Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (780)

Search Parameters:
Keywords = sustainable pavements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3167 KiB  
Article
A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance
by Daniel D. Akerele and Federico Aguayo
Buildings 2025, 15(15), 2759; https://doi.org/10.3390/buildings15152759 - 5 Aug 2025
Abstract
Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and [...] Read more.
Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and CSA-LLP (liquid polymer admixture)—against a traditional Type III Portland cement (OPC) control under both laboratory and realistic outdoor conditions. Laboratory specimens were tested for fresh properties, early-age and later-age compressive, flexural, and splitting tensile strengths, as well as drying shrinkage according to ASTM standards. Outdoor 5 × 4 × 12-inch slabs mimicking typical jointed plain concrete panels (JPCPs), instrumented with vibrating wire strain gauges and thermocouples, recorded the strain and temperature at 5 min intervals over 16 weeks, with 24 h wet-burlap curing to replicate field practices. Laboratory findings show that CSA mixes exceeded 3200 psi of compressive strength at 4 h, but cold outdoor casting (~48 °F) delayed the early-age strength development. The CSA-LLP exhibited the lowest drying shrinkage (0.036% at 16 weeks), and outdoor CSA slabs captured the initial ettringite-driven expansion, resulting in a net expansion (+200 µε) rather than contraction. Approximately 80% of the total strain evolved within the first 48 h, driven by autogenous and plastic effects. CSA mixes generated lower peak internal temperatures and reduced thermal strain amplitudes compared to the OPC, improving dimensional stability and mitigating restraint-induced cracking. These results underscore the necessity of field validation for shrinkage compensation mechanisms and highlight the critical roles of the polymer type and curing protocol in optimizing CSA-based repairs for durable, low-carbon pavement rehabilitation. Full article
(This article belongs to the Special Issue Study on Concrete Structures—2nd Edition)
Show Figures

Figure 1

22 pages, 3743 KiB  
Article
Mechanical and Performance Characteristics of Warm Mix Asphalt Modified with Phase Change Materials and Recycled Cigarette Filters
by Zahraa Ahmed al-Mammori, Israa Mohsin Kadhim Al-Janabi, Ghadeer H. Abbas, Doaa Hazim Aziz, Fatin H. Alaaraji, Elaf Salam Abbas, Beshaer M. AL-shimmery, Tameem Mohammed Hashim, Ghanim Q. Al-Jameel, Ali Shubbar and Mohammed Salah Nasr
CivilEng 2025, 6(3), 41; https://doi.org/10.3390/civileng6030041 - 5 Aug 2025
Abstract
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric [...] Read more.
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric acid), as binder modifiers within warm mix asphalt (WMA) mixtures. Moving beyond the traditional focus on binder-only modifications, this research utilizes recycled cigarette filters (CFs) as a dual-purpose fiber additive, directly reinforcing the asphalt mixture while simultaneously transforming a major urban waste stream into valuable infrastructure. The performance of the developed WMA mixture has been evaluated in terms of stiffness behavior using an Indirect Tensile Strength Modulus (ITSM) test, permanent deformation using a static creep strain test, and rutting resistance using the Hamburg wheel-track test. Laboratory tests demonstrated that the incorporation of PCMs and recycled CFs into WMA mixtures led to remarkable improvements in stiffness, deformation resistance, and rutting performance. Modified mixes consistently outperformed the control, achieving up to 15% higher stiffness after 7 days of curing, 36% lower creep strain after 4000 s, and 64% reduction in rut depth at 20,000 passes. Cost–benefit analysis and service life prediction show that, despite costing USD 0.71 more per square meter with 5 cm thickness, the modified WMA mixture delivers much greater durability and rutting resistance, extending service life to 19–29 years compared to 10–15 years for the control. This highlights the value of these modifications for durable, sustainable pavements. Full article
Show Figures

Figure 1

38 pages, 15791 KiB  
Article
Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
by Sara Laib, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh and Yunchao Tang
Buildings 2025, 15(15), 2747; https://doi.org/10.3390/buildings15152747 - 4 Aug 2025
Abstract
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs [...] Read more.
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs of three lengths (3 mm, 8 mm, and 15 mm) were introduced. The study employed the response surface methodology (RSM) for experimental design and analysis of variance (ANOVA) to identify the influence of BWP and PF on the selected performance indicators. These indicators included bulk density, air voids, voids in the mineral aggregate, voids filled with asphalt, Marshall stability, Marshall flow, Marshall quotient, indirect tensile strength, wet tensile strength, and the tensile strength ratio. The findings demonstrated that BWP improved moisture resistance and the mechanical performance of AC mixes. Moreover, incorporating PF alongside BWP further enhanced these properties, resulting in superior overall performance. Using multi-objective optimization through RSM-based empirical models, the study identified the optimal PF length of 5 mm in combination with BWP for achieving the best AC properties. Validation experiments confirmed the accuracy of the predicted results, with an error margin of less than 8%. The study emphasizes the intriguing prospect of BWP and PF as sustainable alternatives for improving the durability, mechanical characteristics, and cost-efficiency of asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

13 pages, 1636 KiB  
Article
Mechanical Performance of Sustainable Asphalt Mixtures Incorporating RAP and Panasqueira Mine Waste
by Hernan Patricio Moyano-Ayala and Marisa Sofia Fernandes Dinis-Almeida
Constr. Mater. 2025, 5(3), 52; https://doi.org/10.3390/constrmater5030052 - 4 Aug 2025
Viewed by 19
Abstract
The increasing demand for sustainable practices in road construction has prompted the search for environmentally friendly and cost-effective materials. This study explores the incorporation of reclaimed asphalt pavement (RAP) and Panasqueira mine waste (greywacke aggregates) as full replacements for virgin aggregates in hot [...] Read more.
The increasing demand for sustainable practices in road construction has prompted the search for environmentally friendly and cost-effective materials. This study explores the incorporation of reclaimed asphalt pavement (RAP) and Panasqueira mine waste (greywacke aggregates) as full replacements for virgin aggregates in hot mix asphalt (HMA), aligning with the objectives of UN Sustainable Development Goal 9. Three asphalt mixtures were prepared: a reference mixture (MR) with granite aggregates, and two modified mixtures (M15 and M20) with 15% and 20% RAP, respectively. All mixtures were evaluated through Marshall stability, stiffness modulus, water sensitivity, and wheel tracking tests. The results demonstrated that mixtures containing RAP and mine waste met Portuguese specifications for surface courses. Specifically, the M20 mixture showed the highest stiffness modulus, improved moisture resistance, and the best performance against permanent deformation. These improvements are attributed to the presence of stiff aged binder in RAP and the mechanical characteristics of the greywacke aggregates. Overall, the findings confirm that the combined use of RAP and mining waste provides a technically viable and sustainable alternative for asphalt pavement construction, contributing to resource efficiency and circular economy goals. Full article
Show Figures

Figure 1

27 pages, 2929 KiB  
Article
Comparative Performance Analysis of Gene Expression Programming and Linear Regression Models for IRI-Based Pavement Condition Index Prediction
by Mostafa M. Radwan, Majid Faissal Jassim, Samir A. B. Al-Jassim, Mahmoud M. Elnahla and Yasser A. S. Gamal
Eng 2025, 6(8), 183; https://doi.org/10.3390/eng6080183 - 3 Aug 2025
Viewed by 186
Abstract
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values [...] Read more.
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values based on International Roughness Index (IRI) measurements from Iraqi road networks, offering an environmentally conscious and resource-efficient approach to pavement management. The study incorporated 401 samples of IRI and PCI data through comprehensive visual inspection procedures. The developed GEP model exhibited exceptional predictive performance, with coefficient of determination (R2) values achieving 0.821 for training, 0.858 for validation, and 0.8233 overall, successfully accounting for approximately 82–85% of PCI variance. Prediction accuracy remained robust with Mean Absolute Error (MAE) values of 12–13 units and Root Mean Square Error (RMSE) values of 11.209 and 11.00 for training and validation sets, respectively. The lower validation RMSE suggests effective generalization without overfitting. Strong correlations between predicted and measured values exceeded 0.90, with acceptable relative absolute error values ranging from 0.403 to 0.387, confirming model effectiveness. Comparative analysis reveals GEP outperforms alternative regression methods in generalization capacity, particularly in real-world applications. This sustainable methodology represents a cost-effective alternative to conventional PCI evaluation, significantly reducing environmental impact through decreased field operations, lower fuel consumption, and minimized traffic disruption. By streamlining pavement management while maintaining assessment reliability and accuracy, this approach supports environmentally responsible transportation systems and aligns contemporary sustainability goals in infrastructure management. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 190
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

18 pages, 273 KiB  
Review
Incorporation of E-Waste Plastics into Asphalt: A Review of the Materials, Methods, and Impacts
by Sepehr Mohammadi, Dongzhao Jin, Zhongda Liu and Zhanping You
Encyclopedia 2025, 5(3), 112; https://doi.org/10.3390/encyclopedia5030112 - 1 Aug 2025
Viewed by 153
Abstract
This paper presents a comprehensive review of the environmentally friendly management and reutilization of electronic waste (e-waste) plastics in flexible pavement construction. The discussion begins with an overview of e-waste management challenges and outlines key recycling approaches for converting plastic waste into asphalt-compatible [...] Read more.
This paper presents a comprehensive review of the environmentally friendly management and reutilization of electronic waste (e-waste) plastics in flexible pavement construction. The discussion begins with an overview of e-waste management challenges and outlines key recycling approaches for converting plastic waste into asphalt-compatible materials. This review then discusses the types of e-waste plastics used for asphalt modification, their incorporation methods, and compatibility challenges. Physical and chemical treatment techniques, including the use of free radical initiators, are then explored for improving dispersion and performance. Additionally, in situations where advanced pretreatment methods are not applicable due to cost, safety, or technical constraints, the application of alternative approaches, such as the use of low-cost complementary additives, is discussed as a practical solution to enhance compatibility and performance. Finally, the influence of e-waste plastics on the conventional and rheological properties of asphalt binders, as well as the performance of asphalt mixtures, is also evaluated. Findings indicate that e-waste plastics, when combined with appropriate pretreatment methods and complementary additives, can enhance workability, cold-weather cracking resistance, high-temperature anti-rutting performance, and resistance against moisture-induced damage while also offering environmental and economic benefits. This review highlights the potential of e-waste plastics as sustainable asphalt modifiers and provides insights across the full utilization pathway, from recovery to in-field performance. Full article
(This article belongs to the Collection Sustainable Ground and Air Transportation)
28 pages, 9076 KiB  
Article
Performance Evaluation of Waste Toner and Recycled LDPE-Modified Asphalt Pavement: A Mechanical and Carbon Assessment-Based Optimization Approach Towards Sustainability
by Muhammad Usman Siddiq, Muhammad Kashif Anwar, Faris H. Almansour, Jahanzeb Javed and Muhammad Ahmed Qurashi
Sustainability 2025, 17(15), 7003; https://doi.org/10.3390/su17157003 - 1 Aug 2025
Viewed by 251
Abstract
Due to the increasing environmental concerns and the growing generation of electronic waste and plastic, sustainable waste management solutions are essential for the construction industry. This study explores the potential of using electronic waste toner powder (WTP) and recycled low-density polyethylene (LDPE), either [...] Read more.
Due to the increasing environmental concerns and the growing generation of electronic waste and plastic, sustainable waste management solutions are essential for the construction industry. This study explores the potential of using electronic waste toner powder (WTP) and recycled low-density polyethylene (LDPE), either individually or in combination as modifiers for asphalt binder to enhance pavement performance and reduce environmental impact. The analysis focused on three key components: (1) binder development and testing; (2) performance evaluation through Marshall stability, indirect tensile strength, and Dynamic Shear Rheometer (DSR) testing for rutting resistance; and (3) sustainability assessment in terms of carbon footprint reduction. The results revealed that the formulation of 25% WTP and 8% LDPE processed at 160 °C achieved the best mechanical performance and lowest carbon index, enhancing Marshall stability by 32% and rutting resistance by 41%. Additionally, this formulation reduced the carbon footprint by 27% compared to conventional asphalt. The study demonstrated that the combination of WTP and LDPE significantly improves the sustainability and performance of asphalt pavements, offering mechanical, environmental, and economic benefits. By providing a quantitative assessment of waste-modified asphalt, this study uniquely demonstrates the combined use of WTP and LDPE in asphalt, offering a novel dual-waste valorization approach that enhances pavement performance while promoting circular economy practices. Full article
(This article belongs to the Special Issue Sustainable Development of Asphalt Materials and Pavement Engineering)
Show Figures

Figure 1

37 pages, 1664 KiB  
Review
Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications
by Adeel Iqbal, Nuha S. Mashaan and Themelina Paraskeva
J. Compos. Sci. 2025, 9(8), 402; https://doi.org/10.3390/jcs9080402 - 1 Aug 2025
Viewed by 200
Abstract
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of [...] Read more.
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of 41 peer-reviewed articles for detailed analysis. Bibliometric analysis indicates a notable upward trend in annual publications, reflecting growing academic and practical interest in this field. Performance-based evaluations demonstrate that mining wastes, particularly iron and copper tailings, have the potential to enhance the high-temperature performance (i.e., rutting resistance) of asphalt binders and mixtures when utilized as fillers or aggregates. However, their effects on fatigue life, low-temperature cracking, and moisture susceptibility are inconsistent, largely influenced by the physicochemical properties and dosage of the specific waste material. Despite promising results, critical knowledge gaps remain, particularly in relation to long-term durability, comprehensive environmental and economic Life-Cycle Assessments (LCA), and the inherent variability of waste materials. This review underscores the substantial potential of mining wastes as sustainable alternatives to conventional pavement materials, while emphasizing the need for further multidisciplinary research to support their broader implementation. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

27 pages, 565 KiB  
Review
Review of the Use of Waste Materials in Rigid Airport Pavements: Opportunities, Benefits and Implementation
by Loretta Newton-Hoare, Sean Jamieson and Greg White
Sustainability 2025, 17(15), 6959; https://doi.org/10.3390/su17156959 - 31 Jul 2025
Viewed by 160
Abstract
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies [...] Read more.
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies is the lack of guidance relating to the opportunities, potential benefits, associated risks and an implementation plan specific to airport pavements. This research reviewed opportunities to incorporate waste materials into rigid airport pavements, focusing on concrete base slabs. Commonly used supplementary cementitious materials (SCMs), such as fly ash and ground granulated blast furnace slag (GGBFS) were considered, as well as recycled aggregates, including recycled concrete aggregate (RCA), recycled crushed glass (RCG), and blast furnace slag (BFS). Environmental Product Declarations (EPDs) were also used to quantify the potential for environmental benefit associated with various concrete mixtures, with findings showing 23% to 50% reductions in embodied carbon are possible for selected theoretical concrete mixtures that incorporate waste materials. With considered evaluation and structured implementation, the integration of waste materials into rigid airport pavements offers a practical and effective route to improve environmental outcomes in aviation infrastructure. It was concluded that a Triple Bottom Line (TBL) framework—assessing financial, environmental, and social factors—guides material selection and can support sustainable decision-making, as does performance-based specifications that enable sustainable technologies to be incorporated into airport pavement. The study also proposed a consequence-based implementation hierarchy to facilitate responsible adoption of waste materials in airside pavements. The outcomes of this review will assist airport managers and pavement designers to implement practical changes to achieve more sustainable rigid airport pavements in the future. Full article
Show Figures

Figure 1

14 pages, 884 KiB  
Article
Evaluating the Safety and Cost-Effectiveness of Shoulder Rumble Strips and Road Lighting on Freeways in Saudi Arabia
by Saif Alarifi and Khalid Alkahtani
Sustainability 2025, 17(15), 6868; https://doi.org/10.3390/su17156868 - 29 Jul 2025
Viewed by 268
Abstract
This study examines the safety and cost-effectiveness of implementing shoulder rumble strips (SRS) and road lighting on Saudi Arabian freeways, providing insights into their roles in fostering sustainable transport systems. By leveraging the Highway Safety Manual (HSM) framework, this research develops localized Crash [...] Read more.
This study examines the safety and cost-effectiveness of implementing shoulder rumble strips (SRS) and road lighting on Saudi Arabian freeways, providing insights into their roles in fostering sustainable transport systems. By leveraging the Highway Safety Manual (HSM) framework, this research develops localized Crash Modification Factors (CMFs) for these interventions, ensuring evidence-based and context-specific evaluations. Data were collected for two periods—pre-pandemic (2017–2019) and post-pandemic (2021–2022). For each period, we obtained traffic crash records from the Saudi Highway Patrol database, traffic volume data from the Ministry of Transport and Logistic Services’ automated count stations, and roadway characteristics and pavement-condition metrics from the National Road Safety Center. The findings reveal that SRS reduces fatal and injury run-off-road crashes by 52.7% (CMF = 0.473) with a benefit–cost ratio of 14.12, highlighting their high cost-effectiveness. Road lighting, focused on nighttime crash reduction, decreases such crashes by 24% (CMF = 0.760), with a benefit–cost ratio of 1.25, although the adoption of solar-powered lighting systems offers potential for greater sustainability gains and a higher benefit–cost ratio. These interventions align with global sustainability goals by enhancing road safety, reducing the socio-economic burden of crashes, and promoting the integration of green technologies. This study not only provides actionable insights for achieving KSA Vision 2030’s target of improved road safety but also demonstrates how engineering solutions can be harmonized with sustainability objectives to advance equitable, efficient, and environmentally responsible transportation systems. Full article
Show Figures

Figure 1

15 pages, 2865 KiB  
Article
Mitigation of Alkali–Silica Reactivity of Greywacke Aggregate in Concrete for Sustainable Pavements
by Kinga Dziedzic, Aneta Brachaczek, Dominik Nowicki and Michał A. Glinicki
Sustainability 2025, 17(15), 6825; https://doi.org/10.3390/su17156825 - 27 Jul 2025
Viewed by 371
Abstract
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s [...] Read more.
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s durability is assured. The objective of this study was to identify the potential alkaline reactivity of local greywacke aggregate and select appropriate mitigation measures against the alkali–silica reaction. Experimental tests on concrete specimens were performed using the miniature concrete prism test at 60 °C. Mixtures of coarse greywacke aggregate up to 12.5 mm with natural fine aggregate of different potential reactivity were evaluated in respect to the expansion, compressive strength, and elastic modulus of the concrete. Two preventive measures were studied—the use of metakaolin and slag-blended cement. A moderate reactivity potential of the greywacke aggregate was found, and the influence of reactive quartz sand on the expansion and instability of the mechanical properties of concrete was evaluated. Both crystalline and amorphous alkali–silica reaction products were detected in the cracks of the greywacke aggregate. Efficient expansion mitigation was obtained for the replacement of 15% of Portland cement by metakaolin or the use of CEM III/A cement with the slag content of 52%, even if greywacke aggregate was blended with moderately reactive quartz sand. It resulted in a relative reduction in expansion by 85–96%. The elastic modulus deterioration was less than 10%, confirming an increased stability of the elastic properties of concrete. Full article
(This article belongs to the Special Issue Sustainability of Pavement Engineering and Road Materials)
Show Figures

Figure 1

32 pages, 5440 KiB  
Review
A Review of the Performance Properties of Geopolymer Pavement-Quality Concrete
by Saikrishna Chelluri, Nabil Hossiney, Sarath Chandra, Patrick Bekoe and Mang Tia
Constr. Mater. 2025, 5(3), 49; https://doi.org/10.3390/constrmater5030049 - 25 Jul 2025
Viewed by 325
Abstract
The construction of concrete pavements has increased due to their better durability, lifespan, and lower maintenance costs. However, this has resulted in the increased consumption of Portland cement, which is one of the major contributors to carbon emissions. Consequently, the research on alternative [...] Read more.
The construction of concrete pavements has increased due to their better durability, lifespan, and lower maintenance costs. However, this has resulted in the increased consumption of Portland cement, which is one of the major contributors to carbon emissions. Consequently, the research on alternative binders such as geopolymer concrete has increased in recent times. There are several research studies that investigate the feasibility of geopolymer concrete as a construction material, with limited studies exploring its application in concrete pavements. Therefore, this review study explores the material properties of geopolymer concrete pertinent to the performance of concrete pavements. It also discusses the potential of various industrial and agricultural waste as precursor material in geopolymer concrete. The findings of this paper show that most of the studies used fly ash and ground granulated blast furnace slag (GGBFS) as precursor material in geopolymer pavement-quality concrete, and there is a vast scope in the exploration of other industrial and agricultural waste as precursor material. The mechanical and durability properties of geopolymer pavement-quality concrete are superior to conventional pavement concrete. It is also observed that the drying shrinkage and coefficient of thermal expansion of geopolymer pavement-quality concrete are lower than those of conventional pavement concrete, and this will positively benefit the long-term performance of concrete pavements. The results of fatigue analysis and mechanical load test on the geopolymer pavement-quality concrete indicate its improved performance when compared to the conventional pavement concrete. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Road Pavements)
Show Figures

Figure 1

19 pages, 474 KiB  
Review
A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
by Shijing Chen, Luxi Wei, Chan Huang and Yinghong Qin
Energies 2025, 18(15), 3959; https://doi.org/10.3390/en18153959 - 24 Jul 2025
Viewed by 394
Abstract
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) [...] Read more.
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) systems, vibration-based harvesting, thermoelectric generators (TEGs)—focusing on their principles, efficiencies, and urban applications. ASCs achieve up to 30% efficiency with a 150–300 W/m2 output, reducing pavement temperatures by 0.5–3.2 °C, while PV pavements yield 42–49% efficiency, generating 245 kWh/m2 and lowering temperatures by an average of 6.4 °C. Piezoelectric transducers produce 50.41 mW under traffic loads, and TEGs deliver 0.3–5.0 W with a 23 °C gradient. Applications include powering sensors, streetlights, and de-icing systems, with ASCs extending pavement life by 3 years. Hybrid systems, like PV/T, achieve 37.31% efficiency, enhancing UHI mitigation and emissions reduction. Economically, ASCs offer a 5-year payback period with a USD 3000 net present value, though PV and piezoelectric systems face cost and durability challenges. Environmental benefits include 30–40% heat retention for winter use and 17% increased PV self-use with EV integration. Despite significant potential, high costs and scalability issues hinder adoption. Future research should optimize designs, develop adaptive materials, and validate systems under real-world conditions to advance sustainable urban infrastructure. Full article
Show Figures

Figure 1

21 pages, 872 KiB  
Article
Willingness to Pay for Station Access Transport: A Mixed Logit Model with Heterogeneous Travel Time Valuation
by Varameth Vichiensan, Vasinee Wasuntarasook, Sathita Malaitham, Atsushi Fukuda and Wiroj Rujopakarn
Sustainability 2025, 17(15), 6715; https://doi.org/10.3390/su17156715 - 23 Jul 2025
Viewed by 434
Abstract
This study estimates a willingness-to-pay (WTP) space mixed logit model to evaluate user valuations of travel time, safety, and comfort attributes associated with common access modes in Bangkok, including walking, motorcycle taxis, and localized minibuses. The model accounts for preference heterogeneity by specifying [...] Read more.
This study estimates a willingness-to-pay (WTP) space mixed logit model to evaluate user valuations of travel time, safety, and comfort attributes associated with common access modes in Bangkok, including walking, motorcycle taxis, and localized minibuses. The model accounts for preference heterogeneity by specifying random parameters for travel time. Results indicate that users—exhibiting substantial variation in preferences—place higher value on reducing motorcycle taxi travel time, particularly in time-constrained contexts such as peak-hour commuting, whereas walking is more acceptable in less pressured settings. Safety and comfort attributes—such as helmet availability, smooth pavement, and seating—significantly influence access mode choice. Notably, the WTP for helmet availability is estimated at THB 8.04 per trip, equivalent to approximately 40% of the typical fare for station access, underscoring the importance of safety provision. Women exhibit stronger preferences for motorized access modes, reflecting heightened sensitivity to environmental and social conditions. This study represents one of the first applications of WTP-space modeling for valuing informal station access transport in Southeast Asia, offering context-specific and segment-level estimates. These findings support targeted interventions—including differentiated pricing, safety regulations, and service quality enhancements—to strengthen first-/last-mile connectivity. The results provide policy-relevant evidence to advance equitable and sustainable transport, particularly in rapidly urbanizing contexts aligned with SDG 11.2. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

Back to TopTop