Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plan in Field
- −
- Tilled soil without compost addition (TS);
- −
- Compost (16 kg/vine) burial by shallow tillage (CT);
- −
- Compost mulching (16 kg/vine) after tillage (CM).
2.2. Experimental Plan in Controlled Conditions
- −
- Only deionized water, without compost (treatment = 0).
- −
- 10 g of compost in 100 mL of deionized water, corresponding to a 1:10 (w/v) ratio (treatment = 1).
- −
- =30 g of compost in 100 mL of deionized water, corresponding to a 3:10 (w/v) ratio (treatment = 2).
- −
- =50 g of compost in 100 mL of deionized water, corresponding to a 1:2 (w/v) ratio (treatment = 3).
- −
- =100 g of compost in 100 mL of deionized water, corresponding to a 1:1 (w/v) ratio (treatment = 4).
2.3. Municipal Solid Waste Compost
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cataldo, E.; Fucile, M.; Mattii, G.B. A Review: Soil Management, Sustainable Strategies and Approaches to Improve the Quality of Modern Viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- DeVetter, L.W.; Dilley, C.A.; Nonnecke, G.R. Mulches Reduce Weeds, Maintain Yield, and Promote Soil Quality in a Continental-Climate Vineyard. Am. J. Enol. Vitic. 2015, 66, 54–64. [Google Scholar] [CrossRef]
- Singh, M.; Kukal, M.S.; Irmak, S.; Jhala, A.J. Water Use Characteristics of Weeds: A Global Review, Best Practices, and Future Directions. Front. Plant Sci. 2022, 12, 794090. [Google Scholar] [CrossRef] [PubMed]
- Melander, B.; Rasmussen, I.A.; Bàrberi, P. Integrating Physical and Cultural Methods of Weed Control—Examples from European Research. Weed Sci. 2005, 53, 369–381. [Google Scholar] [CrossRef]
- Jacquet, F.; Delame, N.; Vita, J.L.; Huyghe, C.; Reboud, X. The Micro-Economic Impacts of a Ban on Glyphosate and Its Replacement with Mechanical Weeding in French Vineyards. Crop Prot. 2021, 150, 105778. [Google Scholar] [CrossRef]
- Gagliardi, L.; Fontanelli, M.; Luglio, S.M.; Frasconi, C.; Peruzzi, A.; Raffaelli, M. Evaluation of Sustainable Strategies for Mechanical Under-Row Weed Control in the Vineyard. Agronomy 2023, 13, 3005. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, K.P.; Jhala, K.B.; Kumar, M.; Salem, A. Non-Chemical Weed Management: Harnessing Flame Weeding for Effective Weed Control. Heliyon 2024, 10, e32776. [Google Scholar] [CrossRef]
- Cabrera-Pérez, C.; Valencia-Gredilla, F.; Royo-Esnal, A.; Recasens, J. Organic Mulches as an Alternative to Conventional Under-Vine Weed Management in Mediterranean Irrigated Vineyards. Plants 2022, 11, 2785. [Google Scholar] [CrossRef]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Biodegradable Plastic Mulches: Impact on the Agricultural Biotic Environment. Sci. Total Environ. 2021, 750, 141228. [Google Scholar] [CrossRef]
- Yang, Y.; Li, P.; Jiao, J.; Yang, Z.; Lv, M.; Li, Y.; Zhou, C.; Wang, C.; He, Z.; Liu, Y.; et al. Renewable Sourced Biodegradable Mulches and Their Environment Impact. Sci. Hortic. 2020, 268, 109375. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.; Adl, M.; Warman, P. A Review of the Use of Composted Municipal Solid Waste in Agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Blanco, I.; Cardinale, M.; Domanda, C.; Pappaccogli, G.; Romano, P.; Zorzi, G.; Rustioni, L. Mulching with Municipal Solid Waste (MSW) Compost Has Beneficial Side Effects on Vineyard Soil Compared to Mulching with Synthetic Films. Horticulturae 2024, 10, 769. [Google Scholar] [CrossRef]
- Mairata, A.; Labarga, D.; Puelles, M.; Huete, J.; Portu, J.; Rivacoba, L.; Pou, A. The Organic Mulches in Vineyards Exerted an Influence on Spontaneous Weed Cover and Plant Biodiversity. Eur. J. Agron. 2023, 151, 126997. [Google Scholar] [CrossRef]
- Evenari, M. Germination Inhibitors. Bot. Rev. 1949, 15, 153–194. [Google Scholar] [CrossRef]
- He, X.; Traina, S.J.; Logan, T.J. Chemical Properties of Municipal Solid Waste Composts. J. Environ. Qual. 1992, 21, 318–329. [Google Scholar] [CrossRef]
- Weir, T.L.; Park, S.-W.; Vivanco, J.M. Biochemical and Physiological Mechanisms Mediated by Allelochemicals. Curr. Opin. Plant Biol. 2004, 7, 472–479. [Google Scholar] [CrossRef]
- Weston, L.A.; Duke, S.O. Weed and Crop Allelopathy. Crit. Rev. Plant Sci. 2003, 22, 367–389. [Google Scholar] [CrossRef]
- Becher, M.; Symanowicz, B.; Jaremko, D.; Trzcińska, E. Chemical Composition of Compost from Municipal Waste in the Context of Use as Fertiliser. Acta Agroph. 2018, 25, 329–341. [Google Scholar] [CrossRef]
- Ibrahim, H.A.K.; Balah, M.A.A. Study the Use of Compost Tea in Weed Suppression. Int. J. Environ. Res. 2018, 12, 609–618. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. metz 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- D’Oria, M.; Tanda, M.G.; Todaro, V. Assessment of Local Climate Change: Historical Trends and RCM Multi-Model Projections Over the Salento Area (Italy). Water 2018, 10, 978. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. A Framework for International Classification, Correlation, and Communication; Food and Agriculture Organization of the United Nations, Ed.; World soil resources reports; 2006 ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105511-3. [Google Scholar]
- Moresi, M.; Mongelli, G. The Relation between the Terra Rossa and the Carbonate-Free Residue of the Underlying Limestones and Dolostones in Apulia, Italy. Clay Miner. 1988, 23, 439–446. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. (Eds.) Methods of Soil Analysis. 3: Chemical Methods. In Soil Science Society of America Book Series; SoilScience Society of America: Madison, WI, USA, 2009; ISBN 978-0-89118-825-4. [Google Scholar]
- Costello, R.C.; Sullivan, D.M. Determining the pH Buffering Capacity of Compost Via Titration with Dilute Sulfuric Acid. Waste Biomass Valor. 2014, 5, 505–513. [Google Scholar] [CrossRef]
- Gattullo, C.E.; Mininni, C.; Parente, A.; Montesano, F.F.; Allegretta, I.; Terzano, R. Effects of Municipal Solid Waste- and Sewage Sludge-Compost-Based Growing Media on the Yield and Heavy Metal Content of Four Lettuce Cultivars. Environ. Sci. Pollut. Res. 2017, 24, 25406–25415. [Google Scholar] [CrossRef]
- Mendes, J.; Pinho, T.M.; Neves Dos Santos, F.; Sousa, J.J.; Peres, E.; Boaventura-Cunha, J.; Cunha, M.; Morais, R. Smartphone Applications Targeting Precision Agriculture Practices—A Systematic Review. Agronomy 2020, 10, 855. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 30 May 2025).
- Kong, Y.; Zhang, J.; Zhang, X.; Gao, X.; Yin, J.; Wang, G.; Li, J.; Li, G.; Cui, Z.; Yuan, J. Applicability and Limitation of Compost Maturity Evaluation Indicators: A Review. Chem. Eng. J. 2024, 489, 151386. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, J.; Yang, Y.; Liu, Y.; Zhang, L.; Wang, G.; Liu, G.; Dang, R.; Li, G.; Yuan, J. Determining the Extraction Conditions and Phytotoxicity Threshold for Compost Maturity Evaluation Using the Seed Germination Index Method. Waste Manag. 2023, 171, 502–511. [Google Scholar] [CrossRef]
- Italia Decreto Legislativo 29 aprile 2010, n.75. Riordino e Revisione Della Disciplina in Materia di Fertilizzanti, a Norma Dell’articolo 13 Della Legge 7 Luglio 2009, n. 88. 2010. Available online: https://www.masaf.gov.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/10087 (accessed on 30 May 2025).
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. A Review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost Supplementation with Nutrients and Microorganisms in Composting Process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Ligneau, L.A.M.; Watt, T.A. The Effects of Domestic Compost upon the Germination and Emergence of Barley and Six Arable Weeds. Ann. Appl. Biol. 1995, 126, 153–162. [Google Scholar] [CrossRef]
- Masum, S.M.; Hossain, M.A.; Akamine, H.; Sakagami, J.-I.; Ishii, T.; Konno, T.; Nakamura, I. Comparison Study of Allelochemicals and Bispyribac-Sodium on the Germination and Growth Response of Echinochloa crus-galli L. J. Plant Growth Regul. 2019, 38, 501–512. [Google Scholar] [CrossRef]
- Leishman, M.R.; Westoby, M. The Role of Large Seed Size in Shaded Conditions: Experimental Evidence. Funct. Ecol. 1994, 8, 205. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba Bean in Cropping Systems. Field Crops Res. 2010, 115, 203–216. [Google Scholar] [CrossRef]
- Hembree, K.J.; Roncoroni, J.A.; Ingles, C.A.; Donaldson, D.R.; Elmore, C.L.; Lanini, W.T.; Shresta, A. UC IPM Pest Management Guidelines: Grape 2006. Available online: https://ipm.ucanr.edu/agriculture/grape/#gsc.tab=0 (accessed on 30 May 2025).
Month | Air Temperature (°C) | Precipitation (mm) | Wet Days (>1 mm) | ||
---|---|---|---|---|---|
Tavg | Tmax | Tmin | |||
January | 10.3 | 14.1 | 6.5 | 53.3 | 7 |
February | 10.7 | 14.7 | 6.6 | 45.8 | 6 |
March | 12.7 | 16.9 | 8.5 | 57.3 | 6 |
April | 15.6 | 20.1 | 11.2 | 44.5 | 6 |
May | 20.2 | 25.1 | 15.3 | 26.8 | 4 |
June | 24.9 | 30.1 | 16.7 | 19.9 | 3 |
July | 27.8 | 33.3 | 22.2 | 17.6 | 2 |
August | 27.9 | 33.3 | 22.5 | 27.0 | 2 |
September | 23.6 | 28.3 | 18.8 | 54.3 | 5 |
October | 19.4 | 23.7 | 15.1 | 70.7 | 6 |
November | 15.2 | 19.1 | 11.3 | 76.0 | 7 |
December | 11.4 | 15.1 | 7.8 | 70.1 | 8 |
Texture | pH (H2O) | pH (CaCl2) | EC (dS m−1) | OC (g kg−1) | TN (g kg−1) | C/N |
Clay | 8.21 ± 0.11 | 7.22 ± 0.13 | 0.19 ± 0.02 | 10.09 ± 0.44 | 1.27 ± 0.12 | 8.00 ± 0.40 |
Organic matter (g kg−1) | Pavailable (mg kg−1) | Ca2+ (cmol(+) kg−1) | Mg2+ (cmol(+) kg−1) | K+ (cmol(+) kg−1) | Na+ (cmol(+) kg−1) | CEC (cmol(+) kg−1) |
17.39 ± 0.77 | 26.45 ± 5.56 | 30.43 ± 2.16 | 3.28 ± 0.18 | 1.76 ± 0.25 | 0.52 ± 0.06 | 41.44 ± 1.93 |
pH | EC (dS m−1) | Salinity (meq 100 g−1) | OC (% d.w.) | TN (% d.w.) | C/N | Zn (mg kg−1 d.w.) | Cu (mg kg−1 d.w.) |
---|---|---|---|---|---|---|---|
7.3 ± 0.1 | 5.7 ± 0.1 | 77.5 ± 0.7 | 36.9 ± 0.9 | 2.0 ± 0.1 | 18.7 ± 0.7 | 173.5 ± 5.2 | 65.4 ± 1.7 |
Species | 1:10 (w/v) | 3:10 (w/v) | 1:2 (w/v) | 1:1 (w/v) |
---|---|---|---|---|
Cichorium intybus | 96.37 ± 13.37 (a–A) | 29.74 ± 8.85 (a–B) | 20.95 ± 16.62 (a–B) | 0 (a–B) |
Foeniculum vulgare | 65.18 ± 14.20 (a–A) | 0 (a–B) | 4.16 ± 4.16 (a–B) | 0 (a–B) |
Vicia faba minor | 100 ± 21.42 (a–A) | 86.63 ± 15.47 (b–AB) | 76.59 ± 17.50 (b–B) | 64.06 ± 6.12 (b–B) |
Secale cereale | 91.52 ± 20.41 (a–A) | 29.73 ± 7.63 (a–B) | 54.36 ± 23.53 (ab–AB) | 17.75 ± 10.69 (a–B) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, P.; Mordos, L.S.; Stifani, M.; Mello, F.; Domanda, C.; Dinu, D.G.; Gattullo, C.E.; Pappaccogli, G.; Zorzi, G.; Accogli, R.A.; et al. Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management. Environments 2025, 12, 190. https://doi.org/10.3390/environments12060190
Romano P, Mordos LS, Stifani M, Mello F, Domanda C, Dinu DG, Gattullo CE, Pappaccogli G, Zorzi G, Accogli RA, et al. Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management. Environments. 2025; 12(6):190. https://doi.org/10.3390/environments12060190
Chicago/Turabian StyleRomano, Piergiorgio, Lorenzo Samuil Mordos, Marcello Stifani, Francesco Mello, Corrado Domanda, Daniel Grigorie Dinu, Concetta Eliana Gattullo, Gianluca Pappaccogli, Gianni Zorzi, Rita Annunziata Accogli, and et al. 2025. "Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management" Environments 12, no. 6: 190. https://doi.org/10.3390/environments12060190
APA StyleRomano, P., Mordos, L. S., Stifani, M., Mello, F., Domanda, C., Dinu, D. G., Gattullo, C. E., Pappaccogli, G., Zorzi, G., Accogli, R. A., & Rustioni, L. (2025). Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management. Environments, 12(6), 190. https://doi.org/10.3390/environments12060190