Timing Matters, Not Just the Treatment: Phenological-Stage-Specific Effects of Seaweed and Ethanol Applications on Postharvest Quality of ‘Tarsus Beyazı’ Grapes
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Setup and Applications
Preharvest Applications
- BBCH 13 (3rd–4th leaf stage): 0.40%;
- BBCH 60 (first flower sheath opening): 0.50%;
- BBCH 71 (fruit set): 0.50%;
- BBCH 75 (chickpea-sized berries): 0.50%;
- BBCH 81 (start of ripening): 0.60%;
- BBCH 89 (harvest maturity): 0.60%.
- Control (no treatment);
- Ethanol (only postharvest ethanol treatment);
- Seaweed extract (only preharvest treatment);
- Seaweed extract + ethanol (both preharvest and postharvest treatment).
2.2. Cluster Weight Measurements and Weight Loss Calculations
2.3. Detachment Force Measurement
2.4. Pedicel Dehydration Measurement
2.5. Rotten Berry Ratio Determination
2.6. Determination of Total Soluble Solids (TSS, °Brix)
2.7. Determination of pH
2.8. Determination of Titratable Acidity (TA)
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schultz, H.R. Global climate change, sustainability, and some challenges for grape and wine production. JWE 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The role of biostimulants as alleviators of biotic and abiotic stresses in grapevine: A review. Plants 2022, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.E.; Shahrukh, S.; Hossain, S.A. Chemical fertilizers and pesticides: Impacts on soil degradation, groundwater, and human health in Bangladesh. In Environmental Degradation: Challenges and Strategies for Mitigation; Springer International Publishing: Cham, Switzerland, 2022; pp. 63–92. [Google Scholar]
- Taskos, D.; Stamatiadis, S.; Yvin, J.C.; Jamois, F. Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a Merlot vineyard. Sci. Hortic. 2019, 250, 27–32. [Google Scholar] [CrossRef]
- Sadiq, S.; Abubakar, I.A.; Nasif, A.; Kabiru, M.A.; Abdullahi, A.; Abdullahi, L.U. Modern Approaches to Sustainable Agriculture; Faculty of Agriculture and Veterinary Sciences, Mewar University, Chittorgarh: Rajasthan, India, 2024; Volume 9, pp. 2298–2307. [Google Scholar]
- Samuels, L.J.; Setati, M.E.; Blancquaert, E.H. Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera L. cultivars. Plants 2022, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Ansabayeva, A.; Makhambetov, M.; Rebouh, N.Y.; Abdelkader, M.; Saudy, H.S.; Hassan, K.M.; Nasser, M.A.; Ali, M.A.A.; Ebrahim, M. Plant Growth-Promoting Microbes for Resilient Farming Systems: Mitigating Environmental Stressors and Boosting Crops Productivity—A Review. Horticulturae 2025, 11, 260. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Mughunth, R.J.; Velmurugan, S.; Mohanalakshmi, M.; Vanitha, K. A review of seaweed extract’s potential as a biostimulant to enhance growth and mitigate stress in horticulture crops. Sci. Hortic. 2024, 334, 113312. [Google Scholar] [CrossRef]
- Sequeira, S.O.; Phillips, A.J.; Cabrita, E.J.; Macedo, M.F. Ethanol as an antifungal treatment for paper: Short-term and long-term effects. Stud. Conserv. 2017, 62, 33–42. [Google Scholar] [CrossRef]
- Pesis, E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol. 2005, 37, 1–19. [Google Scholar] [CrossRef]
- Romanazzi, G.; Karabulut, O.A.; Smilanick, J.L. Combination of chitosan and ethanol to control postharvest gray mold of table grapes. Postharvest Biol. Technol. 2007, 45, 134–140. [Google Scholar] [CrossRef]
- Bai, J.; Plotto, A.; Spotts, R.; Rattanapanone, N. Ethanol vapor and saprophytic yeast treatments reduce decay and maintain quality of intact and fresh-cut sweet cherries. Postharvest Biol. Technol. 2011, 62, 204–212. [Google Scholar] [CrossRef]
- Strano, M.C.; Altieri, G.; Allegra, M.; Di Renzo, G.C.; Paterna, G.; Matera, A.; Genovese, F. Postharvest technologies of fresh citrus fruit: Advances and recent developments for the loss reduction during handling and storage. Horticulturae 2022, 8, 612. [Google Scholar] [CrossRef]
- Guillaume, E.; Loferme-Pedespan, N.; Duclerget-Baudequin, A.; Raguideau, A.; Fulton, R.; Lieval, L. Ethanol fireplaces: Safety matters. Saf. Sci. 2013, 57, 243–253. [Google Scholar] [CrossRef]
- Karabulut, O.A.; Gabler, F.M.; Mansour, M.; Smilanick, J.L. Postharvest ethanol and hot water treatments of table grapes to control gray mold. Postharvest Biol. Technol. 2004, 34, 169–177. [Google Scholar] [CrossRef]
- Topuz, H.; Keskin, N.; Kiraz, M.E.; Tarım, G.; Topuz, F.; Ozel, N.; Kaya, O. Effect of foliar spraying of Ascophyllum nodosum extracts on grape quality of ‘Tarsus Beyazı’. Erwerbs-Obstbau 2023, 65, 1873–1879. [Google Scholar] [CrossRef]
- Zhang, R.; Bian, Z.; Wu, P.; Liu, Y.; Li, B.; Xiong, J.; Zhang, Y.; Zhu, B. Nondestructive prediction of fruit detachment force for investigating postharvest grape abscission. Postharvest Biol. Technol. 2024, 209, 112691. [Google Scholar] [CrossRef]
- Zoccatelli, G.; Zenoni, S.; Savoi, S.; Dal Santo, S.; Tononi, P.; Zandonà, V.; Dal Cin, A.; Guantieri, V.; Pezzotti, M.; Tornielli, G.; et al. Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Aust. J. Grape Wine Res. 2013, 19, 171–179. [Google Scholar] [CrossRef]
- Porep, J.U.; Walter, R.; Kortekamp, A.; Carle, R. Ergosterol as an objective indicator for grape rot and fungal biomass in grapes. Food Control 2014, 37, 77–84. [Google Scholar] [CrossRef]
- Mori, M.; Liu, B.; Shumate, J.; Liu, T.M.; Urrutia, J.J.; Morimoto, S.; Nakamura, K. Total Soluble Solids, pH, and Titratable Acidity Prediction in Wine Grape Bunch from Veraison to Harvest using Hyperspectral Imaging. In Proceedings of the 2024 ASABE Annual International Meeting, Anaheim, CA, USA, 28–31 July 2024; American Society of Agricultural and Biological Engineers: St Joseph, MI, USA, 2024; p. 1. [Google Scholar]
- Kalopesa, E.; Gkrimpizis, T.; Samarinas, N.; Tsakiridis, N.L.; Zalidis, G.C. Rapid determination of wine grape maturity level from pH, titratable acidity, and sugar content using non-destructive in situ infrared spectroscopy and multi-head attention convolutional neural networks. Sensors 2023, 23, 9536. [Google Scholar] [CrossRef]
- VanderWeide, J.; Nasrollahiazar, E.; Schultze, S.; Sabbatini, P.; Castellarin, S.D. Impact of Cluster Thinning on Wine Grape Yield and Fruit Composition: A Review and Meta-Analysis. Aust. J. Grape Wine Res. 2024, 1, 2504396. [Google Scholar] [CrossRef]
- Galindo, F.G.; Herppich, W.; Gekas, V.; Sjöholm, I. Factors affecting quality and postharvest properties of vegetables: Integration of water relations and metabolism. Crit. Rev. Food Sci. Nutr. 2004, 44, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.S.; Siddiqui, M.W.; Ahmad, M.S.; Siddiqui, M.W. Factors affecting postharvest quality of fresh fruits. In Postharvest Quality Assurance of Fruits: Practical Approaches for Developing Countries; Springer: Berlin/Heidelberg, Germany, 2015; pp. 7–32. [Google Scholar]
- Chen, K.; Tian, R.; Jiang, J.; Xiao, M.; Wu, K.; Kuang, Y.; Deng, P.; Zhao, X.; Jiang, F. Moisture loss inhibition with biopolymer films for preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2024, 263, 130337. [Google Scholar] [CrossRef]
- Asgarian, Z.S.; Palou, L.; Souza, R.F.L.D.; Quintanilla, P.G.; Taberner, V.; Karimi, R.; Pérez-Gago, M.B. Hydroxypropyl methylcellulose and gum Arabic composite edible coatings amended with geraniol to control postharvest brown rot and maintain quality of cold-stored plums. Foods 2023, 12, 2978. [Google Scholar] [CrossRef]
- Elatafi, E.; Elshahat, A.; Xue, Y.; Shaonan, L.; Suwen, L.; Tianyu, D.; Fang, J. Effects of different storage temperatures and methyl jasmonate on grape quality and antioxidant activity. Horticulturae 2023, 9, 1282. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Basiak, E.; Linke, M.; Debeaufort, F.; Lenart, A.; Geyer, M. Impact of biodegradable materials on the quality of plums. Coatings 2022, 12, 226. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.A.; Hagenmaier, R.H. Alternatives to shellac coatings provide comparable gloss, internal gas modification, and quality for ‘Delicious’ apple fruit. Hort Sci. 2002, 37, 559–563. [Google Scholar] [CrossRef]
- Fagundes, C.; Palou, L.; Monteiro, A.R.; Pérez-Gago, M.B. Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biol. Technol. 2014, 92, 1–8. [Google Scholar] [CrossRef]
- Pastor, C.; Sánchez-González, L.; Marcilla, A.; Chiralt, A.; Cháfer, M.; González-Martínez, C. Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest Biol. Technol. 2011, 60, 64–70. [Google Scholar] [CrossRef]
- Kingwascharapong, P.; Arisa, K.; Karnjanapratum, S.; Tanaka, F.; Tanaka, F. Effect of gelatin-based coating containing frog skin oil on the quality of persimmon and its characteristics. Sci. Hortic. 2020, 260, 108864. [Google Scholar] [CrossRef]
- Martínez-Blay, V.; Pérez-Gago, M.B.; de la Fuente, B.; Carbó, R.; Palou, L. Edible coatings formulated with antifungal GRAS salts to control citrus anthracnose caused by Colletotrichum gloeosporioides and preserve postharvest fruit quality. Coatings 2020, 10, 730. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Srivastav, M.; Varghese, E. Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Sci. Hortic. 2017, 226, 104–109. [Google Scholar] [CrossRef]
- Azizi, M.; Rastgar, M.; Seyed Dorraji, M.S. Biopolymers for Coatings. In Bio-Based Polymers: Farm to Industry; Volume 2: Current Trends and Applications American Chemical Society; American Chemical Society: Washington, DC, USA, 2024; pp. 61–80. [Google Scholar]
- Navarro-Tarazaga, M.L.; Massa, A.; Pérez-Gago, M.B. Effect of beeswax content on hydroxypropyl methylcellulose-based edible film properties and postharvest quality of coated plums (Cv. Angeleno). LWT-Food Sci. Technol. 2011, 44, 2328–2334. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Unal, S.; Sabir, F.K.; Sabir, A. Aloe vera treatments extend the postharvest life of table grapes by delaying weight loss, berry softening, rachis browning, and biochemical changes. Erwerbs-Obstbau 2022, 64, 767–775. [Google Scholar] [CrossRef]
- Carrillo, N.; Piccoli, P.; Bottini, R.; Rodríguez, J.; Berli, F. Girdling of shoots at flowering reduces shatter in grapevine cv. Malbec. Aust. J. Grape Wine Res. 2020, 26, 102–109. [Google Scholar] [CrossRef]
- Belwal, T.; Cravotto, C.; Prieto, M.A.; Venskutonis, P.R.; Daglia, M.; Devkota, H.P.; Baldi, A.; Ezzat, S.M.; Gómez-Gómez, L.; Salama, M.M.; et al. Effects of different drying techniques on the quality and bioactive compounds of plant-based products: A critical review on current trends. Dry. Technol. 2022, 40, 1539–1561. [Google Scholar] [CrossRef]
- Palumbo, M.; Cefola, M.; Pace, B.; Attolico, G.; Colelli, G. Computer vision system based on conventional imaging for non-destructively evaluating quality attributes in fresh and packaged fruit and vegetables. Postharvest Biol. Technol. 2023, 200, 112332. [Google Scholar] [CrossRef]
- Kadi, R.H. Development of zinc oxide nanoparticles as safe coating for the shelf life extension of grapes (Vitisvinifera L., Red Globe) fruits. Mater. Express 2023, 13, 182–188. [Google Scholar] [CrossRef]
- Mei, L.; Shi, L.; Song, X.; Liu, S.; Cheng, Q.; Zhu, K.; Zhuge, R. Characterization of carboxymethyl cellulose films incorporated with Chinese fir essential oil and their application to quality improvement of Shine Muscat grape. Coatings 2021, 11, 97. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Jiyong, S.; Mahunu, G.K.; Zhai, X.; Mariod, A.A. Quality and postharvest-shelf life of cold-stored strawberry fruit as affected by gum arabic (Acacia senegal) edible coating. J. Food Biochem. 2018, 42, e12527. [Google Scholar] [CrossRef]
- Mejía-Correal, K.B.; Marcelo, V.; Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R. Total soluble solids in grape must estimation using vis-nir-swir reflectance measured in fresh berries. Agronomy 2023, 13, 2275. [Google Scholar] [CrossRef]
- Khalil, U.; Rajwana, I.A.; Razzaq, K.; Farooq, U.; Saleem, B.A.; Brecht, J.K. Quality attributes and biochemical changes in white and colored table grapes as influenced by harvest maturity and ambient postharvest storage. S. Afr. J. Bot. 2023, 154, 273–281. [Google Scholar] [CrossRef]
- Gautam, H.; Fatma, M.; Sehar, Z.; Iqbal, N.; Albaqami, M.; Khan, N.A. Exogenously-sourced ethanol positively modulates photosynthesis, carbohydrate metabolism, and antioxidant defense to enhance heat tolerance in rice. Int. J. Mol. Sci. 2022, 23, 1031. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Q.; Yin, F.; Song, M.; Cai, W.; Shuai, L. Methyl jasmonate treatment alleviates chilling injury and improves antioxidant system of okra pod during cold storage. Food Sci. Nutr. 2023, 11, 2049–2060. [Google Scholar] [CrossRef]
- Ahmadi Soleimanie, S.; Vafaee, Y. Storability and postharvest quality of five Iranian grape cultivars during cold storage. Plant Physiol. Rep. 2023, 28, 320–331. [Google Scholar] [CrossRef]
- Yun, Z.E.; Jin, S.; Ding, Y.; Wang, Z.; Gao, H.; Pan, Z.; Xu, J.; Cheng, Y.; Deng, X. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. J. Exp. Bot. 2012, 63, 2873–2893. [Google Scholar] [CrossRef] [PubMed]
- Rusjan, D. Impacts of gibberellin (GA3) on sensorial quality and storability of table grape (Vitis vinifera L.). Acta Agric. Slov. 2010, 95, 163–173. [Google Scholar] [CrossRef]
- Kashyap, K.; Kashyap, D.; Nitin, M.; Ramchiary, N.; Banu, S. Characterizing the nutrient composition, physiological maturity, and effect of cold storage in Khasi mandarin (Citrus reticulata Blanco). Int. J. Fruit. Sci. 2020, 20, 521–540. [Google Scholar] [CrossRef]
- Cordenunsi, B.R.; Nascimento, J.D.; Lajolo, F.M. Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chem. 2003, 83, 167–173. [Google Scholar] [CrossRef]
- Aboryia, M.S.; El-Gioushy, S.F.; Sami, R.; Aljumayi, H.; Alyamani, A.; Almasoudi, A.; Gawish, M.S. Synergistic effect of dipping in Aloe vera gel and mixing with chitosan or calcium chloride on the activities of antioxidant enzymes and cold storage potential of peach (Prunus persica L.) fruits. Coatings 2022, 12, 498. [Google Scholar] [CrossRef]
- Ozden, M.; Qaderi, R. Coating of Chitosan and Salicylic Acid Can Maintain Quality Characteristics of Table Grapes. J. Anim. Plant Sci. 2023, 33, 1058–1070. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Hu, J.; Liu, H. Inhibitory effects of biomass degradation products on ethanol fermentation and a strategy to overcome them. BioResources 2014, 9, 4323–4335. [Google Scholar] [CrossRef]
- Walker, R.P.; Famiani, F. Organic acids in fruits: Metabolism, functions and contents. Hortic. Rev. 2018, 45, 371–430. [Google Scholar]
- Jiang, B.; Fang, X.; Fu, D.; Wu, W.; Han, Y.; Chen, H.; Liu, R.; Gao, H. Exogenous salicylic acid regulates organic acids metabolism in postharvest blueberry fruit. Front. Plant Sci. 2022, 13, 1024909. [Google Scholar] [CrossRef] [PubMed]
- Bondada, B.; Harbertson, E.; Shrestha, P.M.; Keller, M. Temporal extension of ripening beyond its physiological limits imposes physical and osmotic challenges perturbing metabolism in grape (Vitis vinifera L.) berries. Sci. Hortic. 2017, 219, 135–143. [Google Scholar] [CrossRef]
- Pereira, S.; Silva, V.; Guedes, F.; Raimundo, F.; Sousa, J.R.; Silva, A.P.; Gonçalves, B. Physiological and Biochemical Responses of ‘Burlat’Sweet Cherry to Pre-Harvest Foliar Application of Calcium and Seaweed Extracts. Horticulturae 2024, 10, 1173. [Google Scholar] [CrossRef]
Period | Treatment | Initial Weight (g) | Cluster Weight (g) | Weight Loss (%) | Detachment Force (N) | Pedicel Dehydration (%) | Rotten Berry (%) | TSS (°Brix) | pH | Titratable Acidity (g/L) |
---|---|---|---|---|---|---|---|---|---|---|
Harvest | Control | – | 188.43 ± 15.44 | – | 172.83 ± 6.38 | 0.10 ± 0.00 h | – | 21.00 ± 1.11 | 3.79 ± 0.08 | 0.52 ± 0.03 |
Control + Ethanol | – | 204.23 ± 3.30 | – | 172.83 ± 12.35 | 0.10 ± 0.00 h | – | 21.70 ± 0.78 | 3.80 ± 0.08 | 0.52 ± 0.03 | |
Seaweed | – | 232.97 ± 25.23 | – | 158.93 ± 6.27 | 0.10 ± 0.00 h | – | 20.07 ± 0.38 | 3.54 ± 0.07 | 0.63 ± 0.03 | |
Seaweed + Ethanol | – | 200.37 ± 16.32 | – | 162.67 ± 19.14 | 0.10 ± 0.00 h | – | 20.07 ± 0.38 | 3.50 ± 0.07 | 0.63 ± 0.03 | |
One Weeks After Storage | Control | 224.00 ± 75.44 | 213.50 ± 70.26 | 4.53 ± 1.61 c–g | 132.37 ± 34.24 | 0.70 ± 0.00 f | 26.78 ± 4.34 e–h | 20.86 ± 0.14 | 3.74 ± 0.04 | 0.56 ± 0.02 |
Control + Ethanol | 210.00 ± 35.27 | 196.50 ± 29.33 | 6.17 ± 3.76 b–g | 135.57 ± 4.24 | 0.60 ± 0.10 g | 22.23 ± 7.52 f–h | 21.73 ± 1.33 | 3.71 ± 0.08 | 0.58 ± 0.03 | |
Seaweed | 220.33 ± 66.54 | 218.17 ± 66.46 | 1.07 ± 0.47 h | 163.20 ± 34.24 | 0.57 ± 0.06 g | 24.58 ± 9.23 f–h | 20.23 ± 0.51 | 3.53 ± 0.08 | 0.62 ± 0.02 | |
Seaweed + Ethanol | 181.17 ± 51.03 | 170.17 ± 52.78 | 6.63 ± 3.13 b–g | 139.17 ± 31.39 | 0.70 ± 0.00 f | 20.86 ± 4.50 gh | 19.86 ± 0.75 | 3.52 ± 0.03 | 0.62 ± 0.02 | |
Two Weeks After Storage | Control | 155.00 ± 19.58 | 148.67 ± 18.71 | 4.07 ± 0.35 e–h | 86.27 ± 6.99 | 0.93 ± 0.12 a–c | 37.17 ± 8.25 c–g | 20.83 ± 0.42 | 3.67 ± 0.06 | 0.60 ± 0.05 |
Control + Ethanol | 200.50 ± 29.40 | 193.67 ± 28.07 | 3.37 ± 0.72 gh | 112.10 ± 7.53 | 0.83 ± 0.06 de | 23.28 ± 11.05 f–h | 20.41 ± 0.92 | 3.60 ± 0.03 | 0.58 ± 0.04 | |
Seaweed | 229.50 ± 45.71 | 214.67 ± 47.29 | 6.73 ± 3.50 b–g | 101.67 ± 16.25 | 0.77 ± 0.06 ef | 18.52 ± 5.07 h | 19.39 ± 0.74 | 3.48 ± 0.03 | 0.63 ± 0.04 | |
Seaweed + Ethanol | 206.67 ± 20.10 | 199.50 ± 18.38 | 3.43 ± 0.51 f–h | 104.87 ± 14.26 | 0.83 ± 0.06 de | 32.00 ± 6.52 d–h | 20.31 ± 0.64 | 3.47 ± 0.12 | 0.62 ± 0.07 | |
Three Weeks After Storage | Control | 201.33 ± 70.11 | 188.83 ± 66.62 | 6.23 ± 1.23 b–g | 129.60 ± 7.77 | 1.00 ± 0.00 a | 65.81 ± 5.76 a | 19.81 ± 0.87 | 3.61 ± 0.02 | 0.62 ± 0.06 |
Control + Ethanol | 202.33 ± 65.54 | 192.17 ± 62.01 | 4.97 ± 0.38 b–g | 116.27 ± 15.21 | 1.00 ± 0.00 a | 49.22 ± 6.92 bc | 19.83 ± 0.76 | 3.65 ± 0.08 | 0.51 ± 0.08 | |
Seaweed | 263.83 ± 116.78 | 254.83 ± 13.79 | 3.50 ± 0.40 f–h | 126.00 ± 21.31 | 0.93 ± 0.06 a–c | 61.63 ± 12.61 ab | 20.99 ± 0.29 | 3.50 ± 0.10 | 0.63 ± 0.08 | |
Seaweed + Ethanol | 243.33 ± 82.13 | 232.67 ± 78.94 | 4.37 ± 0.67 d–g | 107.80 ± 38.85 | 1.00 ± 0.00 a | 39.01 ± 4.53 c–f | 19.55 ± 0.44 | 3.51 ± 0.08 | 0.64 ± 0.02 | |
Shelf Life—Week One | Control | 206.83 ± 23.38 | 190.83 ± 21.33 | 7.73 ± 1.08 a–d | 127.37 ± 20.85 | 0.97 ± 0.06 ab | 32.36 ± 3.89 d–h | 20.80 ± 0.21 | 3.64 ± 0.05 | 0.68 ± 0.02 |
Control + Ethanol | 211.17 ± 34.54 | 189.33 ± 39.93 | 10.77 ± 4.30 a | 125.70 ± 35.64 | 0.97 ± 0.06 ab | 29.07 ± 6.74 d–h | 22.47 ± 1.18 | 3.68 ± 0.09 | 0.64 ± 0.02 | |
Seaweed | 229.83 ± 10.21 | 214.00 ± 10.50 | 6.90 ± 0.44 b–f | 137.93 ± 32.45 | 0.90 ± 0.00 b–d | 31.56 ± 0.96 d–h | 20.94 ± 1.02 | 3.60 ± 0.02 | 0.63 ± 0.05 | |
Seaweed + Ethanol | 192.33 ± 31.66 | 178.33 ± 29.78 | 7.30 ± 0.66 b–e | 104.07 ± 37.83 | 1.00 ± 0.00 a | 28.56 ± 11.60 d–h | 20.47 ± 0.58 | 3.47 ± 0.05 | 0.68 ± 0.05 | |
Shelf Life—Week Two | Control | 170.00 ± 26.92 | 156.67 ± 25.59 | 7.87 ± 0.95 a–c | 199.30 ± 21.24 | 0.90 ± 0.00 b–d | 34.85 ± 7.23 c–h | 21.46 ± 0.97 | 3.74 ± 0.10 | 0.62 ± 0.02 |
Control + Ethanol | 234.83 ± 31.19 | 219.33 ± 30.67 | 6.67 ± 2.06 b–g | 173.33 ± 21.70 | 0.87 ± 0.06 cd | 42.60 ± 12.77 c–e | 21.63 ± 1.16 | 3.80 ± 0.17 | 0.57 ± 0.05 | |
Seaweed | 195.67 ± 60.12 | 184.83 ± 57.71 | 5.67 ± 0.96 b–g | 156.10 ± 15.69 | 1.00 ± 0.00 a | 18.88 ± 6.32 h | 20.43 ± 0.25 | 3.58 ± 0.09 | 0.64 ± 0.05 | |
Seaweed + Ethanol | 207.67 ± 29.88 | 195.17 ± 27.11 | 5.97 ± 0.55 b–g | 145.13 ± 42.30 | 0.90 ± 0.10 b–d | 35.01 ± 9.33 c–h | 20.83 ± 1.00 | 3.53 ± 0.08 | 0.69 ± 0.05 | |
Shelf Life—Week Three | Control | 173.33 ± 30.66 | 159.00 ± 27.78 | 8.27 ± 0.85 ab | 171.67 ± 22.91 | 1.00 ± 0.00 a | 45.46 ± 2.61 cd | 21.20 ± 0.09 | 3.59 ± 0.22 | 0.60 ± 0.03 |
Control + Ethanol | 166.67 ± 17.01 | 153.33 ± 17.08 | 8.03 ± 1.72 ab | 176.67 ± 16.26 | 1.00 ± 0.00 a | 30.69 ± 4.10 d–h | 21.77 ± 1.16 | 3.65 ± 0.10 | 0.65 ± 0.09 | |
Seaweed | 258.67 ± 42.59 | 241.50 ± 38.80 | 6.57 ± 0.81 b–g | 152.37 ± 13.96 | 1.00 ± 0.00 a | 24.17 ± 5.71 f–h | 20.24 ± 1.14 | 3.55 ± 0.11 | 0.62 ± 0.10 | |
Seaweed + Ethanol | 171.00 ± 46.89 | 159.33 ± 43.82 | 6.83 ± 0.81 b–g | 164.90 ± 34.26 | 1.00 ± 0.00 a | 30.53 ± 23.47 d–h | 20.11 ± 0.79 | 3.43 ± 0.08 | 0.65 ± 0.04 | |
Average of Periods | Harvest | – | 206.50 ± 22.39 | – | 166.82 ± 12.26 A | 0.10 ± 0.00 | – | 20.71 ± 0.95 A–C | 3.67 ± 0.15 A | 0.58 ± 0.07 C |
One Weeks After Storage | 208.88 ± 53.36 | 199.58 ± 52.43 | 4.60 ± 3.17 | 142.58 ± 27.74 B | 0.64 ± 0.08 | 23.61 ± 6.20 | 20.67 ± 1.01 A–C | 3.63 ± 0.11 AB | 0.59 ± 0.03 BC | |
Two Weeks After Storage | 197.92 ± 38.44 | 189.13 ± 36.53 | 4.40 ± 2.11 | 101.23 ± 14.18 D | 0.84 ± 0.09 | 27.74 ± 10.24 | 20.24 ± 0.81 BC | 3.56 ± 0.11 B | 0.61 ± 0.05 BC | |
Three Weeks After Storage | 227.71 ± 78.54 | 217.13 ± 76.39 | 4.77 ± 1.22 | 119.92 ± 22.12 CD | 0.98 ± 0.04 | 53.92 ± 12.99 | 20.05 ± 0.79 C | 3.57 ± 0.09 B | 0.60 ± 0.08 BC | |
Shelf Life—Week One | 210.04 ± 26.70 | 193.13 ± 27.16 | 8.18 ± 2.50 | 123.77 ± 30.44 BC | 0.96 ± 0.05 | 30.39 ± 6.20 | 21.17 ± 1.07 A | 3.60 ± 0.10 AB | 0.66 ± 0.04 A | |
Shelf Life—Week Two | 202.04 ± 41.49 | 189.00 ± 39.75 | 6.54 ± 1.39 | 168.47 ± 31.52 A | 0.92 ± 0.07 | 32.83 ± 11.99 | 21.09 ± 0.93 A | 3.66 ± 0.15 A | 0.63 ± 0.06 AB | |
Shelf Life—Week Three | 192.42 ± 50.55 | 178.29 ± 47.70 | 7.43 ± 1.23 | 166.40 ± 21.98 A | 1.00 ± 0.00 | 32.71 ± 13.30 | 20.83 ± 1.05 AB | 3.56 ± 0.14 B | 0.63 ± 0.07 AB | |
Average of Treatments | Control | 188.42 ± 46.51 B | 177.99 ± 41.03 B | 6.45 ± 1.93 | 145.63 ± 39.52 | 0.80 ± 0.31 | 40.40 ± 13.89 | 20.85 ± 0.75 B | 3.68 ± 0.11 A | 0.60 ± 0.06 BC |
Control + Ethanol | 204.25 ± 38.39 AB | 192.65 ± 34.58 B | 6.66 ± 3.25 | 144.64 ± 31.44 | 0.77 ± 0.31 | 32.85 ± 12.52 | 21.36 ± 1.24 A | 3.70 ± 0.11 A | 0.58 ± 0.07 C | |
Seaweed | 232.97 ± 59.87 A | 223.00 ± 54.60 A | 5.07 ± 2.55 | 142.31 ± 27.99 | 0.75 ± 0.31 | 29.89 ± 16.54 | 20.33 ± 0.78 C | 3.54 ± 0.08 B | 0.63 ± 0.05 AB | |
Seaweed + Ethanol | 200.36 ± 46.90 AB | 190.79 ± 42.93 B | 5.76 ± 1.86 | 132.66 ± 37.39 | 0.79 ± 0.31 | 30.99 ± 11.59 | 20.17 ± 0.69 C | 3.50 ± 0.07 B | 0.65 ± 0.05 A | |
Period | p-value | 0.618 | 0.471 | 0.000 | 0.000 | 0.000 | 0.000 | 0.008 | 0.004 | 0.004 |
Treatments | p-value | 0.070 | 0.018 | 0.038 | 0.288 | 0.006 | 0.003 | 0.000 | 0.000 | 0.000 |
Period × Treatments | p-value | 0.749 | 0.826 | 0.014 | 0.531 | 0.001 | 0.023 | 0.176 | 0.793 | 0.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarım, G.; Karakus, S.; Keskin, N.; Hatterman-Valenti, H.; Kaya, O. Timing Matters, Not Just the Treatment: Phenological-Stage-Specific Effects of Seaweed and Ethanol Applications on Postharvest Quality of ‘Tarsus Beyazı’ Grapes. Horticulturae 2025, 11, 656. https://doi.org/10.3390/horticulturae11060656
Tarım G, Karakus S, Keskin N, Hatterman-Valenti H, Kaya O. Timing Matters, Not Just the Treatment: Phenological-Stage-Specific Effects of Seaweed and Ethanol Applications on Postharvest Quality of ‘Tarsus Beyazı’ Grapes. Horticulturae. 2025; 11(6):656. https://doi.org/10.3390/horticulturae11060656
Chicago/Turabian StyleTarım, Güzin, Sinem Karakus, Nurhan Keskin, Harlene Hatterman-Valenti, and Ozkan Kaya. 2025. "Timing Matters, Not Just the Treatment: Phenological-Stage-Specific Effects of Seaweed and Ethanol Applications on Postharvest Quality of ‘Tarsus Beyazı’ Grapes" Horticulturae 11, no. 6: 656. https://doi.org/10.3390/horticulturae11060656
APA StyleTarım, G., Karakus, S., Keskin, N., Hatterman-Valenti, H., & Kaya, O. (2025). Timing Matters, Not Just the Treatment: Phenological-Stage-Specific Effects of Seaweed and Ethanol Applications on Postharvest Quality of ‘Tarsus Beyazı’ Grapes. Horticulturae, 11(6), 656. https://doi.org/10.3390/horticulturae11060656