Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,181)

Search Parameters:
Keywords = symbol system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1027 KiB  
Article
Where God Is Becoming: Anime, Theosis, and the Sacred in Process
by Valentina-Andrada Minea
Religions 2025, 16(8), 1014; https://doi.org/10.3390/rel16081014 - 5 Aug 2025
Abstract
This article explores how Japanese anime has become a space of theological imagination, where viewers encounter the divine not as fixed dogma but as a lived process. Through symbolic analysis of five spiritually resonant anime series: Puella Magi Madoka Magica, To Your Eternity, [...] Read more.
This article explores how Japanese anime has become a space of theological imagination, where viewers encounter the divine not as fixed dogma but as a lived process. Through symbolic analysis of five spiritually resonant anime series: Puella Magi Madoka Magica, To Your Eternity, Sunday Without God, Code Geass, and The Promised Neverland, the study examines how characters such as Madoka, Fushi, Ai, Lelouch, Emma, and Mujika embody a form of theosis that unfolds through memory, sacrifice, refusal, and care. Rather than representing God as omnipotent or remote, these narratives invite a vision of the divine as vulnerable, suffering, and becoming, emerging through grief, relationships, and transformations. Drawing on theological and philosophical frameworks, especially process theology and symbolic interpretation, the article argues that anime collapses the traditional boundaries between theology and philosophy by embodying both in story. In these narrative worlds, divinity is not merely represented, it is approached, co-created, and remembered. The sacred is not a theory to master, but an encounter to undergo. Anime, thus, does not offer theology as a system but rather theology as a journey: a reenchanted vision of the world where God is still becoming. Full article
(This article belongs to the Special Issue Between Philosophy and Theology: Liminal and Contested Issues)
Show Figures

Figure 1

21 pages, 9265 KiB  
Article
Towards a Sustainable Process of Conservation/Reuse of Built Cultural Heritage: A “Coevolutionary” Approach to Circular Economy in the Case of the Decommissioned Industrial Agricultural Consortium in the Corbetta, Metropolitan Area of Milan, Italy
by Mehrnaz Rajabi, Stefano Della Torre and Arian Heidari Afshari
Land 2025, 14(8), 1595; https://doi.org/10.3390/land14081595 - 5 Aug 2025
Abstract
This paper aims to explore the potentialities and systemic relationships between the ‘regenerative’ process and ‘circular economy’ concept within the conservation and reuse of a built cultural heritage framework through contextualizing the concept of ‘process programming’ of the Preventive and Planned Conservation methodology. [...] Read more.
This paper aims to explore the potentialities and systemic relationships between the ‘regenerative’ process and ‘circular economy’ concept within the conservation and reuse of a built cultural heritage framework through contextualizing the concept of ‘process programming’ of the Preventive and Planned Conservation methodology. As a case study, it depicts a decommissioned industrial agricultural silo in Corbetta—a small historic city with its hinterland located in the protected Southern Milan Regional Agricultural Park. The context includes the industrial agricultural lands of the 20th century, together with historical water infrastructure, farmhouses, and the typical flora of the Lombardy region, all evidences of Corbetta’s rural archaeological values and the sophisticated material culture of its past collective production/economy system—the locus in which the silo was once one of the main productive symbols of Corbetta’s agricultural identity. Within such a complex and challenging context, this paper argues in favor of the constructive role of such a methodology in upholding circular economy principles within the process of conservation and reuse of the silo, highlighting its broader application of the ‘coevolution’ concept from a multidisciplinary long-term perspective. Full article
Show Figures

Figure 1

28 pages, 3973 KiB  
Article
A Neural Network-Based Fault-Tolerant Control Method for Current Sensor Failures in Permanent Magnet Synchronous Motors for Electric Aircraft
by Shuli Wang, Zelong Yang and Qingxin Zhang
Aerospace 2025, 12(8), 697; https://doi.org/10.3390/aerospace12080697 - 4 Aug 2025
Abstract
To enhance the reliability of electric propulsion in electric aircraft and address power interruptions caused by current sensor failures, this study proposes a current sensorless fault-tolerant control strategy for permanent magnet synchronous motors (PMSMs) based on a long short-term memory (LSTM) network. First, [...] Read more.
To enhance the reliability of electric propulsion in electric aircraft and address power interruptions caused by current sensor failures, this study proposes a current sensorless fault-tolerant control strategy for permanent magnet synchronous motors (PMSMs) based on a long short-term memory (LSTM) network. First, a hierarchical architecture is constructed to fuse multi-phase electrical signals in the fault diagnosis layer (sliding mode observer). A symbolic function for the reaching law observer is designed based on Lyapunov theory, in order to generate current predictions for fault diagnosis. Second, when a fault occurs, the system switches to the LSTM reconstruction layer. Finally, gating units are used to model nonlinear dynamics to achieve direct mapping of speed/position to phase current. Verification using a physical prototype shows that the proposed method can complete mode switching within 10 ms after a sensor failure, which is 80% faster than EKF, and its speed error is less than 2.5%, fully meeting the high speed error requirements of electric aircraft propulsion systems (i.e., ≤3%). The current reconstruction RMSE is reduced by more than 50% compared with that of the EKF, which ensures continuous and reliable control while maintaining the stable operation of the motor and realizing rapid switching. The intelligent algorithm and sliding mode control fusion strategy meet the requirements of high real-time performance and provide a highly reliable fault-tolerant scheme for electric aircraft propulsion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 11423 KiB  
Article
Adornments from the Sea: Fish Skins, Heads, Bones, Vertebras, and Otoliths Used by Alaska Natives and Greenlandic Inuit
by Elisa Palomino
Wild 2025, 2(3), 30; https://doi.org/10.3390/wild2030030 - 4 Aug 2025
Abstract
This paper investigates the cultural, spiritual, and ecological use and value of fish by-products in the material practices of Alaska Native (Indigenous Peoples are the descendants of the populations who inhabited a geographical region at the time of colonisation and who retain some [...] Read more.
This paper investigates the cultural, spiritual, and ecological use and value of fish by-products in the material practices of Alaska Native (Indigenous Peoples are the descendants of the populations who inhabited a geographical region at the time of colonisation and who retain some or all of their own social, economic, cultural, and political institutions. In this paper, I use the terms “Indigenous” and “Native” interchangeably. In some countries, one of these terms may be favoured over the other.) and Greenlandic Inuit women. It aims to uncover how fish remnants—skins, bones, bladders, vertebrae, and otoliths—were transformed through tanning, dyeing, and sewing into garments, containers, tools, oils, glues, and adornments, reflecting sustainable systems of knowledge production rooted in Arctic Indigenous lifeways. Drawing on interdisciplinary methods combining Indigenist research, ethnographic records, and sustainability studies, the research contextualises these practices within broader environmental, spiritual, and social frameworks. The findings demonstrate that fish-based technologies were not merely utilitarian but also carried symbolic meanings, linking wearers to ancestral spirits, animal kin, and the marine environment. These traditions persisted even after European contact and the introduction of glass trade beads, reflecting continuity and cultural adaptability. The paper contributes to academic discourse on Indigenous innovation and environmental humanities by offering a culturally grounded model of zero-waste practice and reciprocal ecology. It argues that such ancestral technologies are directly relevant to contemporary sustainability debates in fashion and material design. By documenting these underexamined histories, the study provides valuable insight into Indigenous resilience and offers a critical framework for integrating Indigenous knowledge systems into current sustainability practices. Full article
Show Figures

Figure 1

23 pages, 1693 KiB  
Review
From Vision to Illumination: The Promethean Journey of Optical Coherence Tomography in Cardiology
by Angela Buonpane, Giancarlo Trimarchi, Francesca Maria Di Muro, Giulia Nardi, Marco Ciardetti, Michele Alessandro Coceani, Luigi Emilio Pastormerlo, Umberto Paradossi, Sergio Berti, Carlo Trani, Giovanna Liuzzo, Italo Porto, Antonio Maria Leone, Filippo Crea, Francesco Burzotta, Rocco Vergallo and Alberto Ranieri De Caterina
J. Clin. Med. 2025, 14(15), 5451; https://doi.org/10.3390/jcm14155451 - 2 Aug 2025
Viewed by 218
Abstract
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize [...] Read more.
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize atherosclerotic plaques was demonstrated in an in vitro study, and the following year marked the acquisition of the first in vivo OCT image of a human coronary artery. A major milestone followed in 2000, with the first intracoronary imaging in a living patient using time-domain OCT. However, the real inflection point came in 2006 with the advent of frequency-domain OCT, which dramatically improved acquisition speed and image quality, enabling safe and routine imaging in the catheterization lab. With the advent of high-resolution, second-generation frequency-domain systems, OCT has become clinically practical and widely adopted in catheterization laboratories. OCT progressively entered interventional cardiology, first proving its safety and feasibility, then demonstrating superiority over angiography alone in guiding percutaneous coronary interventions and improving outcomes. Today, it plays a central role not only in clinical practice but also in cardiovascular research, enabling precise assessment of plaque biology and response to therapy. With the advent of artificial intelligence and hybrid imaging systems, OCT is now evolving into a true precision-medicine tool—one that not only guides today’s therapies but also opens new frontiers for discovery, with vast potential still waiting to be explored. Tracing its historical evolution from ophthalmology to cardiology, this narrative review highlights the key technological milestones, clinical insights, and future perspectives that position OCT as an indispensable modality in contemporary interventional cardiology. As a guiding thread, the myth of Prometheus is used to symbolize the evolution of OCT—from its illuminating beginnings in ophthalmology to its transformative role in cardiology—as a metaphor for how light, innovation, and knowledge can reveal what was once hidden and redefine clinical practice. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

15 pages, 3678 KiB  
Article
Virtual Signal Processing-Based Integrated Multi-User Detection
by Dabao Wang and Zhao Li
Sensors 2025, 25(15), 4761; https://doi.org/10.3390/s25154761 - 1 Aug 2025
Viewed by 153
Abstract
The demand for high data rates and large system capacity has posed significant challenges for medium access control (MAC) methods. Successive interference cancellation (SIC) is a classical multi-user detection (MUD) method; however, it suffers from an error propagation problem. To address this deficiency, [...] Read more.
The demand for high data rates and large system capacity has posed significant challenges for medium access control (MAC) methods. Successive interference cancellation (SIC) is a classical multi-user detection (MUD) method; however, it suffers from an error propagation problem. To address this deficiency, we propose a method called Virtual Signal Processing-Based Integrated Multi-User Detection (VSP-IMUD). In VSP-IMUD, the received mixed multi-user signals are treated as an equivalent signal. The channel ambiguity corresponding to each user’s signal is then examined. For channels with non-zero ambiguity values, the signal components are detected using zero-forcing (ZF) reception. Next, the detected ambiguous signal components are reconstructed and subtracted from the received mixed signal using SIC. Once all the ambiguous signals are detected, the remaining signal components with zero ambiguity values are equated to a virtual integrated signal, to which a matched filter (MF) is applied. Finally, by selecting the signal with the highest channel gain and adopting its data as the reference symbol, the remaining signals’ dataset can be determined. Our theoretical analysis and simulation results demonstrate that VSP-IMUD effectively reduces the frequency of SIC applications and mitigates its error propagation effects, thereby improving the system’s bit-error rate (BER) performance. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

21 pages, 5734 KiB  
Article
Analytical Inertia Identification of Doubly Fed Wind Farm with Limited Control Information Based on Symbolic Regression
by Mengxuan Shi, Yang Li, Xingyu Shi, Dejun Shao, Mujie Zhang, Duange Guo and Yijia Cao
Appl. Sci. 2025, 15(15), 8578; https://doi.org/10.3390/app15158578 (registering DOI) - 1 Aug 2025
Viewed by 103
Abstract
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia [...] Read more.
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia assessment methods, where physics-based modeling requires full control transparency and data-driven approaches lack interpretability for inertia response analysis, thus failing to reconcile commercial confidentiality constraints with analytical needs, this paper proposes a symbolic regression framework for inertia evaluation in doubly fed wind farms with limited control information constraints. First, a dynamic model for the inertia response of DFIG wind farms is established, and a mathematical expression for the equivalent virtual inertia time constant under different control strategies is derived. Based on this, a nonlinear function library reflecting frequency-active power dynamic is constructed, and a symbolic regression model representing the system’s inertia response characteristics is established by correlating operational data. Then, sparse relaxation optimization is applied to identify unknown parameters, allowing for the quantification of the wind farm’s equivalent virtual inertia. Finally, the effectiveness of the proposed method is validated in an IEEE three-machine nine-bus system containing a doubly fed wind power cluster. Case studies show that the proposed method can fully utilize prior model knowledge and operational data to accurately assess the system’s inertia level with low computational complexity. Full article
Show Figures

Figure 1

24 pages, 2751 KiB  
Article
Double Wishbone Suspension: A Computational Framework for Parametric 3D Kinematic Modeling and Simulation Using Mathematica
by Muhammad Waqas Arshad, Stefano Lodi and David Q. Liu
Technologies 2025, 13(8), 332; https://doi.org/10.3390/technologies13080332 - 1 Aug 2025
Viewed by 131
Abstract
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in [...] Read more.
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in order to optimize its design. This requires efficient computational tools for parametric study. The development of effective computational tools that support parametric exploration stands as an essential requirement. Our research demonstrates a complete Wolfram Mathematica system that creates parametric 3D kinematic models and conducts simulations, performs analyses, and generates interactive visualizations of DWS systems. The system uses homogeneous transformation matrices to establish the spatial relationships between components relative to a global coordinate system. The symbolic geometric parameters allow designers to perform flexible design exploration and the kinematic constraints create an algebraic equation system. The numerical solution function NSolve computes linkage positions from input data, which enables fast evaluation of different design parameters. The integrated 3D visualization module based on Mathematica’s manipulate function enables users to see immediate results of geometric configurations and parameter effects while calculating exact 3D coordinates. The resulting robust, systematic, and flexible computational environment integrates parametric 3D design, kinematic simulation, analysis, and dynamic visualization for DWS, serving as a valuable and efficient tool for engineers during the design, development, assessment, and optimization phases of these complex automotive systems. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

14 pages, 1161 KiB  
Article
Multipath Interference Impact Due to Fiber Mode Coupling in C+L+S Multiband Transmission Reach
by Luís Cancela and João Pires
Photonics 2025, 12(8), 770; https://doi.org/10.3390/photonics12080770 - 30 Jul 2025
Viewed by 122
Abstract
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can [...] Read more.
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can also increase network capacity and can also be used for multiband (MB) transmission. Nevertheless, in MB transmission, power mode coupling arises when bands with wavelengths below the cut-off wavelength are used, inducing multipath interference (MPI). This work investigates the impact of the MPI, due to mode coupling from G.654E SMF, in the transmission reach of a C+L+S band transmission system. Our results indicate that for the S-band scenario, the band below the wavelength cut-off, an approximately 25% reach decrease is observed when the MPI/span increases to −26 dB/span, considering quadrature phase-shift keying (QPSK) signals with a 64 GBaud symbol rate. We also concluded that if the L-band were not above the wavelength cut-off, it would be much more affected than the S-band, with an approximately 52% reach decrease due to MPI impact. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

9 pages, 1552 KiB  
Proceeding Paper
Kolmogorov–Arnold Networks for System Identification of First- and Second-Order Dynamic Systems
by Lily Chiparova and Vasil Popov
Eng. Proc. 2025, 100(1), 100059; https://doi.org/10.3390/engproc2025100059 - 30 Jul 2025
Viewed by 177
Abstract
System identification—originating in the 1950s from statistical theory—has since developed a wealth of algorithms, insights, and practical expertise. We introduce Kolmogorov–Arnold neural networks (KANs) as an interpretable alternative for model discovery. Leveraging KANs’ inherent property to approximate data and interpret it by employing [...] Read more.
System identification—originating in the 1950s from statistical theory—has since developed a wealth of algorithms, insights, and practical expertise. We introduce Kolmogorov–Arnold neural networks (KANs) as an interpretable alternative for model discovery. Leveraging KANs’ inherent property to approximate data and interpret it by employing learnable activation functions and decomposition of multivariate mappings into univariate transforms, we test its ability to recover the step responses of first- and second-order systems both numerically and symbolically. We employ synthetic datasets, both noise-free and with Gaussian noise, and find that KANs can achieve very low RMSE and parameter error with simple architectures. Our results demonstrate that KANs combine ease of implementation with symbolic transparency, positioning them as a compelling bridge between classical identification and modern machine learning. Full article
Show Figures

Figure 1

10 pages, 1357 KiB  
Article
Design of Balanced Wide Gap No-Hit Zone Sequences with Optimal Auto-Correlation
by Duehee Lee, Seho Lee and Jin-Ho Chung
Mathematics 2025, 13(15), 2454; https://doi.org/10.3390/math13152454 - 30 Jul 2025
Viewed by 162
Abstract
Frequency-hopping multiple access is widely adopted to blunt narrow-band jamming and limit spectral disclosure in cyber–physical systems, yet its practical resilience depends on three sequence-level properties. First, balancedness guarantees that every carrier is occupied equally often, removing spectral peaks that a jammer or [...] Read more.
Frequency-hopping multiple access is widely adopted to blunt narrow-band jamming and limit spectral disclosure in cyber–physical systems, yet its practical resilience depends on three sequence-level properties. First, balancedness guarantees that every carrier is occupied equally often, removing spectral peaks that a jammer or energy detector could exploit. Second, a wide gap between successive hops forces any interferer to re-tune after corrupting at most one symbol, thereby containing error bursts. Third, a no-hit zone (NHZ) window with a zero pairwise Hamming correlation eliminates user collisions and self-interference when chip-level timing offsets fall inside the window. This work introduces an algebraic construction that meets the full set of requirements in a single framework. By threading a permutation over an integer ring and partitioning the period into congruent sub-blocks tied to the desired NHZ width, we generate balanced wide gap no-hit zone frequency-hopping (WG-NHZ FH) sequence sets. Analytical proofs show that (i) each sequence achieves the Lempel–Greenberger bound for auto-correlation, (ii) the family and zone sizes satisfy the Ye–Fan bound with equality, (iii) the hop-to-hop distance satisfies a provable WG condition, and (iv) balancedness holds exactly for every carrier frequency. Full article
Show Figures

Figure 1

16 pages, 899 KiB  
Article
Public Funding, ESG Strategies, and the Risk of Greenwashing: Evidence from Greek Financial and Public Institutions
by Kyriaki Efthalitsidou, Vasileios Kanavas, Paschalis Kagias and Nikolaos Sariannidis
Risks 2025, 13(8), 143; https://doi.org/10.3390/risks13080143 - 29 Jul 2025
Viewed by 213
Abstract
The increasing pressure for environmental, social, and governance (ESG) accountability in publicly funded institutions has raised concerns about the authenticity and efficiency of ESG implementation. This study investigates the relationship between public ESG funding, disclosure quality, and organizational efficiency across Greek public and [...] Read more.
The increasing pressure for environmental, social, and governance (ESG) accountability in publicly funded institutions has raised concerns about the authenticity and efficiency of ESG implementation. This study investigates the relationship between public ESG funding, disclosure quality, and organizational efficiency across Greek public and financial entities. Using a mixed-methods approach—data envelopment analysis (DEA), qualitative ESG content scoring, and bibliometric mapping—we reveal that symbolic compliance remains prevalent, often decoupled from actual sustainability outcomes. Our DEA findings show that technical efficiency is strongly associated with reporting clarity, the use of verifiable metrics, and governance integration, rather than the mere volume of funding. The qualitative analysis further confirms that many disclosures reflect reputational signaling rather than impact-oriented transparency. Bibliometric results highlight a systemic underrepresentation of the public sector in ESG scholarship, particularly in Southern Europe, underscoring the need for regionally grounded empirical studies. This study provides practical implications for improving ESG accountability in publicly funded institutions and contributes a novel approach that integrates efficiency, content, and bibliometric analysis in the ESG context. Full article
(This article belongs to the Special Issue ESG and Greenwashing in Financial Institutions: Meet Risk with Action)
Show Figures

Figure 1

12 pages, 206 KiB  
Entry
Spiritual Intelligence: A New Form of Intelligence for a Sustainable and Humane Future
by Gianfranco Cicotto
Encyclopedia 2025, 5(3), 107; https://doi.org/10.3390/encyclopedia5030107 - 25 Jul 2025
Viewed by 523
Definition
Spiritual intelligence (SI) is defined as a unique form of hermeneutic–relational intelligence that enables individuals to integrate cognitive, emotional, and symbolic dimensions to guide their thoughts and actions with reflection, aiming for existential coherence rooted in a transcendent system of meaning. It functions [...] Read more.
Spiritual intelligence (SI) is defined as a unique form of hermeneutic–relational intelligence that enables individuals to integrate cognitive, emotional, and symbolic dimensions to guide their thoughts and actions with reflection, aiming for existential coherence rooted in a transcendent system of meaning. It functions as a metacognitive framework that unites affective, cognitive, and symbolic levels in dialog with a sense of meaning that is considered sacred or transcendent, where “sacred,” in this context, refers inclusively to any symbolic reference or value that a person or culture perceives as inviolable, fundamental, or orienting. It can derive from religious traditions but also from ethical, philosophical, or civil visions. It functions as a horizon of meaning from which to draw coherence and guidance and which orients the understanding of oneself, the world, and action. SI appears as the ability to interpret one’s experiences through the lens of values and principles, maintaining a sense of continuity in meaning even during times of ambiguity, conflict, or discontinuity. It therefore functions as a metacognitive ability that brings together various mental functions into a cohesive view of reality, rooted in a dynamic dialog between the self and a value system seen as sacred. Full article
(This article belongs to the Collection Encyclopedia of Social Sciences)
18 pages, 495 KiB  
Article
Performance Analysis of Maximum Likelihood Detection in Cooperative DF MIMO Systems with One-Bit ADCs
by Tae-Kyoung Kim
Mathematics 2025, 13(15), 2361; https://doi.org/10.3390/math13152361 - 23 Jul 2025
Viewed by 228
Abstract
This paper investigates the error performance of cooperative decode-and-forward (DF) multiple-input multiple-output (MIMO) systems employing one-bit analog-to-digital converters (ADCs) over Rayleigh fading channels. In cooperative DF MIMO systems, detection errors at the relay may propagate to the destination, thereby degrading overall detection performance. [...] Read more.
This paper investigates the error performance of cooperative decode-and-forward (DF) multiple-input multiple-output (MIMO) systems employing one-bit analog-to-digital converters (ADCs) over Rayleigh fading channels. In cooperative DF MIMO systems, detection errors at the relay may propagate to the destination, thereby degrading overall detection performance. Although joint maximum likelihood detection can efficiently mitigate error propagation by leveraging probabilistic information from a source-to-relay link, its computational complexity is impractical. To address this issue, an approximate maximum likelihood (AML) detection scheme is introduced, which significantly reduces complexity while maintaining reliable performance. However, its analysis under one-bit ADCs is challenging because of its nonlinearity. The main contributions of this paper are summarized as follows: (1) a tractable upper bound on the pairwise error probability (PEP) of the AML detector is derived using Jensen’s inequality and the Chernoff bound, (2) the asymptotic behavior of the PEP is analyzed to reveal the achievable diversity gain, (3) the analysis shows that full diversity is attained only when symbol pairs in the PEP satisfy a sign-inverted condition and the relay correctly decodes the source symbol, and (4) the simulation results verify the accuracy of the theoretical analysis and demonstrate the effectiveness of the proposed analysis. Full article
(This article belongs to the Special Issue Computational Methods in Wireless Communication)
Show Figures

Figure 1

28 pages, 20978 KiB  
Article
From Painting to Cinema: Archetypes of the European Woman as a Cultural Mediator in the Western genre
by Olga Kosachova
Arts 2025, 14(4), 83; https://doi.org/10.3390/arts14040083 - 23 Jul 2025
Viewed by 417
Abstract
The Western genre has traditionally been associated with American identity and male-dominated narratives. However, recent decades have seen increasing attention to female protagonists, particularly the European woman as a cultural mediator within the frontier context. This study aims to identify the archetypes of [...] Read more.
The Western genre has traditionally been associated with American identity and male-dominated narratives. However, recent decades have seen increasing attention to female protagonists, particularly the European woman as a cultural mediator within the frontier context. This study aims to identify the archetypes of the European woman in the Western genre through a diachronic and comparative analysis of the visual language found in European painting from the late 17th to early 19th centuries and in 20th–21st century cinema. The research methodology combines narrative, visual, and semiotic analysis, with a focus on intermedial and intertextual parallels between visual art and film. The study identifies nine archetypal models corresponding to goddesses of the Greek pantheon and traces their transformation across different aesthetic systems. These archetypes, rooted in artistic traditions such as Baroque, Classicism, Romanticism, and others, reappear in Western films through compositional, symbolic, and iconographic strategies, demonstrating their persistence and ability to transcend temporal, medial, and geographical boundaries. The findings suggest that the woman in the Western genre is not merely a central character, but a visual sign that activates cultural memory and engages with deep archetypal structures embedded in the collective unconscious. Full article
(This article belongs to the Special Issue What is ‘Art’ Cinema?)
Show Figures

Figure 1

Back to TopTop