 1 η ψ ( η ) 0 η ψ ( ζ ) Ψ ( ζ ) d ζ β d η δ β 0 Ψ β ( η ) d η .
In [4], Hussan et al. established the following result: Let ψ i ( ζ ) 0 be integrable over 0 ,   , and w ,   u i ,   φ i be absolutely continuous functions such that φ i is essentially bounded and positive, and u i is increasing. If the following conditions hold:
1 + u i ( ζ ) w ( ζ ) ( 1 2 r ) u i ( ζ ) w ( ζ ) 1 λ i > 0 for r > 1 2 ,
1 + u i ( ζ ) w ( ζ ) ( 1 2 r ) u i ( ζ ) w ( ζ ) 1 δ i > 0 for r < 1 2 ,
then
i = 1 m 0 w ( ζ ) Ω i ( ζ ) Ω i + 1 ( ζ ) d ζ i = 1 m 2 β i 2 r 1 2 0 w ( ζ ) g i ( ζ ) d ζ for i = 1 ,   2 ,   m ,   m N ,
where
Ω i ( ζ ) = u i ( ζ ) u i r ( ζ ) 0 ζ u i ( s ) φ i ( s ) φ i ( s ) ψ i ( s ) d s , r > 1 2 , u i ( ζ ) u i r ( ζ ) ζ u i ( s ) φ i ( s ) φ i ( s ) ψ i ( s ) d s , r < 1 2 ,
g i ( ζ ) = u i ( ζ ) 4 2 r φ i ( ζ ) 2 ψ i 2 ( ζ ) φ i 2 ( ζ ) u i ( ζ ) and β i = max 1 i τ λ i , δ i .
In recent years, many authors have been interested in studying dynamic inequalities on time scales T , which is an arbitrary non-empty closed subset of R (see [5,6,7,8,9,10,11,12,13,14,15]). In [16], Řehak established a time scale analogue of inequality (1). For β > 1 , if Ψ ( ζ ) 0 such that a Ψ β ( ζ ) ζ < , then
a 1 σ ( η ) a a σ ( η ) Ψ ( ζ ) ζ β η β β 1 β a Ψ β ( η ) η .
Furthermore, if μ ( ζ ) / ζ 0 as ζ , then the constant ( β / ( β 1 ) ) β is sharp.
In [17], Saker et al. extended (3) to general time scales. For ψ ( ζ ) > 0 , Ψ ( ζ ) 0 , and ψ ( ζ ) 0 on [ 0 ,   ) T , if p > 1 and there exist constants κ ,   β > 0 such that ζ / σ ( ζ ) 1 / κ and
p p 1 + κ p Φ ( ζ ) Φ σ ( ζ ) ζ ψ ( ζ ) ψ σ ( ζ ) 1 β for ζ [ 0 ,   ) T ,
then
0 1 ζ p Φ σ ( ζ ) p ζ β κ p p 0 ψ ( ζ ) Ψ ( ζ ) ψ σ ( ζ ) p ζ ,
where
Φ ( ζ ) = 1 ψ ( ζ ) 0 ζ ψ ( t ) Ψ ( t ) t ζ [ 0 ,   ) T .
In [18], El-Deeb et al. gave the time scale version of (4). For any 1 i τ , where τ k 1 and τ , k N , if there exist constants λ i , δ i > 0 such that
1 u i σ ( ζ ) p r w ( ζ ) ( p r 1 ) u i ( ζ ) p r 1 u i ( ζ ) w σ ( ζ ) 1 λ i > 0 for r > 1 2 ,
1 u i ( ζ ) w ( ζ ) ( p r 1 ) u i ( ζ ) w σ ( ζ ) 1 δ i > 0 for r < 1 2 ,
then
i = 1 τ 0 w σ ( ζ ) Ω i p 2 ( ζ ) Ω i + 1 p 2 ( ζ ) ζ i = 1 τ p β i p r 1 p 0 w σ ( ζ ) g i ( ζ ) ζ ,
where
Ω i ( ζ ) = u i ( ζ ) p u i σ ( ζ ) r 0 σ ( ζ ) u i ( t ) φ i ( t ) φ i ( t ) ψ i ( t ) t and 0 u i ( t ) u i σ ( t ) p r t < for r > 1 2 , p 2 , u i ( ζ ) p u i r ( ζ ) σ ( ζ ) u i ( t ) φ i ( t ) φ i ( t ) ψ i ( t ) t for r < 1 2 , 1 p 2 ,
g i ( ζ ) = u i p 2 p r ( ζ ) u i σ ( ζ ) r p p 1 φ i ( ζ ) p ψ i p ( ζ ) w p ( ζ ) φ i p ( ζ ) u i ( ζ ) p 1 w σ ( ζ ) p for r > 1 2 , p 2 , u i p 2 r ( ζ ) φ i ( ζ ) p ψ i p ( ζ ) w p ( ζ ) φ i p ( ζ ) u i ( ζ ) p 1 w σ ( ζ ) p for r < 1 2 , 1 p 2 ,
and β i = max 1 i τ λ i , δ i , u i ( ) = .
In recent years, many articles have been published on the subject of fractional inequalities, which have been studied by many researchers to prove the inequalities of fractional types by using the definition of Riemann–Liouville and Caputo derivatives [19]. In [20], the authors gave a new definition of conformable fractional calculus on time scales.
Motivated by the above-mentioned work, this research article aims to establish new Hardy-type inequalities by utilizing alpha-conformable calculus on time scales. The proofs of these inequalities rely on employing the properties of differentiation and integration on time scales. They give the generalization of known inequalities as well as a few new ones for nabla-integrals through the choice of some special time scales. The novelty of this research lies in its pioneering application of alpha-conformable calculus on time scales to establish a new class of Hardy-type inequalities. To the best of our knowledge, this is the first work to explore this specific combination. Our study provides not only a direct generalization of several classical inequalities but also introduces several new ones, particularly for nabla-integrals, by judiciously selecting certain time scales. The proofs of our results are built upon the foundational properties of this novel calculus, thereby extending the existing body of knowledge in the field of dynamic inequalities.
The remainder of this article is structured as follows: Section 2 presents some preliminaries about fractional conformable calculus on time scales. Section 3 presents the main results. Section 4 provides an overview of the findings.

2. Fundamental Concepts

In this section, we introduce key concepts related to the conformable fractional derivative and integral of order α 0 ,   1 on a general time scale T . Let us now proceed with an exploration of time scale calculus. For ζ T , the forward and backward jump operators σ ,   ρ : T T are defined as follows: σ ( ζ ) = inf { s T : s > ζ } and ρ ( ζ ) = sup { s T : s < ζ } , respectively. Based on these operators, a point ζ T is called right-dense if σ ( ζ ) = ζ , left-dense if ρ ( ζ ) = ζ , right-scattered if σ ( ζ ) > ζ , and left-scattered if ρ ( ζ ) < ζ .
If T has left-scattered maximum L, we define T k = T { L } . Otherwise, we let T k = T .
Definition 1
([20]). Let 0 < α 1 , Ψ : T R , and ζ T k . For ζ > 0 , we define D α ( Ψ ( ζ ) ) to be the number with the property that, given any ε > 0 , there is a neighborhood Y of ζ such that for all ζ Y , we get
Ψ σ ( ζ ) Ψ ( s ) ζ 1 α D α ( Ψ ( ζ ) ) σ ( ζ ) s ε σ ( ζ ) s .
We say that D α ( Ψ ( ζ ) ) is the conformable fractional derivative of Ψ of order α at ζ.
Theorem 1
([20]). Let Ψ , Φ : T R be conformable α-fractional derivative on T and continuous. Then,
(1) 
D α ( Ψ + Φ ) = D α ( Ψ ) + D α ( Φ ) .
(2) 
D α ( β Ψ ) = β D α ( Ψ ) for all β R .
(3) 
D α ( Ψ Φ ) = Φ σ D α ( Ψ ) + Ψ D α ( Φ ) = Φ D α ( Ψ ) + Ψ σ D α ( Φ ) .
(4) 
D α ( Ψ Φ ) = Φ D α ( Ψ ) Ψ D α ( Φ ) Φ Φ σ , provided that Φ Φ σ 0 .
Lemma 1
(Chain rule [20]). For 0 < α 1 . Suppose Φ : T R is conformable α-fractional differentiable and Ψ : R R is continuously differentiable. Then,
D α ( Ψ Φ ) ζ = Ψ ( Φ c ) D α ( Φ ζ ) , w h e r e c ζ , σ ζ R .
Definition 2
([20]). For 0 < α 1 and for a regulated function Ψ : T R . The conformable α-fractional integral of Ψ is defined as:
I α ( Ψ ( ζ ) ) = Ψ ( ζ ) α ζ = Ψ ( ζ ) ζ α 1 ζ .
The following properties are true for the conformable α -fractional integral.
Theorem 2
([20]). For 0 < α 1 , η 1 ,   η 2 ,   c T and β R . If G ,   H : T R are two rd-continuous functions, then
(1) 
η 1 η 2 G ( ζ ) + H ( ζ ) α ζ = η 1 η 2 G ( ζ ) α ζ + η 1 η 2 H ( ζ ) α ζ ,
(2) 
η 1 η 2 β G ( ζ ) α ζ = β η 1 η 2 G ( ζ ) α ζ ,
(3) 
η 1 η 2 G ( ζ ) α ζ = η 2 η 1 G ( ζ ) α ζ ,
(4) 
η 1 η 2 G ( ζ ) α ζ = η 1 c G ( ζ ) α ζ + c η 2 G ( ζ ) α ζ ,
(5) 
η 1 η 1 G ( ζ ) α ζ = 0 .
The following lemma provides the-conformable integration-by-parts formula on time scales.
Lemma 2
([20]). Let η 1 ,   η 2 T , with η 2 > η 1 and α ( 0 ,   1 ] . If G ,   H : T R are conformable α-fractional derivatives on T , then
η 1 η 2 G ( ζ ) D α ( H ( ζ ) ) α ζ = G ( ζ ) H ( ζ ) η 1 η 2 η 1 η 2 H σ ( ζ ) D α ( G ( ζ ) ) α ζ .
Finally, a version of Hölder’s inequality adapted to this fractional setting holds.
Lemma 3
([21]). Let η 1 , η 2 T , with η 2 > η 1 ,   α ( 0 ,   1 ] , and p > 1 . If G ,   H : T R are two rd-continuous functions, then
η 1 η 2 G ( ζ ) H ( ζ ) α ζ η 1 η 2 G ( ζ ) p α ζ 1 p η 1 η 2 H ( ζ ) l α ζ 1 l ,
where 1 / p + 1 / l = 1 .
Additionally, the following discrete inequalities will be useful in subsequent analysis.
Lemma 4
([22]). If C 1 ,   C 2 ,   ,   C τ are real numbers and C τ + 1 = C 1 , then for τ k 1 ,
r = 1 τ k + 2 C r C r + 1 C r + k 1 r = 1 τ C r k ,
and for any k 1 ,
r = 1 τ C r k τ k 1 r = 1 τ C r k .

3. Results

In this section, we assume that any time scale T is unbounded above and a ,   b T . The following assumption will be needed throughout the paper: the functions w ,   u i ,   φ i in the statements of the theorems are rd-continuous functions, increasing, and non-negative. Furthermore, let ψ i ( ζ ) > 0 be an integrable function.
Theorem 3.
For any 0 < α 1 , i = 1 ,   2 ,   τ , τ k 1 , τ ,   k N and 0 D α u i ( s ) u i σ ( s ) p r α + 1 α s < . If there exist positive constants λ i and δ i such that
1 u i σ ( ζ ) p r α + 1 D α w ( ζ ) p r α + 1 1 u i p r α + 1 1 ( ζ ) D α u i ( ζ ) w σ ( ζ ) 1 λ i , f o r r > 1 2 ,
1 u i ( ζ ) D α w ( ζ ) p r + α 1 1 D α u i ( ζ ) w σ ( ζ ) 1 δ i , f o r r < 1 2 ,
then
i = 1 τ 0 w σ ( ζ ) Ω i p 2 ( ζ ) Ω i + 1 p 2 ( ζ ) α ζ i = 1 τ β i p η 1 p 0 w σ ( ζ ) g i ( ζ ) α ζ ,
where
Ω i ( ζ ) = D α u i ( ζ ) p u i σ ( ζ ) r α + 1 0 σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ , f o r r > 1 2 ,   p 2 , D α u i ( ζ ) p u i r + α 1 ( ζ ) σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ , f o r r < 1 2 ,   1 p 2 ,
g i ( ζ ) = u i σ ( ζ ) r α + 1 p 1 p w p ( ζ ) D α φ i ( ζ ) p ψ i p ( ζ ) u i p 2 r α + 1 2 p ( ζ ) w σ ( ζ ) p φ i p ( ζ ) D α u i ( ζ ) p 1 , f o r r > 1 2 ,   p 2 , w ( ζ ) p D α φ i ( ζ ) p ψ i p ( ζ ) u i p r α + 1 2 p ( ζ ) w σ ( ζ ) p φ i p ( ζ ) D α u i ( ζ ) p 1 , f o r r < 1 2 ,   1 p 2 ,
η = p r α + 1 , f o r r > 1 2 ,   p 2 , p r + α 1 , f o r r < 1 2 ,   1 p 2 ,
and β i = max 1 i τ λ i , δ i , u i ( ) = .
Proof. 
Firstly, let us define for r > 1 2 ,   p 2 ,   0 < a < b < and
Ω i a ( ζ ) = D α u i ( ζ ) p u i σ ( ζ ) r α + 1 a σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ ,
with Ω i 0 ( ζ ) = Ω i ( ζ ) . By using (7) with k = 2 and C i = Ω i a p 2 ( ζ ) , we have
i = 1 τ Ω i a p 2 ( ζ ) Ω i + 1 a p 2 ( ζ ) i = 1 τ Ω i a p ( ζ ) .
Multiplying (10) by w σ ( ζ ) and integrating from a to b, we obtain
i = 1 τ a b w σ ( ζ ) Ω i a p 2 ( ζ ) Ω i + 1 a p 2 ( ζ ) α ζ i = 1 τ a b w σ ( ζ ) Ω i a p ( ζ ) α ζ .
Now,
I = a b w σ ( ζ ) Ω i a p ( ζ ) α ζ = a b w σ ( ζ ) D α u i ( ζ ) p u i σ ( ζ ) r α + 1 a σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ p α ζ = a b D α u i ( ζ ) u i σ ( ζ ) p r α + 1 × w σ ( ζ ) p a σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ p α ζ .
Integrating (12) using (6) with
D α Φ ( ζ ) = D α u i ( ζ ) u i σ ( ζ ) p r α + 1 ,
and
Ψ σ ( ζ ) = w σ ( ζ ) p a σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ p ,
we get
a b w σ ( ζ ) Ω i a p ( ζ ) α ζ = Φ ( ζ ) Ψ ( ζ ) a b + a b Φ ( ζ ) D α Ψ ( ζ ) α ζ = Ψ ( ζ ) ζ D α u i ( s ) u i σ ( s ) p r α + 1 α s a b + a b Φ ( ζ ) D α Ψ ( ζ ) α ζ a b Φ ( ζ ) D α Ψ ( ζ ) α ζ ,
where Φ ( ζ ) = ζ D α u i ( s ) u i σ ( s ) p r α + 1 α s . From (5), D α u i ( ζ ) 0 and c ζ ,   σ ( ζ ) T , we see that
D α u i 1 p r α + 1 ( ζ ) = 1 p r α + 1 u i p r α + 1 ( c ) D α u i ( ζ ) = 1 p r α + 1 D α u i ( ζ ) u i p r α + 1 ( c ) 1 p r α + 1 D α u i ( ζ ) u i σ ( ζ ) p r α + 1 .
Integrating (14) from ζ to with respect to s , we obtain
Φ ( ζ ) 1 p r α + 1 1 u i 1 p r α + 1 ( ζ ) .
Substituting (15) into (13), we have
a b w σ ( ζ ) Ω i a p ( ζ ) α ζ 1 p r α + 1 1 a b u i 1 p r α + 1 ( ζ ) D α Ψ ( ζ ) α ζ .
Now, we consider that Ψ ( ζ ) = w ( ζ ) L p ( ζ ) and applying Theorem 1, we get
D α Ψ ( ζ ) = D α w ( ζ ) L σ ( ζ ) p + w ( ζ ) D α L p ( ζ ) = D α w ( ζ ) L σ ( ζ ) p + w ( ζ ) p L p 1 ( c ) D α L ( ζ ) D α w ( ζ ) L σ ( ζ ) p + w ( ζ ) p L σ ( ζ ) p 1 u i ( ζ ) D α φ i ( ζ ) φ i ( ζ ) ψ i ( ζ ) ,
where L ( ζ ) = a ζ u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ . From (16) and (17), we have
a b w σ ( ζ ) Ω i a p ( ζ ) α ζ 1 p r α + 1 1 a b u i 1 p r α + 1 ( ζ ) D α w ( ζ ) L σ ( ζ ) p α ζ + p p r α + 1 1 a b u i 1 p r α + 1 ( ζ ) w ( ζ ) × L σ ( ζ ) p 1 u i ( ζ ) D α φ i ( ζ ) φ i ( ζ ) ψ i ( ζ ) α ζ = 1 p r α + 1 1 a b u i σ ( ζ ) p r α + 1 D α w ( ζ ) u i p r α + 1 1 ( ζ ) D α u i ( ζ ) Ω i a p ( ζ ) α ζ + p p r α + 1 1 a b u i σ ( ζ ) r α + 1 p 1 w ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) u i p r α + 1 2 ( ζ ) φ i ( ζ ) D α u i ( ζ ) 1 1 p Ω i a p 1 ( ζ ) α ζ .
Hence,
a b w σ ( ζ ) Ω i a p ( ζ ) α ζ λ i p p r α + 1 1 × a b u i σ ( ζ ) r α + 1 p 1 w ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) u i p r α + 1 2 ( ζ ) φ i ( ζ ) D α u i ( ζ ) 1 1 p Ω i a p 1 ( ζ ) α ζ = λ i p p r α + 1 1 × a b u i σ ( ζ ) r α + 1 p 1 w ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) u i p r α + 1 2 ( ζ ) w σ ( ζ ) p 1 p φ i ( ζ ) D α u i ( ζ ) 1 1 p w σ ( ζ ) Ω i a p ( ζ ) p 1 p α ζ .
By Hölder’s inequality with p and p / ( p 1 ) , we get
a b w σ ( ζ ) Ω i a p ( ζ ) α ζ λ i p p r α + 1 1 p × a b u i σ ( ζ ) r α + 1 p 1 p w p ( ζ ) D α φ i ( ζ ) p ψ i p ( ζ ) u i p 2 r α + 1 2 p ( ζ ) w σ ( ζ ) p 1 φ i p ( ζ ) D α u i ( ζ ) p 1 α ζ .
By taking a 0 ,   b and from (18) and (11), we get
i = 1 τ 0 w σ ( ζ ) Ω i p 2 ( ζ ) Ω i + 1 p 2 ( ζ ) α ζ i = 1 τ p β i p r α + 1 1 p 0 w σ ( ζ ) g i ( ζ ) α ζ .
Secondly, let us define for r < 1 2 ,   1 p 2 ,   0 < a < b < and
Ω i b ( ζ ) = D α u i ( ζ ) p u i σ ( ζ ) r + α 1 σ ( ζ ) b u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ , 1 i τ ,
with Ω i ( ζ ) = Ω i ( ζ ) . Following the same steps as in the proof of (19), we obtain
i = 1 τ 0 w ^ σ ( ζ ) Ω i α 2 ( ζ ) Ω i + 1 α 2 ( ζ ) α ζ i = 1 τ α β i 1 p r + α 1 α 0 w ^ σ ( ζ ) g i ( ζ ) α ζ .
Inequalities (19) and (20) are equivalent to (9). □
Remark 1.
If we put α = 1 in Theorem 3, then we have ([18], Theorem 6).
Corollary 1.
Let T = R in Theorem 3. For any 0 < α 1 ,   i = 1 ,   2 ,   τ ,   τ k 1 ,   τ ,   k N and 0 u i ( s ) u i ( s ) p r α + 1 d s < . If there exist positive constants λ i and δ i such that
1 u i ( ζ ) w ( ζ ) p r α + 1 1 u i ( ζ ) w ( ζ ) 1 λ i , f o r r > 1 2 ,
1 u i ( ζ ) w ( ζ ) p r + α 1 1 u i ( ζ ) w ( ζ ) 1 δ i , f o r r < 1 2 ,
then
i = 1 τ 0 w ( ζ ) Ω i p 2 ( ζ ) Ω i + 1 p 2 ( ζ ) ζ α 1 d ζ i = 1 τ β i p η 1 p 0 w ( ζ ) g i ( ζ ) ζ α 1 d ζ ,
where
Ω i ( ζ ) = ζ 1 α u i ( ζ ) p u i ( ζ ) r α + 1 0 σ ( ζ ) u i ( μ ) φ i ( μ ) φ i ( μ ) ψ i ( μ ) d μ , f o r r > 1 2 ,   p 2 , ζ 1 α u i ( ζ ) p u i ( ζ ) r + α 1 σ ( ζ ) u i ( μ ) φ i ( μ ) φ i ( μ ) ψ i ( μ ) d μ , f o r r < 1 2 ,   1 p 2 ,
g i ( ζ ) = u i r + α + 1 p ( ζ ) ζ 1 α φ i ( ζ ) p ψ i p ( ζ ) φ i p ( ζ ) u i ( ζ ) p 1 , f o r r > 1 2 ,   p 2 , ζ 1 α φ i ( ζ ) p ψ i p ( ζ ) u i p r α + 1 2 p ( ζ ) φ i p ( ζ ) u i ( ζ ) p 1 , f o r r < 1 2 ,   1 p 2 ,
η = p r α + 1 , f o r r > 1 2 ,   p 2 , p r + α 1 , f o r r < 1 2 ,   1 p 2 ,
and β i = max 1 i τ λ i , δ i , u i ( ) = .
Remark 2.
If we put p = 2 and α = 1 in Corollary 1, then (21) reduces to (4).
Corollary 2.
Let T = Z in Theorem 3. For any 0 < α 1 ,   i = 1 ,   2 ,   τ ,   τ k 1 and τ ,   k N . If there exist positive constants λ i and δ i such that
1 u i ( ζ + 1 ) p r α + 1 w ( ζ ) p r α + 1 1 u i p r α + 1 1 ( ζ ) w ( ζ + 1 ) u i ( ζ ) 1 λ i , f o r r > 1 2 ,
1 u i ( ζ ) w ( ζ ) p r α + 1 1 w ( ζ + 1 ) u i ( ζ ) 1 δ i , f o r r < 1 2 ,
then
i = 1 τ ζ = 0 w ( ζ + 1 ) Ω i p 2 ( ζ ) Ω i + 1 p 2 ( ζ ) ζ α 1 i = 1 τ β i p η 1 p ζ = 0 w ( ζ + 1 ) g i ( ζ ) ζ α 1 ,
where
Ω i ( ζ ) = ζ 1 α u i ( ζ ) p u i r α + 1 ( ζ + 1 ) μ = 0 ζ u i ( μ ) φ i ( μ ) φ i ( μ ) ψ i ( μ ) , f o r r > 1 2 ,   p 2 , ζ 1 α u i ( ζ ) p u i r α + 1 ( ζ ) μ = ζ + 1 u i ( μ ) φ i ( μ ) φ i ( μ ) ψ i ( μ ) , f o r r < 1 2 ,   1 p 2 ,
g i ( ζ ) = u i r α + 1 p 1 p ( ζ + 1 ) w p ( ζ ) ζ 1 α φ i ( ζ ) p ψ i p ( ζ ) u i p 2 r α + 1 2 p ( ζ ) w p ( ζ + 1 ) φ i p ( ζ ) u i ( ζ ) p 1 , f o r r > 1 2 ,   p 2 , w p ( ζ ) ζ 1 α φ i ( ζ ) p ψ i p ( ζ ) u i p r α + 1 2 p ( ζ ) w p ( ζ + 1 ) φ i p ( ζ ) u i ( ζ ) p 1 , f o r r < 1 2 ,   1 p 2 ,
η = p r α + 1 , f o r r > 1 2 ,   p 2 , p r + α 1 , f o r r < 1 2 ,   1 p 2 ,
and β i = max 1 i τ λ i , δ i , u i ( ) = .
Theorem 4.
For any 0 < α 1 ,   i = 1 ,   2 ,   τ ,   τ k 1 ,   τ N ,   p i > 1 and 0 D α u i ( s ) u i σ ( s ) k p i r α + 1 α s < . If there exist positive constants λ i and δ i such that
1 u i σ ( ζ ) k p i r α + 1 D α w ( ζ ) k p i r α + 1 1 u i k p i r α + 1 1 ( ζ ) D α u i ( ζ ) w σ ( ζ ) 1 λ i , f o r r > 1 k p i
1 u i ( ζ ) D α w ( ζ ) k p i r + α 1 1 D α u i ( ζ ) w σ ( ζ ) 1 δ i , f o r r < 1 k p i ,
then
i = 1 τ k + 2 0 w σ ( ζ ) j = i i + k 1 Ω j p j ( ζ ) α ζ i = 1 τ β i k p i η i 1 k p i 0 w σ ( ζ ) g i ( ζ ) α ζ ,
where
Ω i ( ζ ) = D α u i ( ζ ) k p i u i σ ( ζ ) r α + 1 0 σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ , f o r r > 1 k p i , D α u i ( ζ ) k p i u i r + α 1 ( ζ ) σ ζ u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ , f o r r < 1 k p i ,
g i ( ζ ) = u i σ ( ζ ) r α + 1 k p i 1 k p i w k p i ( ζ ) D α φ i ( ζ ) k p i ψ i k p i ( ζ ) u i k p i 2 r α + 1 2 k p i ( ζ ) w σ ( ζ ) k p i φ i k p i ( ζ ) D α u i ( ζ ) k p i 1 , f o r r > 1 k p i , u i ( ζ ) k p i 2 r + α 1 w k p i ( ζ ) D α φ i ( ζ ) k p i ψ i k p i ( ζ ) w σ ( ζ ) k p i φ i k p i ( ζ ) D α u i ( ζ ) k p i 1 , f o r r < 1 k p i ,
η i = k p i r α + 1 , f o r r > 1 2 ,   p 2 , k p i r + α 1 , f o r r < 1 2 ,   1 p 2 ,
and β i = max 1 i τ λ i , δ i , u i ( ) = .
Proof. 
Let r > 1 k p i ,   p i > 1 and
Ω i a ( ζ ) = D α u i ( ζ ) k p i u i σ ( ζ ) r α + 1 a σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ ,
with Ω i 0 ( ζ ) = Ω i ( ζ ) . By using (7) with C i = Ω i a p i ( ζ ) , we have
i = 1 τ k + 2 Ω i a p i ( ζ ) Ω i + 1 a p i + 1 ( ζ ) Ω i + k 1 a p i + k 1 ( ζ ) i = 1 τ Ω i a k p i ( ζ ) .
Multiplying (23) by w σ ( ζ ) and integrating from a to b, we obtain
i = 1 τ k + 2 a b w σ ( ζ ) j = i i + k 1 Ω j a p j ( ζ ) α ζ i = 1 τ a b w σ ( ζ ) Ω i a k p i ( ζ ) α ζ .
Now,
I = a b w σ ( ζ ) Ω i a k p i ( ζ ) α ζ = a b w σ ( ζ ) D α u i ( ζ ) k p i u i σ ( ζ ) r α + 1 a σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ k p i α ζ = a b D α u i ( ζ ) u i σ ( ζ ) k p i r α + 1 × w σ ( ζ ) k p i a σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ k p i α ζ .
Integrating (25) by using (6) with
D α Φ ( ζ ) = D α u i ( ζ ) u i σ ( ζ ) k p i r α + 1 ,
and
Ψ σ ( ζ ) = w σ ( ζ ) k p i a σ ( ζ ) u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ k p i ,
we get
a b w σ ( ζ ) Ω i a k p i ( ζ ) α ζ = Φ ( ζ ) Ψ ( ζ ) a b + a b Φ ( ζ ) D α Ψ ( ζ ) α ζ = Ψ ( ζ ) ζ D α u i ( s ) u i σ ( s ) k p i r α + 1 α s a b + a b Φ ( ζ ) D α Ψ ( ζ ) α ζ a b Φ ( ζ ) D α Ψ ( ζ ) α ζ ,
where Φ ( ζ ) = ζ D α u i ( s ) u i σ ( s ) k p i r α + 1 α s . From (5), D α u i ( ζ ) 0 and c ζ ,   σ ( ζ ) T , we see that
D α u i 1 k p i r α + 1 ( ζ ) = 1 k p i r α + 1 u i k p i r α + 1 ( c ) D α u i ( ζ ) = 1 k p i r α + 1 D α u i ( ζ ) u i k p i r α + 1 ( c ) 1 k p i r α + 1 D α u i ( ζ ) u i σ ( ζ ) k p i r α + 1 .
Integrating (27) from ζ to with respect to s , to obtain
Φ ( ζ ) 1 k p i r α + 1 1 u i 1 k p i r α + 1 ( ζ ) .
Substituting (28) into (26), we have
a b w σ ( ζ ) Ω i a k p i ( ζ ) α ζ 1 k p i r α + 1 1 a b u i 1 k p i r α + 1 ( ζ ) D α Ψ ( ζ ) α ζ .
Now, we consider that Ψ ( ζ ) = w ( ζ ) L k p i ( ζ ) and applying Theorem 1, to see that
D α Ψ ( ζ ) = D α w ( ζ ) L σ ( ζ ) k p i + w ( ζ ) D α L k p i ( ζ ) = D α w ( ζ ) L σ ( ζ ) k p i + w ( ζ ) k p i L k p i 1 ( c ) D α L ( ζ ) D α w ( ζ ) L σ ( ζ ) k p i + w ( ζ ) k p i L σ ( ζ ) k p i 1 u i ( ζ ) D α φ i ( ζ ) φ i ( ζ ) ψ i ( ζ ) ,
where L ( ζ ) = a ζ u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ . From (29) and (30), we have
a b w σ ( ζ ) Ω i a k p i ( ζ ) α ζ 1 k p i r α + 1 1 a b u i 1 k p i r α + 1 ( ζ ) D α w ( ζ ) L σ ( ζ ) k p i α ζ + k p i k p i r α + 1 1 a b w ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) u i k p i r α + 1 2 ( ζ ) φ i ( ζ ) L σ ( ζ ) k p i 1 α ζ = 1 k p i r α + 1 1 a b u i σ ( ζ ) k p i r α + 1 D α w ( ζ ) u i k p i r α + 1 1 ( ζ ) D α u i ( ζ ) Ω i a k p i ( ζ ) α ζ + k p i k p i r α + 1 1 × a b u i σ ( ζ ) r α + 1 k p i 1 w ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) u i k p i r α + 1 2 ( ζ ) φ i ( ζ ) D α u i ( ζ ) 1 1 k p i Ω i a k p i 1 ( ζ ) α ζ .
Hence,
a b w σ ( ζ ) Ω i a k p i ( ζ ) α ζ λ i k p i k p i r α + 1 1 × a b u i σ ( ζ ) r α + 1 k p i 1 w ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) u i k p i r α + 1 2 ( ζ ) φ i ( ζ ) D α u i ( ζ ) 1 1 k p i Ω i a k p i 1 ( ζ ) α ζ = λ i k p i k p i r α + 1 1 × a b u i σ ( ζ ) r α + 1 k p i 1 w ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) u i k p i r α + 1 2 ( ζ ) w σ ( ζ ) k p i 1 k p i φ i ( ζ ) D α u i ( ζ ) 1 1 k p i w σ ( ζ ) Ω i a k p i ( ζ ) k p i 1 k p i α ζ .
By Hölder’s inequality with k p i and k p i / ( k p i 1 ) , we get
a b w σ ( ζ ) Ω i a k p i ( ζ ) α ζ k p i k p i r α + 1 1 k p i × a b u i σ ( ζ ) r α + 1 k p i 1 k p i w k p i ( ζ ) D α φ i ( ζ ) k p i ψ i k p i ( ζ ) u i k p i 2 r α + 1 2 k p i ( ζ ) w σ ( ζ ) k p i 1 φ i k p i ( ζ ) D α u i ( ζ ) k p i 1 α ζ .
By taking a 0 ,   b and from (24), (31), we get
i = 1 τ k + 2 0 w σ ( ζ ) j = i i + k 1 Ω j p j ( ζ ) α ζ i = 1 τ λ i k p i k p i r α + 1 1 k p i 0 w σ ( ζ ) g i ( ζ ) α ζ .
Let r < 1 k p i ,   p i > 1 and
Ω i b ( ζ ) = D α u i ( ζ ) k p i u i r + α 1 ( ζ ) σ ( ζ ) b u i ( μ ) D α φ i ( μ ) φ i ( μ ) ψ i ( μ ) α μ , 1 i τ ,
with Ω i ( ζ ) = Ω i ( ζ ) . Following the same steps as in the proof of (32), we obtain
i = 1 τ k + 2 0 w σ ( ζ ) j = i i + k 1 Ω j p j ( ζ ) α ζ i = 1 τ δ i k p i 1 k p i r + α 1 k p i 0 w σ ( ζ ) g i ( ζ ) α ζ .
Inequalities (33) and (32) are equivalent to (22). □
Remark 3.
If we put α = 1 in Theorem 4, then we have ([18], Theorem 11).
Corollary 3.
Let T = R in Theorem 4. For any 0 < α 1 ,   i = 1 ,   2 ,   τ ,   τ k 1 ,   τ N ,   p i > 1 and 0 u i ( s ) u i ( s ) k p i r α + 1 d s < . If there exist positive constants λ i and δ i such that
1 u i ( ζ ) w ( ζ ) k p i r α + 1 1 w ( ζ ) u i ( ζ ) 1 λ i , f o r r > 1 k p i ,
1 u i ( ζ ) w ( ζ ) k p i r α + 1 1 u i ( ζ ) w ( ζ ) 1 δ i , f o r r < 1 k p i ,
then
i = 1 τ k + 2 0 w ( ζ ) j = i i + k 1 Ω j p j ( ζ ) ζ α 1 d ζ i = 1 τ β i k p i η i 1 k p i 0 w ( ζ ) g i ( ζ ) ζ α 1 d ζ ,
where
Ω i ( ζ ) = ζ 1 α u i ( ζ ) k p i u i r α + 1 ( ζ ) 0 ζ u i ( μ ) φ i ( μ ) φ i ( μ ) ψ i ( μ ) d μ , f o r r > 1 k p i , ζ 1 α u i ( ζ ) k p i u i r + α 1 ( ζ ) 0 ζ u i ( μ ) φ i ( μ ) φ i ( μ ) ψ i ( μ ) d μ , f o r r < 1 k p i ,
g i ( ζ ) = ζ 1 α u i 1 r + α k p i ( ζ ) φ i ( ζ ) k p i ψ i k p i ( ζ ) φ i k p i ( ζ ) u i ( ζ ) k p i 1 , f o r r > 1 k p i , ζ 1 α u i ( ζ ) k p i 2 r + α 1 φ i ( ζ ) k p i ψ i k p i ( ζ ) φ i k p i ( ζ ) u i ( ζ ) k p i 1 , f o r r < 1 k p i ,
η i = k p i r α + 1 , f o r r > 1 2 ,   p 2 , k p i r + α 1 , f o r r < 1 2 ,   1 p 2 ,
and β i = max 1 i τ λ i , δ i , u i ( ) = .
Remark 4.
For α = 1 in Corollary 3. Then, reduce to ([4], Theorem 2).
Corollary 4.
Let T = Z in Theorem 4. For any 0 < α 1 ,   i = 1 ,   2 ,   τ ,   τ k 1 ,   τ N ,   r > 1 k p i and p i > 1 . If there exist positive constant λ i such that
1 u i k p i r α + 1 ( ζ + 1 ) w ( ζ ) k p i r α + 1 1 u i k p i r α + 1 1 ( ζ ) w ( ζ + 1 ) u i ( ζ ) 1 λ i > 0 , f o r r > 1 k p i
1 u i ( ζ ) w ( ζ ) k p i r + α 1 1 u i ( ζ ) w ( ζ + 1 ) 1 δ i , f o r r < 1 k p i ,
then
i = 1 τ k + 2 ζ = 0 w ( ζ + 1 ) j = i i + k 1 Ω j p j ( ζ ) ζ 1 α i = 1 τ β i k p i η i 1 k p i ζ = 0 w ( ζ + 1 ) g i ( ζ ) ζ 1 α ,
where
Ω i ( ζ ) = ζ 1 α u i ( ζ ) k p i u i r α + 1 ( ζ + 1 ) μ = 0 ζ u i ( μ ) φ i ( μ ) φ i ( μ ) ψ i ( μ ) , f o r r > 1 k p i , ζ 1 α u i ( ζ ) k p i u i r + α 1 ( ζ ) μ = ζ u i ( μ ) φ i ( μ ) φ i ( μ ) ψ i ( μ ) , f o r r < 1 k p i ,
g i ( ζ ) = ζ 1 α u i r α + 1 k p i 1 k p i ( ζ + 1 ) w k p i ( ζ ) φ i ( ζ ) k p i ψ i k p i ( ζ ) u i k p i 2 r α + 1 2 k p i ( ζ ) w k p i ( ζ + 1 ) φ i k p i ( ζ ) u i ( ζ ) k p i 1 , f o r r > 1 k p i , ζ 1 α u i ( ζ ) k p i 2 r + α 1 w k p i ( ζ ) φ i ( ζ ) k p i ψ i k p i ( ζ ) w ( ζ + 1 ) k p i φ i k p i ( ζ ) u i ( ζ ) k p i 1 , f o r r < 1 k p i ,
η i = k p i r α + 1 , f o r r > 1 2 ,   p 2 , k p i r + α 1 , f o r r < 1 2 ,   1 p 2 ,
and β i = max 1 i τ λ i , δ i , u i ( ) = .
Theorem 5.
For any 0 < α 1 ,   1 i τ ,   τ N ,   r > 1 3 p i and ζ 2 ,   σ ( ζ ) 2 T . If there exist positive constant λ i such that
1 u i σ ( ζ ) 3 p i r α + 1 D α w ( ζ ) 3 p i r α + 1 1 u i 3 p i r α + 1 1 ( ζ ) D α u i ( ζ ) w σ ( ζ ) 1 λ i ,
then
i = 1 τ 1 0 μ w σ ( ζ ) Γ i p i ( ζ ) Γ i + 1 p i + 1 ( ζ ) Γ i + 2 p i + 2 ( ζ ) α ζ i = 1 τ 3 p i λ i 3 p i r α + 1 1 3 p i 0 μ w σ ( ζ ) g i ( ζ ) α ζ ,
where
Γ i ( ζ ) = D α u i ( ζ ) 3 p i u i σ ( ζ ) r α + 1 σ ( ζ ) 2 σ ( ζ ) u i ( s ) D α φ i ( s ) φ i ( s ) ψ i ( s ) α s ,
g i ( ζ ) = u i σ ( ζ ) 3 p i 1 r α + 1 D α φ i ( ζ ) w ( ζ ) u i 3 p i r α + 1 2 ( ζ ) D α u i ( ζ ) 1 1 3 p i φ i ( ζ ) w σ ( ζ ) ψ i ( ζ ) u i σ ( ζ ) 3 p i 1 r α + 1 u i ( ζ 2 ) D α φ ( ζ 2 ) w ( ζ ) 2 u i 3 p i r α + 1 1 ( ζ ) φ i ( ζ 2 ) D α u i ( ζ ) 1 1 3 p i w σ ( ζ ) ψ i ( ζ 2 ) 3 p i ,
0 D α u i ( s ) u i σ ( s ) 3 p i r α + 1 α s < and u i ( ) = .
Proof. 
Let us define for r > 1 3 p i and
Γ i ( ζ ) = D α u i ( ζ ) 3 p i u i σ ( ζ ) r α + 1 σ ( ζ ) 2 σ ( ζ ) u i ( s ) D α φ i ( s ) φ i ( s ) ψ i ( s ) α s .
Using (7) with k = 3 for C i = Γ i p i ( ζ ) , we get
i = 1 τ 1 Γ i p i ( ζ ) Γ i + 1 p i + 1 ( ζ ) Γ i + 2 p i + 2 ( ζ ) i = 1 τ Γ i 3 p i ( ζ ) .
Multiplying (37) by w σ ( ζ ) and integrating from 0 to μ , we obtain
i = 1 τ 1 0 μ w σ ( ζ ) Γ i p i ( ζ ) Γ i + 1 p i + 1 ( ζ ) Γ i + 2 p i + 2 ( ζ ) α ζ i = 1 τ 0 μ w σ ( ζ ) Γ i 3 p i ( ζ ) α ζ .
Now,
I = 0 μ w σ ( ζ ) Γ i 3 p i ( ζ ) α ζ = 0 μ w σ ( ζ ) D α u i ( ζ ) 3 p i u i σ ( ζ ) r α + 1 σ ( ζ ) 2 σ ( ζ ) u i ( s ) D α φ i ( s ) φ i ( s ) ψ i ( s ) α s 3 p i α ζ = 0 μ D α u i ( ζ ) u i σ ( ζ ) 3 p i r α + 1 × w σ ( ζ ) 3 p i σ ( ζ ) 2 σ ( ζ ) u i ( s ) D α φ i ( s ) φ i ( s ) ψ i ( s ) α s 3 p i α ζ .
Integrating (39) by using (6) with
D α Φ ( ζ ) = D α u i ( ζ ) u i σ ( ζ ) 3 p i r α + 1 ,
and
Ψ σ ( ζ ) = w σ ( ζ ) 3 p i σ ( ζ ) 2 σ ( ζ ) u i ( s ) D α φ i ( s ) φ i ( s ) ψ i ( s ) α s 3 p i ,
to obtain
I = Φ ( ζ ) Ψ ( ζ ) 0 μ + 0 μ Φ ( ζ ) D α Ψ ( ζ ) α ζ = Ψ ( ζ ) ζ D α u i ( s ) u i σ ( s ) 3 p i r α + 1 α s 0 μ + 0 μ Φ ( ζ ) D α Ψ ( ζ ) α ζ = Ψ ( μ ) μ D α u i ( s ) u i σ ( s ) 3 p i r α + 1 α s + 0 μ Φ ( ζ ) D α Ψ ( ζ ) α ζ 0 μ Φ ( ζ ) D α Ψ ( ζ ) α ζ ,
where Φ ( ζ ) = ζ D α u i ( s ) u i σ ( s ) 3 p i r α + 1 α s . From (5), D α u i ( ζ ) 0 and c [ ζ ,   σ ( ζ ) ] T , we have
D α u i 1 3 p i r α + 1 ( ζ ) = 1 3 p i r α + 1 u i 3 p i r α + 1 ( c ) D α u i ( ζ ) = 1 3 p i r α + 1 D α u i ( ζ ) u i 3 p i r α + 1 ( c ) 1 3 p i r α + 1 D α u i ( ζ ) u i σ ( ζ ) 3 p i r α + 1 .
Therefore, integrating (41) from ζ to with respect to s, we have
Φ ( ζ ) 1 3 p i r α + 1 1 u i 1 3 p i r α + 1 ( ζ ) .
Combining (42) and (40), we have
I 1 3 p i r α + 1 1 0 μ u i 1 3 p i r α + 1 ( ζ ) D α Ψ ( ζ ) α ζ .
Now, we consider that Ψ ( ζ ) = w ( ζ ) L 3 p i ( ζ ) and applying Theorem 1, to see that
D α Ψ ( ζ ) = D α w ( ζ ) L σ ( ζ ) 3 p i + w ( ζ ) D α L 3 p i ( ζ ) = D α w ( ζ ) L σ ( ζ ) 3 p i + 3 p i w ( ζ ) L 3 p i 1 ( c ) D α L ( ζ ) D α w ( ζ ) L σ ( ζ ) 3 p i + 3 p i w ( ζ ) L σ ( ζ ) 3 p i 1 × u i ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) φ i ( ζ ) u i ( ζ 2 ) D α φ i ( ζ 2 ) ψ i ( ζ 2 ) 2 φ i ( ζ 2 ) ,
where L ( ζ ) = ζ 2 ζ u i ( s ) D α φ i ( s ) φ i ( s ) ψ i ( s ) α s . From (44) and (43), we have
0 μ w σ ( ζ ) Γ i 3 p i ( ζ ) α ζ 1 3 p i r α + 1 1 0 μ u i 1 3 p i r α + 1 ( ζ ) D α w ( ζ ) L σ ( ζ ) 3 p i α ζ + 3 p i 3 p i r α + 1 1 0 μ u i 1 3 p i r α + 1 ( ζ ) w ( ζ ) × u i ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) φ i ( ζ ) u i ( ζ 2 ) D α φ i ( ζ 2 ) ψ i ( ζ 2 ) 2 φ i ( ζ 2 ) L σ ( ζ ) 3 p i 1 α ζ = 1 3 p i r α + 1 1 0 μ u i σ ( ζ ) 3 p i r α + 1 D α w ( ζ ) u i 3 p i r α + 1 1 ( ζ ) D α u i ( ζ ) Γ i 3 p i ( ζ ) α ζ + 3 p i 3 p i r α + 1 1 0 μ u i σ ( ζ ) 3 p i 1 r α + 1 w ( ζ ) u i 3 p i r α + 1 1 ( ζ ) D α u i ( ζ ) 1 1 3 p i Γ i 3 p i 1 ( ζ ) × u i ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) φ i ( ζ ) u i ( ζ 2 ) D α φ i ( ζ 2 ) ψ i ( ζ 2 ) 2 φ i ( ζ 2 ) α ζ .
Hence,
0 μ w σ ( ζ ) Γ i 3 p i ( ζ ) 1 u i σ ( ζ ) 3 p i r α + 1 D α w ( ζ ) 3 p i r α + 1 1 u i 3 p i r α + 1 1 ( ζ ) D α u i ( ζ ) w σ ( ζ ) α ζ 3 p i 3 p i r α + 1 1 0 μ u i σ ( ζ ) 3 p i 1 r α + 1 w ( ζ ) Γ i 3 p i 1 ( ζ ) u i 3 p i r α + 1 1 ( ζ ) D α u i ( ζ ) 1 1 3 p i × u i ( ζ ) D α φ i ( ζ ) ψ i ( ζ ) φ i ( ζ ) u i ( ζ 2 ) D α φ i ( ζ 2 ) ψ i ( ζ 2 ) 2 φ i ( ζ 2 ) α ζ .
From (45) and (34), we have
0 μ w σ ( ζ ) Γ i 3 p i ( ζ ) α ζ 3 p i λ i 3 p i r α + 1 1 0 μ w σ ( ζ ) Γ i 3 p i 1 ( ζ ) × u i σ ( ζ ) 3 p i 1 r α + 1 D α φ i ( ζ ) w ( ζ ) ψ i ( ζ ) u i 3 p i r α + 1 2 ( ζ ) D α u i ( ζ ) 1 1 3 p i φ i ( ζ ) w σ ( ζ ) u i σ ( ζ ) 3 p i 1 r α + 1 u i ( ζ 2 ) D α φ ( ζ 2 ) w ( ζ ) ψ i ( ζ 2 ) 2 u i 3 p i r α + 1 1 ( ζ ) φ i ( ζ 2 ) D α u i ( ζ ) 1 1 3 p i w σ ( ζ ) α ζ = 3 p i λ i 3 p i r α + 1 1 0 μ w σ ( ζ ) Γ i 3 p i ( ζ ) 3 p i 1 3 p i w σ ( ζ ) 1 3 p i × u i σ ( ζ ) 3 p i 1 r α + 1 D α φ i ( ζ ) w ( ζ ) ψ i ( ζ ) u i 3 p i r α + 1 2 ( ζ ) D α u i ( ζ ) 1 1 3 p i φ i ( ζ ) w σ ( ζ ) u i σ ( ζ ) 3 p i 1 r α + 1 u i ( ζ 2 ) D α φ ( ζ 2 ) w ( ζ ) ψ i ( ζ 2 ) 2 u i 3 p i r α + 1 1 ( ζ ) φ i ( ζ 2 ) D α u i ( ζ ) 1 1 3 p i w σ ( ζ ) α ζ .
Applying Hölder’s inequality with 3 p i and p i / 3 p i 1 , we have
0 μ w σ ( ζ ) Γ i 3 p i ( ζ ) α ζ 3 p i λ i 3 p i r α + 1 1 3 p i × 0 μ w σ ( ζ ) u i σ ( ζ ) 3 p i 1 r α + 1 D α φ i ( ζ ) w ( ζ ) ψ i ( ζ ) u i 3 p i r α + 1 2 ( ζ ) D α u i ( ζ ) 1 1 3 p i φ i ( ζ ) w σ ( ζ ) u i σ ( ζ ) 3 p i 1 r α + 1 u i ( ζ 2 ) D α φ ( ζ 2 ) w ( ζ ) ψ i ( ζ 2 ) 2 u i 3 p i r α + 1 1 ( ζ ) φ i ( ζ 2 ) D α u i ( ζ ) 1 1 3 p i w σ ( ζ ) 3 p i α ζ = 3 p i λ i 3 p i r α + 1 1 3 p i 0 μ w σ ( ζ ) g i ( ζ ) α ζ .
From (46) and (38), we get (35). □
Remark 5.
If we put α = 1 in Theorem 5, then we have ([18], Theorem 16).
Corollary 5.
Let T = R in Theorem 5. For any 0 < α 1 ,   1 i τ ,   τ N ,   r > 1 3 p i and ζ 2 , σ ( ζ ) 2 R . If there exist positive constant λ i such that
1 u i ( ζ ) w ( ζ ) 3 p i r α + 1 1 u i ( ζ ) w ( ζ ) 1 λ i ,
then
i = 1 τ 1 0 μ w ( ζ ) Γ i p i ( ζ ) Γ i + 1 p i + 1 ( ζ ) Γ i + 2 p i + 2 ( ζ ) ζ α 1 d ζ i = 1 τ 3 p i λ i 3 p i r α + 1 1 3 p i 0 μ w ( ζ ) g i ( ζ ) ζ α 1 d ζ ,
where
Γ i ( ζ ) = ζ 1 α u i ( ζ ) 3 p i u i r α + 1 ( ζ ) ζ 2 ζ u i ( s ) φ i ( s ) φ i ( s ) ψ i ( s ) d s ,
g i ( ζ ) = u i α r + 1 ( ζ ) ζ 1 α φ i ( ζ ) ψ i ( ζ ) ζ 1 α u i ( ζ ) 1 1 3 p i φ i ( ζ ) u i α r ( ζ ) u i ( ζ 2 ) ζ 2 1 α φ i ( ζ 2 ) ψ i ( ζ 2 ) 2 φ i ( ζ 2 ) ζ 1 α u i ( ζ ) 1 1 3 p i 3 p i ,
and u i ( ) = .
Remark 6.
For α = 1 in Corollary 5. Then, reduce to ([4], Theorem 3).
Corollary 6.
Let T = Z in Theorem 5. For any 0 < α 1 ,   r > 1 3 p i and ζ + 1 2 ,   ζ 2 Z . If there exist positive constant λ i such that
1 u i 3 p i r α + 1 ( ζ + 1 ) w ( ζ ) 3 p i r α + 1 1 u i 3 p i r α + 1 1 ( ζ ) w ( ζ + 1 ) u i ( ζ ) 1 λ i ,
then
i = 1 τ 1 ζ = 0 μ 1 w ( ζ + 1 ) Γ i p i ( ζ ) Γ i + 1 p i + 1 ( ζ ) Γ i + 2 p i + 2 ( ζ ) ζ α 1 i = 1 τ 3 p i λ i 3 p i r α + 1 1 3 p i ζ = 0 μ 1 w ( ζ + 1 ) g i ( ζ ) ζ α 1 , f o r 1 i τ , τ N
where
Γ i ( ζ ) = ζ 1 α u i ( ζ ) 3 p i u i r α + 1 ( ζ + 1 ) s = ζ + 1 2 ζ u i ( s ) φ i ( s ) φ i ( s ) ψ i ( s ) ,
g i ( ζ ) = u i 3 p i 1 r α + 1 ( ζ + 1 ) ζ 1 α φ i ( ζ ) ψ i ( ζ ) u i 3 p i r α + 1 2 ( ζ ) ζ 1 α u i ( ζ ) 1 1 3 p i φ i ( ζ ) u i 3 p i 1 r α + 1 ( ζ + 1 ) u i ( ζ 2 ) ζ 2 1 α φ i ( ζ 2 ) ψ i ( ζ 2 ) 2 u i 3 p i r α + 1 1 ( ζ ) φ i ( ζ 2 ) ζ 1 α u i ( ζ ) 1 1 3 p i 3 p i ,
and u i ( ) = .
Theorem 6.
For any 0 < α 1 ,   k 1 ,   p > 1 and r > 0 . If there exist positive constant λ i such that
1 + u i σ ( ζ ) D α w ( ζ ) 1 + k p r α + 1 D α u i ( ζ ) w ( ζ ) 1 λ i ,
then
a b w ( ζ ) i = 1 τ Γ i a ( ζ ) k p α ζ i = 1 τ τ p k 1 k p λ i 1 + k p r α + 1 k p a b w ( ζ ) g i ( ζ ) α ζ ,
where
Γ i ( ζ ) = u i σ ( ζ ) r α + 1 D α u i ( ζ ) k p 0 ζ D α φ i ( μ ) u i σ ( μ ) φ i ( μ ) ψ i ( μ ) α μ ,
and
g i ( ζ ) = u i σ ( ζ ) k p r α + 1 w σ ( ζ ) k p D α φ i ( ζ ) k p D α u i ( ζ ) k p 1 w k p ( ζ ) φ i k p ( ζ ) ψ i k p ( ζ ) .
Proof. 
Let us define
Γ i a ( ζ ) = u i σ ( ζ ) r α + 1 D α u i ( ζ ) k p a ζ D α φ i ( μ ) u i σ ( μ ) φ i ( μ ) ψ i ( μ ) α μ ,
with Γ i 0 ( ζ ) = Γ i ( ζ ) . Using (8) for C i = Γ i ( ζ ) and k k p , we get
i = 1 τ Γ i a ( ζ ) k p τ p k 1 i = 1 τ Γ i a k p ( ζ ) .
Multiplying (50) by w ( ζ ) and integrating from a to b, we get
a b w ( ζ ) i = 1 τ Γ i a ( ζ ) k p α ζ τ p k 1 i = 1 τ a b w ( ζ ) Γ i a k p ( ζ ) α ζ .
Now,
I = a b w ( ζ ) Γ i a k p ( ζ ) α ζ = a b w ( ζ ) u i σ ( ζ ) r α + 1 D α u i ( ζ ) k p a ζ D α φ i ( μ ) u i σ ( μ ) φ i ( μ ) ψ i ( μ ) α μ k p α ζ = a b u i σ ( ζ ) k p r α + 1 D α u i ( ζ ) w ( ζ ) k p a ζ D α φ i ( μ ) u i σ ( μ ) φ i ( μ ) ψ i ( μ ) α μ k p α ζ .
Integrating (52) by the parts Formula (6) with
D α Φ ( ζ ) = u i σ ( ζ ) k p r α + 1 D α u i ( ζ ) ,
and
B ( ζ ) = w ( ζ ) k p a ζ D α φ i ( μ ) u i σ ( μ ) φ i ( μ ) ψ i ( μ ) α μ k p ,
to obtain
I = Φ ( ζ ) Ψ ( ζ ) a b + a b Φ σ ( ζ ) Ψ ( ζ ) α ζ = Ψ ( ζ ) ζ b u i σ ( μ ) k p r α + 1 D α u i ( μ ) α μ a b + a b Φ σ ( ζ ) D α Ψ ( ζ ) α ζ = a b Φ σ ( ζ ) D α Ψ ( ζ ) α ζ ,
where Φ ( ζ ) = ζ b u i σ ( μ ) k p r α + 1 D α u i ( μ ) α μ . From (5), D α u i ( ζ ) 0 and c [ ζ ,   σ ( ζ ) ] T , we have
D α u i 1 + k p r α + 1 ( ζ ) = 1 + k p r α + 1 u i k p r α + 1 ( c ) D α u i ( ζ ) 1 + k p r α + 1 u i σ ( ζ ) k p r α + 1 D α u i ( ζ ) .
This implies that
1 1 + k p r α + 1 ζ b D α u i 1 + k p r α + 1 ( μ ) α μ ζ b u i σ ( μ ) k p r α + 1 D α u i ( μ ) α μ = Φ ( ζ ) ,
therefore,
Φ ( ζ ) 1 1 + k p r α + 1 u i 1 + k p r α + 1 ( ζ ) u i 1 + k p r α + 1 ( b ) 1 1 + k p r α + 1 u i 1 + k p r α + 1 ( ζ ) .
Substituting (54) into (53), we have
I 1 1 + k p r α + 1 a b u i σ ( ζ ) 1 + k p r α + 1 D α Ψ ( ζ ) α ζ .
Now, we consider that Ψ ( ζ ) = w ( ζ ) L k p ( ζ ) and applying Theorem 1, to see that
D α Ψ ( ζ ) = D α w ( ζ ) L k p ( ζ ) + w σ ( ζ ) D α L k p ( ζ ) = D α w ( ζ ) L k p ( ζ ) + k p w σ ( ζ ) L k p 1 ( c ) D α L ( ζ ) D α w ( ζ ) L k p ( ζ ) + k p w σ ( ζ ) D α φ i ( ζ ) u i σ ( ζ ) φ i ( ζ ) ψ i ( ζ ) L k p 1 ( ζ ) ,
where L ( ζ ) = a ζ D α φ i ( μ ) u i σ ( μ ) φ i ( μ ) ψ i ( μ ) α μ . From (56) and (55), we have
a b w ( ζ ) Γ i a k p ( ζ ) α ζ 1 1 + k p r α + 1 a b u i σ ( ζ ) 1 + k p r α + 1 D α w ( ζ ) L k p ( ζ ) α ζ + k p 1 + k p r α + 1 a b u i σ ( ζ ) 1 + k p r α + 1 w σ ( ζ ) D α φ i ( ζ ) u i σ ( ζ ) φ i ( ζ ) ψ i ( ζ ) L k p 1 ( ζ ) α ζ = 1 1 + k p r α + 1 a b u i σ ( ζ ) D α w ( ζ ) D α u i ( ζ ) Γ i a k p ( ζ ) α ζ + k p 1 + k p r α + 1 a b u i σ ( ζ ) r α + 2 w σ ( ζ ) D α u i ( ζ ) 1 1 k p Γ i a k p 1 ( ζ ) D α φ i ( ζ ) u i σ ( ζ ) φ i ( ζ ) ψ i ( ζ ) α ζ .
Hence,
a b w ( ζ ) Γ i k p ( ζ ) 1 + u i σ ( ζ ) D α w ( ζ ) 1 + k p r α + 1 D α u i ( ζ ) w ( ζ ) α ζ k p 1 + k p r α + 1 × a b u i σ ( ζ ) r α + 2 w σ ( ζ ) D α u i ( ζ ) 1 1 k p Γ i a k p 1 ( ζ ) D α φ i ( ζ ) u i σ ( ζ ) φ i ( ζ ) ψ i ( ζ ) α ζ .
From (57) and (47), we have
a b w ( ζ ) Γ i a k p ( ζ ) α ζ k p λ i 1 + k p r α + 1 × a b w ( ζ ) Γ i a k p ( ζ ) k p 1 k p u i σ ( ζ ) r α + 1 w σ ( ζ ) D α φ i ( ζ ) D α u i ( ζ ) 1 1 k p w k p 1 k p ( ζ ) φ i ( ζ ) ψ i ( ζ ) α ζ .
By Hölder’s inequality with k p and k p / k p 1 , we have
a b w ( ζ ) Γ i a k p ( ζ ) α ζ k p λ i 1 + k p r α + 1 k p a b u i σ ( ζ ) k p r α + 1 w σ ( ζ ) k p D α φ i ( ζ ) k p D α u i ( ζ ) k p 1 w k p 1 ( ζ ) φ i k p ( ζ ) ψ i k p ( ζ ) α ζ = k p λ i 1 + k p r α + 1 k p a b w ( ζ ) g i ( ζ ) α ζ .
From (58) and (51), we get (48). □
Remark 7.
If we put α = 1 in Theorem 6, then we have ([18], Theorem 19).
Corollary 7.
Let T = R in Theorem 6. For any 0 < α 1 ,   k 1 ,   p > 1 and r > 0 . If there exist positive constant λ i such that
1 + u i ( ζ ) w ( ζ ) 1 + k p r α + 1 u i ( ζ ) w ( ζ ) 1 λ i ,
then
a b w ( ζ ) i = 1 τ Γ i a ( ζ ) k p ζ α 1 d ζ i = 1 τ τ p k 1 k p λ i 1 + k p r α + 1 k p a b w ( ζ ) g i ( ζ ) ζ α 1 d ζ ,
where
Γ i ( ζ ) = u i r α + 1 ( ζ ) ζ 1 α u i ( ζ ) k p 0 ζ φ i ( μ ) u i ( μ ) φ i ( μ ) ψ i ( μ ) d μ ,
and
g i ( ζ ) = u i k p r α + 1 ( ζ ) ζ 1 α φ i ( ζ ) k p u i ( ζ ) k p 1 φ i k p ( ζ ) ψ i k p ( ζ ) .
Remark 8.
For α = 1 in Corollary 7, then reduce to ([4], Theorem 4).
Corollary 8.
Let T = Z in Theorem 3. For any 0 < α 1 ,   k 1 ,   p > 1 and r > 0 . If there exist positive constant λ i such that
1 + u i ( ζ + 1 ) w ( ζ ) 1 + k p r α + 1 w ( ζ ) u i ( ζ ) 1 λ i ,
then
a = ζ b 1 w ( ζ ) i = 1 τ Γ i a ( ζ ) k p ζ α 1 i = 1 τ τ p k 1 k p λ i 1 + k p r α + 1 k p a = ζ b 1 w ( ζ ) g i ( ζ ) ζ α 1 ,
where
Γ i ( ζ ) = u i r α + 1 ( ζ + 1 ) ζ 1 α u i ( ζ ) k p μ = 0 ζ 1 φ i ( μ ) u i ( μ + 1 ) φ i ( μ ) ψ i ( μ ) ,
and
g i ( ζ ) = u i k p r α + 1 ( ζ + 1 ) w k p ( ζ + 1 ) ζ 1 α φ i ( ζ ) k p u i ( ζ ) k p 1 w k p ( ζ ) φ i k p ( ζ ) ψ i k p ( ζ ) .

4. Conclusions

In this article, we used delta conformable calculus on time scales to explain some new weighted dynamic Hardy-type inequalities. Our proposed results show the possibility of producing some original discrete and continuous inequalities. Furthermore, we presented some inequalities as special cases: integral inequalities and discrete inequalities.

Author Contributions

Conceptualization, investigation, methodology and writing—original draft, H.M.R. and K.A.M.; Supervision, writing—review and editing, and funding acquisition, A.R.E.-S. and M.M. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2502).

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2502).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Hardy, G.H. Notes on some points in the integral calculus (LX). Mess. Math. 1925, 54, 150–156. [Google Scholar]
  2. Hardy, G.H. Notes on some points in the integral calculus (LXIV). Mess. Math. 1928, 57, 12–16. [Google Scholar]
  3. Levinson, N. Generalization of an inequality of Hardy. Duke Math. J. 1964, 31, 389–393. [Google Scholar] [CrossRef]
  4. Hussain, S.; Latif, M.A.; Akhtar, W. Weighted hardy type integral inequalities involving many functions. Tamkang J. Math. 2012, 43, 301–311. [Google Scholar] [CrossRef]
  5. Agarwal, R.P.; O’Regan, D.; Saker, S.H. Hardy Type Inequalities on Time Scales; Springer: Cham, Switzerland, 2016. [Google Scholar]
  6. Abdou, D.M.; Rezk, H.M.; Zaghrout, A.S.; Saker, S.H. Some new dynamic inequalities involving the dynamic Hardy operator with kernels. Al-Azhar Bull. Sci. 2024, 35, 87–95. [Google Scholar] [CrossRef]
  7. Elsaid, Y.A.A.; Zaghrout, A.A.S.; El-Deeb, A.A. Some new inequalities for C-monotone functions with respect to (q,ω)-Hahn difference operator. Al-Azhar Bull. Sci. 2024, 35, 57–64. [Google Scholar] [CrossRef]
  8. Makharesh, S.D.; El-Owaidy, H.M.; El-Deeb, A.A. Some generalizations of reverse Hardy type inequalities via Jensen integral inequality on time scales. Al-Azhar Bull. Sci. 2022, 33, 59–69. [Google Scholar] [CrossRef]
  9. Abdou, D.M.; Zaghrout, A.S.; Saker, S.H.; Rezk, H.M. Some new weighted Hardy-type inequalities on time scales with negative exponents. Int. J. Theor. Appl. Res. 2024, 3, 463–480. [Google Scholar] [CrossRef]
  10. Hassana, A.M.A.; El-Owaidy, H.M.; El-Deeb, A.A. Novel Hardy-type inequalities involving delta conformable calculus on arbitrary time scales. Al-Azhar Bull. Sci. 2025, 36, 79–91. [Google Scholar] [CrossRef]
  11. Sayed, A.G.; Saker, S.H.; Ahmed, A.M. Some fractional dynamic inequalities on time scales of Hardy’s type. J. Math. Computer Sci. 2021, 23, 98–109. [Google Scholar] [CrossRef]
  12. Shoukralla, E.S.; Ahmed, B.M. Barycentric Lagrange interpolation methods for evaluating singular integrals. Alex. Eng. J. 2023, 69, 243–253. [Google Scholar] [CrossRef]
  13. Mohamed, K.A.; El-Owaidy, H.M.; El-Deeb, A.A.; Rezk, H.M. On Some Extensions of Dynamic Hardy-Type Inequalities on Time Scales. J. Math. Comput. Sci. 2023, 30, 147–164. [Google Scholar] [CrossRef]
  14. Meftah, B.; Khaled, B. Some New Ostrowski type inequalities on time scales for functions of two independent variables. J. Interdiscip. Math. 2017, 20, 397–415. [Google Scholar] [CrossRef]
  15. Meftah, B. On some Gamidov integral inequalities on time scales and applications. Real Anal. Exch. 2017, 42, 391–410. [Google Scholar] [CrossRef]
  16. Řehák, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005, 5, 495–507. [Google Scholar] [CrossRef]
  17. Saker, S.H.; O’Regan, D. Extensions of dynamic inequalities of Hardy’s type on time scales. Math. Slovaca 2015, 65, 993–1012. [Google Scholar] [CrossRef]
  18. El-Deeb, A.A.; Mohamed, K.A.; Baleanu, D.; Rezk, H.M. Weighted dynamic Hardy-type inequalities involving many functions on arbitrary time scales. J. Inequalities Appl. 2022, 120, 23. [Google Scholar] [CrossRef]
  19. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
  20. Torres, D.F.M.; Benkhettou, N.; Hassani, S. A conformable fractional calculus on arbitrary time scales. J. King Saud. 2016, 28, 89–93. [Google Scholar]
  21. Jleli, M.; Samet, B. Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 2015, 18, 443–451. [Google Scholar] [CrossRef]
  22. Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rezk, H.M.; El-Saeed, A.R.; Mousa, M.; Mohamed, K.A. Novel Weighted Dynamic Hardy-Type Inequalities in the Framework of Delta Conformable Calculus on Time Scales. Symmetry 2025, 17, 1573. https://doi.org/10.3390/sym17091573

AMA Style

Rezk HM, El-Saeed AR, Mousa M, Mohamed KA. Novel Weighted Dynamic Hardy-Type Inequalities in the Framework of Delta Conformable Calculus on Time Scales. Symmetry. 2025; 17(9):1573. https://doi.org/10.3390/sym17091573

Chicago/Turabian Style

Rezk, Haytham M., Ahmed R. El-Saeed, Mohamed Mousa, and Karim A. Mohamed. 2025. "Novel Weighted Dynamic Hardy-Type Inequalities in the Framework of Delta Conformable Calculus on Time Scales" Symmetry 17, no. 9: 1573. https://doi.org/10.3390/sym17091573

APA Style

Rezk, H. M., El-Saeed, A. R., Mousa, M., & Mohamed, K. A. (2025). Novel Weighted Dynamic Hardy-Type Inequalities in the Framework of Delta Conformable Calculus on Time Scales. Symmetry, 17(9), 1573. https://doi.org/10.3390/sym17091573

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop