Microbial-Enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes
Abstract
:1. Introduction
2. Materials and Methods
Topic Analysis and Categorization of Studies
3. AMF and Abiotic Stress Tolerance in Grapevines
Single Strains vs. Multi-Species
4. PGPR and Abiotic Stress Tolerance in Grapevines
Single Strains vs. Multi-Species
5. Endophytes and Abiotic Stress Tolerance in Grapevines
6. Synergistic Effects of Combined AMF, PGPR and PGPF
7. Grapevine Molecular Pathways and Gene Expression Under Stress Conditions
7.1. Stress Response Mechanisms: Multiple Case Studies
7.2. Molecular Pathways and Gene Expression Patterns Associated with Beneficial Interactions
7.3. Laboratory and Field Trial Evidence
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–24. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). State of the World Vine and Wine Sector in 2024; OIV: Paris, France, 2024; Available online: https://www.oiv.int/sites/default/files/2025-04/OIV-State_of_the_World_Vine-and-Wine-Sector-in-2024.pdf (accessed on 15 January 2025).
- Walker, M.A.; Heinitz, C.; Riaz, S.; Uretsky, J. Grape Taxonomy and Germplasm. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 25–38. [Google Scholar] [CrossRef]
- Ollat, N.; Marguerit, E.; de Miguel, M.; Coupel-Ledru, A.; Cookson, S.J.; van Leeuwen, C.; Vivin, P.; Gallusci, P.; Segura, V.; Duchêne, E. Moving towards grapevine genotypes better adapted to abiotic constraints. VITIS 2023, 62, 67–76. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines; Academic Press: Cambridge, MA, USA, 2020; Available online: https://books.google.com.lb/books?id=g_zLDwAAQBAJ (accessed on 16 January 2025).
- Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 2015, 16, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Van Velthuizen, H.; Huddleston, B.; Fischer, G.; Salvatore, M.; Ataman, E.; Nachtergaele, F.O.; Zanetti, M.; Bloise, M. Mapping Biophysical Factors That Influence Agricultural Production and Rural Vulnerability; Food Agriculture Organization of the United Nations: Rome, Italy, 2007; Available online: https://cir.nii.ac.jp/crid/1130000796474035200 (accessed on 15 January 2025).
- Theocharis, S.; Gkrimpizis, T.; Karadimou, C.; Nikolaou, K.-E.; Koundouras, S.; Taskos, D. Exploring the interplay of bud load and pruning type in shaping ‘Xinomavro’ (Vitis vinifera L.) vine growth, yield, and berry composition. Horticulturae 2024, 10, 1111. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). Annual Assessment 2023; OIV: Paris, France, 2023; Available online: https://www.oiv.int/sites/default/files/documents/Annual_Assessment_2023.pdf (accessed on 2 March 2025).
- Carvalho, L.C.; Vidigal, P.; Amâncio, S. Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Front. Environ. Sci. 2015, 3, 20. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.-T.; Machado, N.; Moutinho-Pereira, J. Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates: A review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate change impacts and adaptations of wine production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Zhou-Tsang, A.; Wu, Y.; Henderson, S.W.; Walker, A.R.; Borneman, A.R.; Walker, R.R.; Gilliham, M. Grapevine salt tolerance. Aust. J. Grape Wine Res. 2021, 27, 149–168. [Google Scholar] [CrossRef]
- Al-Taey, D.K.A.; Al-Ameer, A.A. Effect of salinity on the growth and yield of grapes: A review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 042038. [Google Scholar] [CrossRef]
- Torres, N.; Yu, R.; Kurtural, S.K. Arbuscular mycorrhizal fungi inoculation and applied water amounts modulate the response of young grapevines to mild water stress in a hyper-arid season. Front. Plant Sci. 2021, 11, 622209. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, N.; Torres, N.; Garmendia, I.; Hilbert, G.; Antolín, M.C. Mycorrhizal Symbiosis Improve Fruit Quality in Tempranillo Grapevine Sensitive to Low-Moderate Warming. Sci. Hortic. 2023, 315, 111993. [Google Scholar] [CrossRef]
- Ju, Y.; Min, Z.; Zhang, Y.; Zhang, K.; Liu, M.; Fang, Y. Transcriptome Profiling Provide New Insights into the Molecular Mechanism of Grapevine Response to Heat, Drought, and Combined Stress. Sci. Hortic. 2021, 286, 110076. [Google Scholar] [CrossRef]
- Marín, D.; Martín-Palomo, M.J.; Uriarte, D.; Santos, J.; Royo, J.B.; Pérez, D. The Role of Rootstocks for Grape Growing Adaptation to Climate Change: Meta-Analysis of the Research Conducted in Spanish Viticulture. OENO One 2023, 57, 284–290. [Google Scholar] [CrossRef]
- El-Salhy, A.M.; Habib, H.A.; Gomaa, A.M. Responses of Some Grapevine Rootstocks to Long-Term Salinity and Drought Stress Conditions. Middle East J. Agric. Res. 2014, 3, 479–490. Available online: https://www.curresweb.com/mejar/mejar/2014/479-490.pdf (accessed on 10 January 2025).
- Zarraonaindia, I.; Owens, S.M.; Weisenhorn, P.; West, K.; Hampton-Marcell, J.; Lax, S.; Bokulich, N.A.; Mills, D.A.; Martin, G.; Taghavi, S.; et al. The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio 2015, 6, e02527-14. [Google Scholar] [CrossRef]
- Chen, Y.; Fei, Y.; Howell, K.; Chen, D.; Clingeleffer, P.; Zhang, P. Rootstocks for grapevines now and into the future: Selection of rootstocks based on drought tolerance, soil nutrient availability, and soil pH. Aust. J. Grape Wine Res. 2024, 2024, 6704238. [Google Scholar] [CrossRef]
- Ollat, N.; Peccoux, A.; Papura, D.; Esmenjaud, D.; Marguerit, E.; Tandonnet, J.-P.; Bordenave, L.; Cookson, S.J.; Barrieu, F.; Rossdeutsch, L.; et al. Rootstocks as a component of adaptation to environment. In Grapevine in a Changing Environment; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 68–108. [Google Scholar] [CrossRef]
- Darriaut, R.; Antonielli, L.; Martins, G.; Ballestra, P.; Vivin, P.; Marguerit, E.; Mitter, B.; Masneuf-Pomarède, I.; Compant, S.; Ollat, N.; et al. Soil composition and rootstock genotype drive the root-associated microbial communities in young grapevines. Front. Microbiol. 2022, 13, 1031064. [Google Scholar] [CrossRef]
- Vink, S.N.; Dini-Andreote, F.; Höfle, R.; Kicherer, A.; Salles, J.F. Interactive effects of scion and rootstock genotypes on the root microbiome of grapevines (Vitis spp. L.). Appl. Sci. 2021, 11, 1615. [Google Scholar] [CrossRef]
- Liu, H.; Brettell, L.E. Plant defense by VOC-induced microbial priming. Trends Plant Sci. 2019, 24, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Basile, B.; Rouphael, Y.; Colla, G.; Soppelsa, S.; Andreotti, C. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Sci. Hortic. 2020, 267, 109330. [Google Scholar] [CrossRef]
- Pacifico, D.; Squartini, A.; Crucitti, D.; Barizza, E.; Lo Schiavo, F.; Muresu, R.; Carimi, F.; Zottini, M. The role of the endophytic microbiome in the grapevine response to environmental triggers. Front. Plant Sci. 2019, 10, 1256. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef]
- Habib, S.H.; Kausar, H.; Saud, H.M. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed. Res. Int. 2016, 2016, 6284547. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Wu, G.; Veronican Njeri, K.; Shen, Q.; Zhang, N.; Zhang, R. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol. Plant. 2016, 158, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Koza, N.A.; Adedayo, A.A.; Babalola, O.O.; Kappo, A.P. Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 2022, 10, 1528. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L.; Aleixandre-Benavent, R. Unravelling the scientific research on grape and wine phenolic compounds: A bibliometric study. Scientometrics 2019, 119, 119–147. [Google Scholar] [CrossRef]
- Verborgh, R.; De Wilde, M. Using OpenRefine. 2013. Available online: https://ruben.verborgh.org/publications/verborgh_packt_2013/ (accessed on 21 April 2025).
- Riffle, V.; Palmer, N.; Casassa, L.F.; Dodson Peterson, J.C. The effect of grapevine age (Vitis vinifera L. cv. Zinfandel) on phenology and gas exchange parameters over consecutive growing seasons. Plants 2021, 10, 311. [Google Scholar] [CrossRef]
- Kamayestani, A.; Rezaei, M.; Sarkhosh, A.; Asghari, H.R. Effects of arbuscular mycorrhizal fungi (Glomus mosseae) on growth enhancement and nutrient (NPK) uptake of three grape (Vitis vinifera L.) cultivars under three different water deficit levels. Aust. J. Crop Sci. 2019, 13, 1401–1408. [Google Scholar] [CrossRef]
- Gazioglu Sensoy, R.I. Effects of arbuscular mycorrhizal fungus (AMF) and whey applications on the grapevine (Vitis vinifera L.) cuttings exposed to salt stress. J. Elem. 2022, 27, 507–519. [Google Scholar] [CrossRef]
- Nogales, A.; Rottier, E.; Campos, C.; Victorino, G.; Costa, J.M.; Coito, J.L.; Pereira, H.S.; Viegas, W.; Lopes, C. The effects of field inoculation of arbuscular mycorrhizal fungi through rye donor plants on grapevine performance and soil properties. Agric. Ecosyst. Environ. 2021, 313, 107369. [Google Scholar] [CrossRef]
- Velásquez, A.; Valenzuela, M.; Carvajal, M.; Fiaschi, G.; Avio, L.; Giovannetti, M.; D’Onofrio, C.; Seeger, M. The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiol. Biochem. 2020, 155, 437–443. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, H.; Li, H. Arbuscular mycorrhizal fungi improve growth, photosynthetic activity, and chlorophyll fluorescence of Vitis vinifera L. cv. Ecolly under drought stress. Agronomy 2022, 12, 1563. [Google Scholar] [CrossRef]
- Brunetto, G.; Marques, A.C.R.; Trentin, E.; Sete, P.B.; Soares, C.R.F.S.; Ferreira, P.A.A.; Melo, G.W.B.; Zalamena, J.; Silva, L.O.S.; Marchezan, C.; et al. Arbuscular mycorrhizal fungi inoculation as strategy to mitigate copper toxicity in young field-grown vines. Ciênc. Téc. Vitivinic. 2023, 38, 1060. [Google Scholar] [CrossRef]
- Köse, C.; Güneş, A.; Kaya, Ö.; Kıtır, N.; Turan, M.; Şahin, F. Freeze injure and antioxidant enzyme activity of grapevine (Vitis vinifera) under bio-boron fertilizer applications. Erwerbs-Obstbau 2018, 60, 3–10. [Google Scholar] [CrossRef]
- Daler, S.; Çetin, E. Determination of the Effects of Plant Growth-Promoting Rhizobacteria (PGPR) Applications on Kober 5 BB American Grapevine Rootstock in Lead Stress. J. Biol. Agric. Healthc. 2017, 7, 50–55. [Google Scholar]
- Karaca, U.; Sabir, A. Sustainable mitigation of alkaline stress in grapevine rootstocks (Vitis spp.) by plant growth-promoting rhizobacteria. Erwerbs-Obstbau 2018, 60, 191–198. [Google Scholar] [CrossRef]
- Duan, B.; Li, L.; Chen, G.; Su-Zhou, C.; Li, Y.; Merkeryan, H.; Liu, W.; Liu, X. 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Plant Growth-Promoting Rhizobacteria Improve Drought Stress Tolerance in Grapevine (Vitis vinifera L.). Front. Plant Sci. 2021, 12, 706990. [Google Scholar] [CrossRef]
- Pinter, M.I.F.; Salomon, M.V.; Berli, F.; Gil, R.; Bottini, R.; Piccoli, P. Plant Growth Promoting Rhizobacteria Alleviate Stress by AsIII in Grapevine. Agric. Ecosyst. Environ. 2018, 267, 100–108. [Google Scholar] [CrossRef]
- Navarro-Torre, S.; Ferrario, S.; Caperta, A.D.; Victorino, G.; Bailly, M.; Sousa, V.; Viegas, W.; Nogales, A. Halotolerant Endophytes Promote Grapevine Regrowth after Salt-Induced Defoliation. J. Plant Interact. 2023, 18, 2215235. [Google Scholar] [CrossRef]
- Papantzikos, V.; Papanikou, A.; Stournaras, V.; Mpeza, P.; Mantzoukas, S.; Patakioutas, G. Biostimulant Effect of Commercial Rhizobacteria Formulation on the Growth of Vitis vinifera L.: Case of Optimal and Water Deficit Conditions. Appl. Biosci. 2024, 3, 10. [Google Scholar] [CrossRef]
- Carreiras, J.; Cruz-Silva, A.; Fonseca, B.; Carvalho, R.C.; Cunha, J.P.; Pereira, J.P.; Paiva-Silva, C.; Santos, S.A.; Sequeira, R.J.; Mateos-Naranjo, E.; et al. Improving Grapevine Heat Stress Resilience with Marine Plant Growth-Promoting Rhizobacteria Consortia. Microorganisms 2023, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Trotel-Aziz, P.; Couderchet, M.; Vernet, G.; Aziz, A. Bacillus subtilis Strain GA1 as a Plant Growth-Promoting Rhizobacterium in Grapevine: Evidence for Chitinase and Induced Systemic Resistance Against Botrytis cinerea. Plant Soil 2008, 294, 127–138. [Google Scholar]
- Espareh, G.; Ershadi, A.; Karimi, R.; Movahedi, Z. Effect of Foliar Application of Calcium and Inoculation with Endophytic Fungus, Serendipita indica, on Improving Growth, Photosynthetic Pigments, and Increasing Antioxidant Capacity of ‘Sultana’ Grapevine (Vitis vinifera) under Drought Stress. J. Plant Biol. Sci. 2024, 15, 111–138. [Google Scholar] [CrossRef]
- Ma, Y.; Jiao, J.; Fan, X.; Sun, H.; Zhang, Y.; Jiang, J.; Liu, C. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars. Front. Plant Sci. 2017, 7, 2068. [Google Scholar] [CrossRef]
- Fuentes-Quiroz, A.; Herrera, H.; Ortiz, J.; Arriagada, C.; Jorquera-Fontena, E. Rhizosphere-Inhabiting Fungi Isolated from Native Plants of the Atacama Desert Affect Leaf Traits of ‘Chardonnay’ Grapevines (Vitis vinifera L.). Rhizosphere 2023, 27, 100715. [Google Scholar] [CrossRef]
- Aleynova, O.A.; Suprun, A.R.; Nityagovsky, N.N.; Dubrovina, A.S.; Kiselev, K.V. The Influence of the Grapevine Bacterial and Fungal Endophytes on Biomass Accumulation and Stilbene Production by the In Vitro Cultivated Cells of Vitis amurensis Rupr. Plants 2021, 10, 1276. [Google Scholar] [CrossRef]
- Pellegrino, E.; Nuti, M.; Ercoli, L. Multiple Arbuscular Mycorrhizal Fungal Consortia Enhance Yield and Fatty Acids of Medicago sativa: A Two-Year Field Study on Agronomic Traits and Tracing of Fungal Persistence. Front. Plant Sci. 2022, 13, 814401. [Google Scholar] [CrossRef]
- Liu, X.; Mei, S.; Salles, J.F. Inoculated Microbial Consortia Perform Better than Single Strains in Living Soil: A Meta-Analysis. Appl. Soil Ecol. 2023, 190, 105011. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Z.; Feng, S.; Guo, P.; Wang, Y.; Hao, B.; Guo, W.; Li, F.Y. Synergistic Effects of AMF and PGPR on Improving Saline-Alkaline Tolerance of Leymus chinensis by Strengthening the Link between Rhizosphere Metabolites and Microbiomes. Environ. Technol. Innov. 2024, 36, 103900. [Google Scholar] [CrossRef]
- Samri, S.E.; Aberkani, K.; Said, M.; Haboubi, K.; Ghazal, H. Effects of Inoculation with Mycorrhizae and the Benefits of Bacteria on Physicochemical and Microbiological Properties of Soil, Growth, Productivity and Quality of Table Grapes Grown under Mediterranean Climate Conditions. J. Plant Prot. Res. 2021, 61, 297–308. [Google Scholar] [CrossRef]
- Balestrini, R.; Salvioli, A.; Dal Molin, A.; Novero, M.; Gabelli, G.; Paparelli, E.; Marroni, F.; Bonfante, P. Impact of an Arbuscular Mycorrhizal Fungus versus a Mixed Microbial Inoculum on the Transcriptome Reprogramming of Grapevine Roots. Mycorrhiza 2017, 27, 417–430. [Google Scholar] [CrossRef]
- Karimi, R.; Noori, A. Streptomyces rimosus Rhizobacteria and Glomus mosseae Mycorrhizal Fungus Inoculation Alleviate Salinity Stress in Grapevine through Morphophysiological Changes and Nutritional Balance. Sci. Hortic. 2022, 305, 111433. [Google Scholar] [CrossRef]
- Alimam, Z.N.M.A.; Areji, J.M.A.A.-A. Effect of Bio-Fertilization on Vegetative Growth of Young Vines (Vitis vinifera L.) Thompson Seedless and Olivetti Noier Cultivars. IOP Conf. Ser. Earth Environ. Sci. 2024, 1371, 042062. [Google Scholar] [CrossRef]
- Tan, J.W.; Shinde, H.; Tesfamicael, K.; Hu, Y.; Fruzangohar, M.; Tricker, P.; Baumann, U.; Edwards, E.J.; López, C.M.R. Global Transcriptome and Gene Co-Expression Network Analyses Reveal Regulatory and Non-Additive Effects of Drought and Heat Stress in Grapevine. Front. Plant Sci. 2023, 14, 1096225. [Google Scholar] [CrossRef]
- Cramer, G.R.; Van Sluyter, S.C.; Hopper, D.W.; Pascovici, D.; Keighley, T.; Haynes, P.A. Proteomic Analysis Indicates Massive Changes in Metabolism Prior to the Inhibition of Growth and Photosynthesis of Grapevine (Vitis vinifera L.) in Response to Water Deficit. BMC Plant Biol. 2013, 13, 49. [Google Scholar] [CrossRef]
- Carvalho, A.; Crisóstomo, C.; Leal, F.; Lima-Brito, J. Selection of Reference Genes and HSP17.9A Expression Profiling in Heat-Stressed Grapevine Varieties. Genes 2024, 15, 1283. [Google Scholar] [CrossRef]
- Deluc, L.G.; Quilici, D.R.; Decendit, A.; Grimplet, J.; Wheatley, M.D.; Schlauch, K.A.; Mérillon, J.M.; Cushman, J.C.; Cramer, G.R. Water Deficit Alters Differentially Metabolic Pathways Affecting Important Flavor and Quality Traits in Grape Berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009, 10, 212. [Google Scholar] [CrossRef]
- Upadhyay, A.; Gaonkar, T.; Upadhyay, A.K.; Jogaiah, S.; Shinde, M.P.; Kadoo, N.Y.; Gupta, V.S. Global Transcriptome Analysis of Grapevine (Vitis vinifera L.) Leaves under Salt Stress Reveals Differential Response at Early and Late Stages of Stress in Table Grape cv. Thompson Seedless. Plant Physiol. Biochem. 2018, 129, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.S.; Zhang, C.; Kurjogi, M.M.; Pervaiz, T.; Zheng, T.; Zhang, C.; Lide, C.; Shangguan, L.; Fang, J. Insights into Grapevine Defense Response against Drought as Revealed by Biochemical, Physiological and RNA-Seq Analysis. Sci. Rep. 2017, 7, 13134. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.-L.; Belval, L.; Martin, I.R.; Roth, L.; Laloue, H.; Deglène-Benbrahim, L.; Valat, L.; Bertsch, C.; Chong, J. Arbuscular Mycorrhizal Symbiosis Triggers Major Changes in Primary Metabolism Together with Modification of Defense Responses and Signaling in Both Roots and Leaves of Vitis vinifera. Front. Plant Sci. 2021, 12, 721614. [Google Scholar] [CrossRef]
- Campos, C.; Coito, J.L.; Cardoso, H.; Marques da Silva, J.; Pereira, H.S.; Viegas, W.; Nogales, A. Dynamic Regulation of Grapevine’s microRNAs in Response to Mycorrhizal Symbiosis and High Temperature. Plants 2023, 12, 982. [Google Scholar] [CrossRef]
- Duret, M.; Zhan, X.; Belval, L.; Le Jeune, C.; Hussenet, R.; Laloue, H.; Bertsch, C.; Chong, J.; Deglène-Benbrahim, L.; Valat, L. Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis. Plants 2022, 11, 3237. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, P.; Ortiz, N.; Becerra, N.; Turrini, A.; Gaínza-Cortés, F.; Silva-Flores, P.; Aguilar-Paredes, A.; Romero, J.K.; Jorquera-Fontena, E.; Mora, M.L.; et al. Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Front. Microbiol. 2022, 13, 826571. [Google Scholar] [CrossRef]
- Schreiner, R.P. Mycorrhizas and Mineral Acquisition in Grapevines. In Proceedings of the Soil Environment and Vine Mineral Nutrition Symposium, San Diego, CA, USA, 29–30 June 2004; American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 49–60. [Google Scholar]
Microbial Inoculant | Product | Stress | Mechanism of Action | Inoculant amount | Form of Inoculum | Age | Location | Reference |
---|---|---|---|---|---|---|---|---|
Glomus mosseae | - | drought | Enhanced water and nutrient uptake | 100 g | powder | 1 year | greenhouse | [39] |
Glomus intraradices | - | salinity | Increased photosynthesis rate | 25 spores g−1 | powder | 1 year | greenhouse | [40] |
Funneliformis mosseae | - | heat | Increased photosynthesis rates | 10 g | powder | young | field | [41] |
Funneliformis mosseae IMA 1 | - | drought | Volatile organic compounds of different metabolic pathways; hormonal balance | 2 mL | liquid | 4 weeks | greenhouse | [42] |
Funneliformis mosseae, Glomus aggregatum, Claroideoglomus etunicatum | MycoApply® | drought | Increased photosynthesis rate increased osmolyte accumulation and antioxidant activities | 5 g | powder | 2 years | greenhouse | [43] |
Rhizophagus intraradices, Funneliformis mosseae, Glomus aggregatum, Glomus etunicatum | Myco Apply Endo Maxx | drought | Regulation of anthocyanin and flavanol metabolisms Improvement of photosynthetic activity | 10 g | powder | 2 years | field | [19] |
Rhizophagus clarus UFSC-14, Rhizophagus intraradices UFSC-32, Dentisculata heterogama UFSC-08 | - | copper toxicity | Lower leaf Cu accumulation; activation of chelation mechanisms | - | liquid | young | field | [44] |
Microbial Inoculant | Product | Stress | Mechanism of Action | Inoculant Amount | Form of Inoculum | Age | Location | Reference |
---|---|---|---|---|---|---|---|---|
Bacillus licheniformis | - | frost | Increase antioxidant and enzyme activity | 108 CFU ml−1 | Liquid | 1–2 years | field | [45] |
Arthrobacter | - | lead toxicity | 5 mL | Liquid | young | greenhouse | [46] | |
Agrobacterium rubi A18, Bacillus subtilis OSU 142 | - | high pH | Improvement of vegetative growth, leaf physiology and nutrient acquisition | 109 CFU mL−1 | Liquid | 2 years | greenhouse | [47] |
Pseudomonas, Enterobacter, Achromobacter | - | drought | Improvement of nutrient uptake, hormonal balance, and antioxidant capacity | 150 mL | Liquid | 1 year | greenhouse | [48] |
Bacillus licheniformis, Micrococcus luteus, Pseudomonas fluorescens | - | arsenic toxicity | Increased antioxidant enzyme activity Reduced peroxidation of membrane lipids | 50 mL | Liquid | 2 years | field | [49] |
Pantoea anthophila, Pantoea agglomerans, Pantoea sp. | - | salinity | Increase in antioxidant enzyme activities Improved photosynthesis performance; production of auxins and siderophores, nitrogen fixation, and phosphate solubilization | 150 mL | Liquid | seedlings | greenhouse | [50] |
Bacillus amyloliquefaciens QST 713, Sinorhizobium meliloti B2352 | HYDROMAAT, FUTURECO BIOSCIENCE® | drought | Regulation of plant hormonal balance | 2% w/w | Liquid | seedlings | greenhouse | [51] |
Pseudomonas composti Bacillus zhangzhouensis Pseudarthrobacter Aeromonas aquariorum Bacillus methylotrophicus Bacillus aryabhattai | - | heat | Improvement of nutrient acquisition, modulation of hormonal responses, induction of systemic resistance, and enhanced antioxidant activity | 107 CFU mL−1 | Liquid | seedlings | greenhouse | [52] |
Microbial Inoculant | Type | Stress | Mechanism of Action | Inoculant Amount | Form of Inoculum | Age | Location | Reference |
---|---|---|---|---|---|---|---|---|
Serendipita indica (Piriformospora indica) | Endophytic fungus | drought | Enhanced plant growth, antioxidant enzyme and plant hormone production. | 1% w/v | Liquid | - | greenhouse | [54] |
Pseudomonas fluorescens RG11 | Endophytic bacteria | salinity | Enhanced endogenous melatonin in plants. Regulated melatonin-related genes: TDC1 (putative tryptophan decarboxylase-1) and SNAT (serotonin N-acetyltransferase). | 1 mL | Liquid | young | greenhouse | [55] |
Aspergillus niger, Microdochium bolleyi, Westerdikeya centenaria | PGPF | drought | enhancing root growth. increasing nutrient availability. Improved gas exchange variables and mesophyll conductance. | 10 mL | Liquid | 2 years | field | [56] |
Erwinia sp., Pseudomonas sp. Xanthomonas sp. Pantoea sp. And Alternaria sp. Cladosporium sp. Biscogniauxia sp. Didymella sp. Fusarium sp. | Endophytic bacteria and fungi | drought | Stimulation of stilbene and secondary metabolite production; modulation of abscisic acid (ABA) metabolism. | 100 μL of bacterial suspension; 100 mg of fungal material | Liquid | young | field | [57] |
Microbial Inoculant | Type | Product | Stress | Mechanism of Action | Inoculant Amount | Form of Inoculum | Age | Location | Reference |
---|---|---|---|---|---|---|---|---|---|
Glomus iranicum var. tenuihypharum, Pseudomonas putida | PGPR + AMF | - | salinity | increase in photosynthesis and growth | 1.2 × 104 CFU 100 g−1 and 1 × 108 CFU·100 g−1 | liquid | 12 years | field | [61] |
Funneliformis mosseae, Trichoderma viride T. harzianum Pochonia chlamidosporia Streptomyces spp. (ST60, SB14, SA51) Bacillus subtilis BA41 Pseudomonas fluorescens PN53 Glomus spp. GB67 G. mosseae GP11 Glomus viscosum GC41 | AMF + PGPR + PGPF | Micosat F | drought | transcriptional regulation; modification of nutrient transport, hormonal balance and cell wall metabolism | 30 g | powder | young | greenhouse | [62] |
Septoglomus deserticola, Funneliformis mosseae, Rhizoglomus intraradices, Rhizoglomus clarum Glomus aggregatum Bacillus paenibacillus | AMF + PGPR | Bioradis Gel | heat | increase in photosynthetic rate; increased proline and amino acids | 1 g | liquid | 1 year | greenhouse | [20] |
Glomus mosseae, Streptomyces rimosus | AMF + PGPR | - | salinity | increase in photosynthesis rate and regulation of hormonal balance | 100 g and 106 CFU mL−1 | liquid | seedlings | greenhouse | [63] |
Bacillus subtilis, Trichoderma harzianum | PGPR+ PGPF | - | drought | increase in photosynthesis rate | 40 g−1 | powder or granular | seedlings | field | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dagher, D.; Taskos, D.; Mourouzidou, S.; Monokrousos, N. Microbial-Enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes. Horticulturae 2025, 11, 592. https://doi.org/10.3390/horticulturae11060592
Dagher D, Taskos D, Mourouzidou S, Monokrousos N. Microbial-Enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes. Horticulturae. 2025; 11(6):592. https://doi.org/10.3390/horticulturae11060592
Chicago/Turabian StyleDagher, Diana, Dimitrios Taskos, Snezhana Mourouzidou, and Nikolaos Monokrousos. 2025. "Microbial-Enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes" Horticulturae 11, no. 6: 592. https://doi.org/10.3390/horticulturae11060592
APA StyleDagher, D., Taskos, D., Mourouzidou, S., & Monokrousos, N. (2025). Microbial-Enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes. Horticulturae, 11(6), 592. https://doi.org/10.3390/horticulturae11060592