Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = sustainable viticulture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8805 KiB  
Article
Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
by Giovanni Gentilesco, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli and Mauro Eugenio Maria D’Arcangelo
Sustainability 2025, 17(15), 6958; https://doi.org/10.3390/su17156958 - 31 Jul 2025
Viewed by 149
Abstract
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile [...] Read more.
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile of wine grapes in line with sustainable practices. Methods: Two wine grape cultivars, Merlot and Cabernet Sauvignon, were sprayed with the inactive yeast Saccharomyces cerevisiae in a single treatment in pre-veraison or in a double treatment in pre-veraison and veraison. Berry weight, must, total polyphenols, anthocyanins, and mechanical and colorimetric properties were measured on fresh grapes. Results: Two-way ANOVA revealed that titratable acidity (TA), pH, and total polyphenol content (TPC) were not affected, while mean berry weight and anthocyanin content varied by cultivar, treatment, and interaction; total soluble solids (TSS) differed only by cultivar. Inactive yeasts reduced weight in the single-treatment thesis but stabilized it in the double-treatment one; anthocyanins decreased in Cabernet Sauvignon but increased in Merlot. Mechanical and colorimetric analyses showed cultivar-dependent responses, with significant improvements in elasticity, skin thickness, and hue of berries, especially in Merlot when the treatment was applied twice. Conclusions: Inactive yeasts (IYs) showed an effect on the weight of the berries, the anthocyanins, the mechanics, and the color; Merlot significantly improved skin thickness, elasticity, and hue; and Cabernet remained less reactive to treatments. Full article
Show Figures

Graphical abstract

22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 317
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 263
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
16 pages, 7110 KiB  
Article
Differential Effects of Arbuscular Mycorrhizal Fungi on Rooting and Physiology of ‘Summer Black’ Grape Cuttings
by Yi-Yuan Peng, Chun-Yan Liu and Yong Hao
Horticulturae 2025, 11(7), 825; https://doi.org/10.3390/horticulturae11070825 - 10 Jul 2025
Viewed by 356
Abstract
Arbuscular mycorrhizal fungi (AMF) symbiosis has great potential in improving grapevine performance and reducing external input dependency in viticulture. However, the precise, strain-specific impacts of different AMF species on ‘Summer Black’ grapevine cuttings across multiple physiological and morphological dimensions remain underexplored. To address [...] Read more.
Arbuscular mycorrhizal fungi (AMF) symbiosis has great potential in improving grapevine performance and reducing external input dependency in viticulture. However, the precise, strain-specific impacts of different AMF species on ‘Summer Black’ grapevine cuttings across multiple physiological and morphological dimensions remain underexplored. To address this, we conducted a controlled greenhouse pot experiment, systematically evaluating four different AMF species (Diversispora versiformis, Diversispora spurca, Funneliformis mosseae, and Paraglomus occultum) on ‘Summer Black’ grapevine cuttings. All AMF treatments successfully established root colonization, with F. mosseae achieving the highest infection rate. In detail, F. mosseae notably enhanced total root length, root surface area, and volume, while D. versiformis specifically improved primary adventitious and 2nd-order lateral root numbers. Phosphorus (P) uptake in both leaves and roots was significantly elevated across all AMF treatments, with F. mosseae leading to a 42% increase in leaf P content. Furthermore, AMF inoculation generally enhanced the activities of catalase, superoxide dismutase, and peroxidase, along with soluble protein and soluble sugar contents in leaves and roots. Photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr), were dramatically increased in AMF-colonized cutting seedlings. Whereas, P. occultum exhibited inhibitory effects on several growth metrics, such as shoot length, leaf and root biomass, and adventitious lateral root numbers, and decreased the contents of Nitrogen (N), potassium (K), magnesium (Mg), and iron (Fe) in both leaves and roots. These findings conclusively demonstrate that AMF symbiosis optimizes root morphology, enhances nutrient acquisition, and boosts photosynthetic efficiency and stress resilience, thus providing valuable insights for developing targeted bio-fertilization strategies in sustainable viticulture. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

19 pages, 3266 KiB  
Article
The European Wine Tourism Charter and Its Link with Wine Museums in Spain
by Ángel Raúl Ruiz Pulpón and María del Carmen Cañizares Ruiz
Tour. Hosp. 2025, 6(3), 128; https://doi.org/10.3390/tourhosp6030128 - 4 Jul 2025
Viewed by 410
Abstract
The European Charter for Wine Tourism (2005) promotes the sustainable development of tourism activities associated with viticulture. The document identifies the active role that wine-growing territories must play in the conservation, management, and valorization of their resources. This study aims to understand the [...] Read more.
The European Charter for Wine Tourism (2005) promotes the sustainable development of tourism activities associated with viticulture. The document identifies the active role that wine-growing territories must play in the conservation, management, and valorization of their resources. This study aims to understand the degree of linkage that this Charter establishes with initiatives for the heritage of wine culture, specifically focusing on wine museums in Spain. It examines how these museums contribute to defining a tourism development program, constructing a common strategic vision, and encouraging cooperation between the social and economic agents involved in the territory. As case studies, the Vivanco Museum of Wine Culture (La Rioja), considered by World Tourism Organization (UNWTO) as the best in the world, and the Valdepeñas Wine Museum (Castilla-La Mancha), an example of rehabilitation and musealization in the region with the highest concentration of vineyards in the world, have been chosen. The results show that both museums exemplify management, development, and cooperation in their respective territories, aligning with the theoretical assumptions established in the Charter. Full article
Show Figures

Figure 1

20 pages, 8044 KiB  
Article
Harnessing a Microbial Consortium and Compost to Control Grapevine Pathogens: A Sustainable Viticulture Strategy for Disease Suppression and Quality Enhancement
by Lobna Hajji-Hedfi, Takwa Wannassi and Ahmed M. Abdel-Azeem
Horticulturae 2025, 11(7), 769; https://doi.org/10.3390/horticulturae11070769 - 2 Jul 2025
Viewed by 425
Abstract
Beneficial microorganisms are emerging as promising alternatives to conventional pesticides for the biological control of plant diseases. This study evaluated the efficacy of a consortium composed of Pseudomonas yamanorum and Trichoderma longibrachiatum and compost against three grapevine pathogens, Botrytis cinerea, Erysiphe necator [...] Read more.
Beneficial microorganisms are emerging as promising alternatives to conventional pesticides for the biological control of plant diseases. This study evaluated the efficacy of a consortium composed of Pseudomonas yamanorum and Trichoderma longibrachiatum and compost against three grapevine pathogens, Botrytis cinerea, Erysiphe necator, and Plasmopara viticola, in three cultivars: Victoria, Superior Seedless, and Early Sweet. The microbial consortium (P. yamanorum + T. longibrachiatum) combined with compost (treatment T4) significantly outperformed the individual treatments, reducing disease severity indices (DSIs) to 7.72, 5.35, and 3.37% in Victoria; 5.70, 6.95, and 3.32% in Superior Seedless; and 4.98, 2.35, and 2.84% in Early Sweet. The treatment also enhanced physiological traits, such as the chlorophyll content, and defense responses, including ascorbate peroxidase (APX), peroxidase (POX), and catalase (CAT) enzyme activities. Biochemical markers, including the total protein content, phenolic content, and reduced malondialdehyde (MDA) levels, indicated an improved oxidative stress tolerance. The soil analysis confirmed an increased pH, organic matter, nitrogen content, and microbial biomass. T4 further reduced the fruit disease incidence and improved quality attributes, including the sugar content and size, while lowering nitrate accumulation. These findings highlight the synergistic benefits of combining a microbial consortium with compost as a sustainable strategy to promote grapevine health, productivity, and soil resilience. Full article
(This article belongs to the Special Issue Grapevine Responses to Abiotic and Biotic Stresses)
Show Figures

Figure 1

16 pages, 456 KiB  
Article
Influence of Biochar Foliar Application on Malvazija Istarska Grapevine Physiology
by Igor Palčić, Dominik Anđelini, Melissa Prelac, Igor Pasković, Marko Černe, Nikola Major, Smiljana Goreta Ban, Zoran Užila, Marijan Bubola, Dean Ban, Ivan Nemet, Tomislav Karažija, Marko Petek, Ana-Marija Jagatić Korenika and Danko Cvitan
Sustainability 2025, 17(13), 5947; https://doi.org/10.3390/su17135947 - 27 Jun 2025
Viewed by 288
Abstract
Biochar has attracted interest in viticulture for its potential to enhance nutrient uptake and improve grapevine physiology under changing climatic conditions, particularly in Mediterranean regions. However, the widespread adoption of biochar has been limited due to economic and logistical constraints associated with its [...] Read more.
Biochar has attracted interest in viticulture for its potential to enhance nutrient uptake and improve grapevine physiology under changing climatic conditions, particularly in Mediterranean regions. However, the widespread adoption of biochar has been limited due to economic and logistical constraints associated with its large-scale application. To address these barriers hindering the widespread adoption of biochar, this study investigates the effects of foliar-applied water suspensions of biochar at concentrations of 300 mg/L (B300), 600 mg/L (B600), and 1200 mg/L (B1200), compared to a water-only control (C), as a practical alternative application method. The research focused on Malvazija istarska (Vitis vinifera L.), an indigenous Croatian grapevine variety, conducted in an experimental vineyard in Poreč, Croatia. The key physiological parameters examined included photo-synthetic activity, leaf water potential, the elemental composition of the grapevine leaves, and grape yield. Foliar applications were administered three times during the growing season, with five replicates per treatment. The results indicated that biochar treatments had no significant impact on photosynthetic activity, suggesting that foliar application did not cause leaf shading. However, higher biochar concentrations (B600 and B1200) led to increased leaf concentrations of nitrogen (2.1–3.8%), potassium (10.1–18.4 g/kg), sulfur (2.2–2.5 g/kg), boron (65.1–83.6 mg/kg), and manganese (42.4–69.8 mg/kg) compared to B300 and C treatments. Conversely, magnesium content decreased (2.1–2.7 g/kg), likely due to potassium–magnesium antagonism. Furthermore, the B600 treatment produced the highest grape yield (2.67 kg/vine), representing up to a 37% increase compared to other treatments. These findings suggest that the foliar application of biochar can be an effective and sustainable strategy to enhance vineyard productivity. Moreover, it offers a circular economy approach by valorizing grapevine pruning waste as a biochar source. Full article
Show Figures

Figure 1

15 pages, 1720 KiB  
Article
Timing Matters, Not Just the Treatment: Phenological-Stage-Specific Effects of Seaweed and Ethanol Applications on Postharvest Quality of ‘Tarsus Beyazı’ Grapes
by Güzin Tarım, Sinem Karakus, Nurhan Keskin, Harlene Hatterman-Valenti and Ozkan Kaya
Horticulturae 2025, 11(6), 656; https://doi.org/10.3390/horticulturae11060656 - 10 Jun 2025
Viewed by 400
Abstract
In the context of increasing consumer demand for high-quality, residue-free fruits and the growing emphasis on sustainable postharvest technologies, identifying effective, eco-friendly treatments to maintain grape quality during storage has become a critical focus in modern viticulture. Over the course of this study, [...] Read more.
In the context of increasing consumer demand for high-quality, residue-free fruits and the growing emphasis on sustainable postharvest technologies, identifying effective, eco-friendly treatments to maintain grape quality during storage has become a critical focus in modern viticulture. Over the course of this study, we examined the influence of seaweed extract (derived from Ascophyllum nodosum) and ethanol-based postharvest treatments on the postharvest quality of the ‘Tarsus Beyazı’ grape. The seaweed extract was applied at six specific phenological stages according to the BBCH scale: BBCH 13 (3rd–4th leaf stage, 0.40%), BBCH 60 (first flower sheath opening, 0.50%), BBCH 71 (fruit set, 0.50%), BBCH 75 (chickpea-sized berries, 0.50%), BBCH 81 (start of ripening, 0.60%), and BBCH 89 (harvest maturity, 0.60%). After harvest, grape clusters were subjected to four different postharvest treatments: untreated control, control + ethanol (20% ethanol immersion for 10 s), seaweed extract alone (preharvest applications only), and seaweed extract + ethanol (combining both preharvest and postharvest treatments). Grapes were stored at 0–1 °C and 90–95% RH for three weeks, followed by a shelf-life evaluation period of three days at 20 °C and 60–65% RH. The findings revealed that seaweed treatments, especially when applied during cluster formation and berry development, effectively mitigated physiological deterioration, preserving stem turgidity and enhancing berry firmness. In contrast, ethanol showed variable responses, occasionally exerting negative effects, with only marginal benefits observed when applied at optimal developmental stages. Both the type and timing of application emerged as critical determinants of key quality attributes such as weight loss, decay incidence, and must properties (TSS, pH, TA). Correlation and heat map analyses indicated the interrelationships among these parameters and the differential impacts of treatments. These results suggest that phenological-stage-specific seaweed applications hold significant potential as a sustainable strategy to extend the storage life and maintain the market quality of ‘Tarsus Beyazı’ grapes. Full article
Show Figures

Figure 1

31 pages, 7861 KiB  
Article
Improving Sustainable Viticulture in Developing Countries: A Case Study
by Zandra Betzabe Rivera Chavez, Alessia Porcaro, Marco Claudio De Simone and Domenico Guida
Sustainability 2025, 17(12), 5338; https://doi.org/10.3390/su17125338 - 9 Jun 2025
Viewed by 789
Abstract
This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in [...] Read more.
This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in this region faces acute challenges such as soil salinity, climate variability, labour shortages, and low technological readiness. Rather than offering a ready-made technological integration, this study adopts a step-by-step design approach grounded in the realities of smallholder farmers. The authors mapped the phenological stages of grapevines using the BBCH scale and systematically reviewed available sensing and monitoring technologies to determine the most context-appropriate solutions. Virtual modelling and preliminary analysis validate AgriRover’s geometric configuration and path-following capabilities within narrow vineyard rows. The proposed platform is meant to be adaptable, scalable, and maintainable using locally available material and human resources. AgriRover offers a practical and affordable foundation for precision agriculture in resource-constrained settings by aligning viticultural challenges with sensor deployment strategies and sustainability criteria. The sustainability analysis of the initial AgriRover concept was evaluated using the CML methodology, accounting for local waste processing rates and energy mixes to reflect environmental realities in Peru. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 2237 KiB  
Article
Challenges of Implementing Sustainability Benchmarks in Wine Cooperative
by Agostinha Marques, Mariana Guerra, Fátima Ferreira, Tiago Alves de Sousa and Carlos Afonso Teixeira
Agronomy 2025, 15(6), 1408; https://doi.org/10.3390/agronomy15061408 - 8 Jun 2025
Viewed by 556
Abstract
International markets are placing increasing importance on sustainability benchmarks that encompass not only environmental but also social and economic dimensions. This study investigates whether cooperative wineries, particularly those composed of small-scale producers, can meet these growing demands. Sixteen winegrowers from a cooperative winery [...] Read more.
International markets are placing increasing importance on sustainability benchmarks that encompass not only environmental but also social and economic dimensions. This study investigates whether cooperative wineries, particularly those composed of small-scale producers, can meet these growing demands. Sixteen winegrowers from a cooperative winery in the Douro region of Portugal were surveyed using indicators aligned with the National Sustainability Certification Benchmark for the Wine Sector (RNCSSV). The survey captured practices from the 2022/2023 season to assess readiness for certification and examine viticultural practices affecting sustainability. Results highlight structural challenges: 57% of respondents operate as family-run businesses, often with informal organizational practices—only one-third of which met the 50% certification threshold. Nevertheless, there is evidence of a transition toward sustainable viticulture. Many producers reported soil cover practices and reduced herbicide use (19% no longer apply them), with positive implications for soil conservation and yield stability, particularly where water is available. Despite constraints in data detail, particularly regarding pesticide use and field practices, the study provides a solid empirical basis for targeted sustainability efforts. These findings may support the development of simplified tools and tailored strategies to foster sustainability transitions in cooperative winegrowing contexts. Full article
Show Figures

Figure 1

10 pages, 224 KiB  
Editorial
Special Issue: ‘Sustainable Viticulture: Soil Fertility, Plant Nutrition and Grape Quality’
by Fernando Visconti, Roberto López and Miguel Ángel Olego
Horticulturae 2025, 11(6), 649; https://doi.org/10.3390/horticulturae11060649 - 7 Jun 2025
Viewed by 536
Abstract
Sustainable viticulture is the practice of growing grapes indefinitely—for winemaking, juice production, or fresh or dry consumption—while upholding the highest standards of product quality and environmental stewardship [...] Full article
19 pages, 1842 KiB  
Article
A.A.A. Good Wines WANTED: Blockchain, Non-Destructive Ultrasonic Techniques and Soil Health Assessment for Wine Traceability
by Diego Romano Perinelli, Martina Coletta, Beatrice Sabbatini, Aldo D’Alessandro, Fabio Fabiani, Andrea Passacantando, Giulia Bonacucina and Antonietta La Terza
Sensors 2025, 25(11), 3567; https://doi.org/10.3390/s25113567 - 5 Jun 2025
Viewed by 505
Abstract
The wine industry faces increasing challenges related to authenticity, safety, and sustainability due to recurrent fraud, shifting consumer preferences, and environmental concerns. In this study, as part of the B.I.O.C.E.R.T.O project, we integrated blockchain technology with ultrasonic spectroscopy and soil quality data by [...] Read more.
The wine industry faces increasing challenges related to authenticity, safety, and sustainability due to recurrent fraud, shifting consumer preferences, and environmental concerns. In this study, as part of the B.I.O.C.E.R.T.O project, we integrated blockchain technology with ultrasonic spectroscopy and soil quality data by using the arthropod-based Soil Biological Quality Index (QBS-ar) to enhance traceability, ensure wine quality, and certify sustainable vineyard practices. Four representative wines from the Marche region (Sangiovese, Maceratino, and two Verdicchio PDO varieties) were analyzed across two vintages (2021 and 2022). Ultrasound spectroscopy demonstrated high sensitivity in distinguishing wines based on ethanol and sugar content, comparably to conventional viscosity-based methods. The QBS-ar index was applied to investigate the soil biodiversity status according to the agricultural management practices applied in each vineyard, reinforcing consumer confidence in environmentally responsible viticulture. By recording these data on a public blockchain, we developed a secure, transparent, and immutable certification system to verify the geographical origin of wines along with their unique characteristics. This is the first study to integrate advanced analytical techniques with blockchain technology for wine traceability, simultaneously addressing counterfeiting, consumer demand for transparency, and biodiversity preservation. Our findings support the applicability of this model to other agri-food sectors, with potential for expansion through additional analytical techniques, such as isotopic analysis and further agroecosystem sustainability indicators. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

13 pages, 1072 KiB  
Article
Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management
by Piergiorgio Romano, Lorenzo Samuil Mordos, Marcello Stifani, Francesco Mello, Corrado Domanda, Daniel Grigorie Dinu, Concetta Eliana Gattullo, Gianluca Pappaccogli, Gianni Zorzi, Rita Annunziata Accogli and Laura Rustioni
Environments 2025, 12(6), 190; https://doi.org/10.3390/environments12060190 - 5 Jun 2025
Viewed by 1052
Abstract
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic [...] Read more.
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic waste into a resource, such as compost. This study explores the effectiveness of compost derived from the organic fraction of municipal solid waste (MSW) not only as a mulching technique but also as a potential biological agent for weed control through allelopathic mechanisms in vineyards. Experiments were conducted both in the field and under controlled conditions. In the field, compost was applied under the vine row as mulch and incorporated into the soil. Under controlled conditions, germination tests were performed to assess weed inhibition at different compost concentrations. Field results demonstrated that compost applications, both as mulch and incorporated into the soil, significantly inhibited weed growth during the first period after application compared to the tilled control without compost. Thus, this inhibition is not limited to physical mulching; it also applies to the release of allelopathic compounds from compost. Controlled condition experiments showed strong inhibition of germination in Cichorium intybus and Foeniculum vulgare seeds, confirming the anti-germinative effects of compost, particularly on small-seeded weed species. Compost is a promising tool for sustainable vineyard management, offering fertilization and weed-suppression benefits while reducing herbicide use. Full article
(This article belongs to the Special Issue New Insights in Soil Quality and Management, 2nd Edition)
Show Figures

Figure 1

22 pages, 905 KiB  
Review
Microbial-Enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes
by Diana Dagher, Dimitrios Taskos, Snezhana Mourouzidou and Nikolaos Monokrousos
Horticulturae 2025, 11(6), 592; https://doi.org/10.3390/horticulturae11060592 - 26 May 2025
Cited by 1 | Viewed by 966
Abstract
Grapevines (Vitis vinifera L.) face significant challenges from abiotic stresses caused by climate change, including drought, salinity, and temperature extremes. This comprehensive review examined the role of beneficial microorganisms in enhancing grapevine tolerance to these stresses, focusing on arbuscular mycorrhizal fungi (AMF), [...] Read more.
Grapevines (Vitis vinifera L.) face significant challenges from abiotic stresses caused by climate change, including drought, salinity, and temperature extremes. This comprehensive review examined the role of beneficial microorganisms in enhancing grapevine tolerance to these stresses, focusing on arbuscular mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria (PGPR), and endophytes. The study analyzes species-specific effects and their molecular mechanisms, highlighting how single and consortium inoculations improve plant resilience. AMF species, particularly Funneliformis mosseae and Rhizophagus irregularis, demonstrated significant enhancement in drought and salinity tolerance through improved nutrient uptake and stress response modulation. The PGPRs, Bacillus and Pseudomonas species, show remarkable abilities to mitigate various abiotic stresses through mechanisms including phytohormone production and antioxidant defense enhancement. Endophytic microorganisms such as Pseudomonas fluorescens RG11 and Serendipita indica play crucial roles in stress mitigation through melatonin production and improved water retention, respectively. The synergistic effects of combined AMF, PGPR, and PGPF applications led to a significant increase in grapevine drought and salinity tolerance, improving nutrient uptake, photosynthesis rates, and antioxidant defense mechanisms. Molecular analysis revealed that these microbial consortia regulate the expression of stress-responsive genes, particularly VvNCED and VvP5CS, enhancing grapevine resilience through improved osmotic adjustment, ROS scavenging, and hormonal regulation. These findings provide valuable insights into the molecular pathways underlying stress tolerance, offering promising strategies for sustainable viticulture under climate change. Full article
(This article belongs to the Section Viticulture)
Show Figures

Graphical abstract

20 pages, 1962 KiB  
Article
Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios
by Stanisław Rolbiecki, Barbara Jagosz, Wiesława Kasperska-Wołowicz, Roman Rolbiecki and Tymoteusz Bolewski
Sustainability 2025, 17(11), 4766; https://doi.org/10.3390/su17114766 - 22 May 2025
Viewed by 586
Abstract
Climate change requires efficient water resource management, especially in regions where viticulture is developing. This study evaluates the water requirements, precipitation deficits, and irrigation needs of vineyards in two locations in southern Poland. The analysis covers both a reference period (1931–2020) and a [...] Read more.
Climate change requires efficient water resource management, especially in regions where viticulture is developing. This study evaluates the water requirements, precipitation deficits, and irrigation needs of vineyards in two locations in southern Poland. The analysis covers both a reference period (1931–2020) and a forecast period (2030–2100), based on two climate change scenarios: RCP 4.5 and RCP 8.5. Grapevine water requirements were estimated using a crop coefficient tailored to Poland’s agroclimatic conditions, combined with meteorological data on air temperature and precipitation. Monthly crop coefficient values were calculated as the ratio of grapevine potential evapotranspiration, estimated using the Penman–Monteith method, to reference evapotranspiration, calculated using the Treder approach for the period 1981–2010. Precipitation deficits were assessed for normal, medium dry, and very dry years using the Ostromęcki method. Irrigation water demand was estimated for light, medium, and heavy soils using the Pittenger method. The results indicate a significant increase in both water demand and precipitation deficits in the forecast period, regardless of the scenario. In very dry years, irrigation will be necessary for all soil types. In medium dry years, water deficits will primarily affect vineyards on light soils. These findings underscore the urgent need for improvements in irrigation planning, especially in areas with low soil water. They offer practical insights for estimating future water storage needs and implementing precision irrigation adapted to changing climate conditions. Adopting such adaptive strategies is essential for sustaining vineyard productivity and improving water use efficiency. This study also supports the integration of climate projections into regional planning and calls for investment in innovative, water-saving technologies to strengthen the long-term resilience of Poland’s wine industry. Full article
Show Figures

Figure 1

Back to TopTop