A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Proportions
2.3. Laboratory Tests
2.4. Outdoor Exposure Tests
3. Results
3.1. Fresh Concrete Properties
3.1.1. Workability
3.1.2. Air Content
3.1.3. Initial Temperature
3.2. Mechanical Properties
3.2.1. Compressive Strength
3.2.2. Flexural Strength
3.2.3. Splitting Tensile Strength
3.3. Mechanical Properties and Strength Correlations
3.4. Shrinkage and Temperature-Induced Strain Behavior
3.4.1. Laboratory vs. Outdoor Shrinkage
3.4.2. Temperature-Induced Strain
4. Discussion
4.1. Fresh Concrete Behavior
4.2. Early-Age Mechanical Performance
4.3. Shrinkage Behavior and Dimensional Stability
4.4. Thermal Sensitivity and Strain Development
4.5. Volume Change and Strength Gain
5. Conclusions and Practical Implications
5.1. Conclusions
5.2. Practical Implications and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Fernàndez-Jimenez, A.; Chen, B.; Leng, Z.; Dai, J.-G. Low-carbon cementitious materials: Scale-up potential, environmental impact and barriers. Constr. Build. Mater. 2024, 455, 139087. [Google Scholar] [CrossRef]
- Glasser, F.P.; Zhang, L. High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem. Concr. Res. 2001, 31, 1881–1886. [Google Scholar] [CrossRef]
- Barde, A.D.; Parameswaran, S.; Chariton, T.; Weiss, W.J.; Cohen, D.M.; Newbolds, S.A. Evaluation of Rapid Setting Cement-Based Materials for Patching and Repair; Joint Transportation Research Program, Indiana Department of Transportation and Purdue University: West Lafayette, IN, USA, 2006. [Google Scholar]
- Deshpande, Y.; Olek, J. Performance of Rapid-Setting Repair Materials for Concrete Pavements. In Proceedings of the Transportation Research Board 87th Annual Meeting Transportation Research Board, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- Banaeipour, A.; Thomas, R.J.; Maguire, M.; Sorensen, A.D. Laboratory and Field Evaluation of Commercially Available Rapid-Repair Materials for Concrete Bridge Deck Repair. J. Perform. Constr. Facil. 2022, 36, 4. [Google Scholar] [CrossRef]
- Zhifu, Y.; Heather, B.; Jon, H.; Wayne, S. Performance evaluation of rapid-set prepackaged cementitious materials for rehabilitation. PCI J. 2016, 61, 81–96. [Google Scholar] [CrossRef]
- Akerele, D.D.; Aguayo, F. Effectiveness of Rapid-Set CSA Concrete Mixes for Sustainable Pavement Repair. In CIB Conferences; Purdue University: West Lafayette, IN, USA, 2025. [Google Scholar]
- Kim, K.-W.; Yu, C.; Han, J.-W.; Park, C.-G. Strength and durability of rapid set PVA fiber reinforced LMC for pavement repair. Polym. Polym. Compos. 2019, 27, 179–188. [Google Scholar] [CrossRef]
- Asenath-Smith, E.; Melendy, T.; Menke, A.; Bernier, A.; Blaisdell, G. Evaluation of Airfield Damage Repair Methods for Extreme Cold Temperatures; Engineer Research and Development Center: Vicksburg, MS, USA, 2019. [Google Scholar]
- Ramseyer, C.; Bescher, E. Performance of Concrete Rehabilitation Using Rapid Setting Calcium SulfoAluminate Cement at the Seattle-Tacoma Airport. In Proceedings of the Transportation Research Board 93rd Annual MeetingTransportation Research Board, Washington, DC, USA, 12–16 January 2014. [Google Scholar]
- Bescher, E.P. Calcium Sulfoaluminate Cements. Iowa State University Institute for Transportation. 2024. Available online: https://www.cptechcenter.org/wp-content/uploads/2025/06/CSA_Cement_TB_CPTech.pdf (accessed on 5 July 2025).
- Ke, G.; Zhang, J.; Liu, Y. Shrinkage characteristics of calcium sulphoaluminate cement concrete. Constr. Build. Mater. 2022, 337, 127627. [Google Scholar] [CrossRef]
- Markosian, N.; Tawadrous, R.; Mastali, M.; Thomas, R.J.; Maguire, M. Performance Evaluation of a Prestressed Belitic Calcium Sulfoaluminate Cement (BCSA) Concrete Bridge Girder. Sustainability 2021, 13, 7875. [Google Scholar] [CrossRef]
- Wang, R. The Role of Polymer in Calcium Sulfoaluminate Cement-Based Materials. In Concrete-Polymer Composites in Circular Economy; Czarnecki, L., Garbacz, A., Wang, R., Frigione, M., Aguiar, J.B., Eds.; Spinger: Berlin/Heidelberg, Germany, 2024; pp. 171–180. [Google Scholar]
- Tan, B.; Okoronkwo, M.U.; Kumar, A.; Ma, H. Durability of calcium sulfoaluminate cement concrete. J. Zhejiang Univ.-Sci. A 2020, 21, 118–128. [Google Scholar] [CrossRef]
- Filani, I.; Butt, A.A.; Harvey, J. Life Cycle Cost and Environmental Impacts of Portland Limestone Cement and Calcium Sulfoaluminate Cement as Alternative Binders in Concrete. In Pavement, Roadway, and Bridge Life Cycle Assessment 2024; Flintsch, G.W., Amarh, E.A., Harvey, J., Al-Qadi, I.L., Ozer, H., Lo Presti, D., Eds.; Spinger: Berlin/Heidelberg, Germany, 2024; pp. 61–68. [Google Scholar]
- Alexander, M.; Bentur, A.; Mindess, S. Durability of Concrete: Design and Construction; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Lee, S.-J.; Shin, H.-J.; Park, C.-G. Strength and Durability of Hybrid Fiber-Reinforced Latex-Modified Rapid-Set Cement Preplaced Concrete for Emergency Concrete Pavement Repair. Appl. Sci. 2021, 11, 4595. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, G.; Liu, Y. Early Hydration Heat of Calcium Sulfoaluminate Cement with Influences of Supplementary Cementitious Materials and Water to Binder Ratio. Materials 2021, 14, 642. [Google Scholar] [CrossRef]
- Akerele, D.D.; Aguayo, F. Evaluating the Impact of CO2 on Calcium SulphoAluminate (CSA) Concrete. Buildings 2024, 14, 2462. [Google Scholar] [CrossRef]
- Taylor, H.F.W.; Famy, C.; Scrivener, K.L. Delayed ettringite formation. Cem. Concr. Res. 2001, 31, 683–693. [Google Scholar] [CrossRef]
- Tao, Y.; Rahul, A.V.; Mohan, M.K.; De Schutter, G.; Van Tittelboom, K. Recent progress and technical challenges in using calcium sulfoaluminate (CSA) cement. Cem. Concr. Compos. 2023, 137, 104908. [Google Scholar] [CrossRef]
- Ibrahim Haruna, S.; Zhu, H.; Jiang, W.; Shao, J. Evaluation of impact resistance properties of polyurethane-based polymer concrete for the repair of runway subjected to repeated drop-weight impact test. Constr. Build. Mater. 2021, 309, 125152. [Google Scholar] [CrossRef]
- Li, L.; Wang, R.; Lu, Q. Influence of polymer latex on the setting time, mechanical properties and durability of calcium sulfoaluminate cement mortar. Constr. Build. Mater. 2018, 169, 911–922. [Google Scholar] [CrossRef]
- CTS Cement Manufacturing: Product Liquid Low-PTM|CTS Cement. Available online: https://www.ctscement.com/product/liquid-low-p (accessed on 22 March 2025).
- Wang, K.; Melugiri, B.; Anand, A.; Sargam, Y.; Phares, B. Performance Evaluation of Very Early Strength Latex-Modified Concrete (LMC-VE) Overlay, TR-771, 2024; Iowa State University Institute for Transportation: Ames, IA, USA, 2024. [Google Scholar]
- Zhang, X.; Du, M.; Fang, H.; Shi, M.; Zhang, C.; Wang, F. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges. Constr. Build. Mater. 2021, 299, 124290. [Google Scholar] [CrossRef]
- CTS Cement Manufacturing Low-PTM Cement Datasheet|CTS Cement. Available online: https://www.ctscement.com/datasheet/LOW-P_CEMENT_Datasheet_DS_016_EN?c=PAVEMENT%20&t=Professionals (accessed on 22 March 2025).
- ACI Committee 548. Report on Polymer-Modified Concrete; America Concrete Institute, American Concrete Institute 38800 Country Club Drive: Farmington Hills, MI, USA, 2009. [Google Scholar]
- Han, J.-W.; Jeon, J.-H.; Park, C.-G. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content. Materials 2015, 8, 6728–6737. [Google Scholar] [CrossRef]
- ASTM C150/C150M-12; Standard Specification for Portland Cement. United States: ASTM International: West Conshohocken, PA, USA, 2012.
- WSDOT. Pavement Patching and Repair. In WSDOT Maintenance Manual; Washington State Department of Transportation: Olympia, WA, USA, 2020; pp. 1–40. Available online: https://www.wsdot.wa.gov/publications/manuals/fulltext/M41-01/Construction.pdf (accessed on 19 April 2025).
- WSDOT. Construction Manual. Available online: https://wsdot.wa.gov/publications/manuals/fulltext/M41-01/Construction.pdf (accessed on 5 February 2025).
- ASTM C136; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C143/C143M-20; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C138/C138M-23; Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM C39/C39M-24; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM C78/C78M-21; Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C496/C496M-17; Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C157/C157M-17; Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM International: West Conshohocken, PA, USA, 2024.
- Li, G.; Zhang, J.; Song, Z.; Shi, C.; Zhang, A. Improvement of workability and early strength of calcium sulphoaluminate cement at various temperature by chemical admixtures. Constr. Build. Mater. 2018, 160, 427–439. [Google Scholar] [CrossRef]
- Soriano, E. The Influence of Citric Acid on Setting Time and Temperature Behavior of Calcium Sulfoaluminate-Belite Cement. Available online: https://scholarworks.uark.edu/cveguht/50 (accessed on 10 March 2025).
- Zhu, H.; Yu, K.; Li, V. Citric Acid Influence on Sprayable Calcium Sulfoaluminate Cement-Engineered Cementitious Composites’ Fresh/Hardened Properties. ACI Mater. J. 2021, 118, 39–48. [Google Scholar] [CrossRef]
- Mondal, S.K.; Welz, A.; Clinton, C.; Khayat, K.; Kumar, A.; Okoronkwo, M.U. Quantifying the Workability of Calcium Sulfoaluminate Cement Paste Using Time-Dependent Rheology. Materials 2022, 15, 5775. [Google Scholar] [CrossRef]
- Peng, Y.M.; Unluer, C.; Shi, J.Y. Rheo-viscoelastic behavior and viscosity prediction of calcium sulphoaluminate modified Portland cement pastes. Powder Technol. 2021, 391, 344–352. [Google Scholar] [CrossRef]
- WSDOT. Manual 2025 Standard Specifications for Road, Bridge, and Municipal Construction. Available online: https://wsdot.wa.gov/publications/manuals/fulltext/M46-01/Materials.pdf (accessed on 5 February 2025).
- WSDOT. Materials Manual: Temperature of Freshly Mixed Portland Cement Concrete FOP for AASHTO T 309. Available online: https://www.wsdot.wa.gov/publications/manuals/fulltext/M46-01/t309.pdf (accessed on 31 December 2024).
- AASHTO R39 AASHTO R39. Making and Curing Concrete Test Specimens in The Laboratory. 2019. Available online: https://www.scribd.com/document/732557563/AASHTO-R39-2019-Making-and-curing-concrete-test-specimens-in-the-laboratory (accessed on 28 July 2025).
- Deo, O.; Win, D.; Bhuskute, N.; Chung, D.; deOcampo, N.; Bescher, E. Fast Setting, Low Carbon Infrastructure Rehabilitation Using Belitic Calcium Sulfoaluminate (BCSA) Concrete. MATEC Web Conf. 2022, 361, 00002. [Google Scholar] [CrossRef]
- Colonna, D.; Leone, M.; Aiello, M.A.; Tortelli, S.; Marchi, M.I. Short and long-term behaviour of R.C. beams made with CSA binder. Eng. Struct. 2019, 197, 109370. [Google Scholar] [CrossRef]
- Quillin, K. Performance of belite–sulfoaluminate cements. Cem. Concr. Res. 2001, 31, 1341–1349. [Google Scholar] [CrossRef]
- Feng, X.; Liu, B. Preparation and Characterization of Polymer-Modified Sulphoaluminate-Cement-Based Materials. Appl. Sci. 2024, 14, 3366. [Google Scholar] [CrossRef]
- Almutairi, A.D.; Alateyah, A.I.; Saeed, M.K.; Dahish, H.A.; El-Garaihy, W.H.; Alawad, M.O.; BaQais, A. Comprehensive investigation of the mechanical performance and evaluate the environmental impact of epoxy and polyester polymer concrete. Case Stud. Constr. Mater. 2025, 22, e04195. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, J.; Ming, F.; Liu, Y. Early Age Hydration Characteristics of Calcium Sulphoaluminate Cement Mortar Cured at a Temperature Range from −10 to 20 °C. Adv. Mater. Sci. Eng. 2021, 2021, 4494056. [Google Scholar] [CrossRef]
- Wang, W.; Wei, X.; Cai, X.; Deng, H.; Li, B. Mechanical and Microstructural Characteristics of Calcium Sulfoaluminate Cement Exposed to Early-Age Carbonation Curing. Materials 2021, 14, 3515. [Google Scholar] [CrossRef]
- Rudnicki, T.; Stałowski, P. Fast-Setting Concrete for Repairing Cement Concrete Pavement. Materials 2023, 16, 5909. [Google Scholar] [CrossRef]
- Santorsola, J.; Butler, L. Material behaviour and flexural performance of low carbon concrete beams containing very high quantities of recycled and secondary materials. Constr. Build. Mater. 2023, 407, 133350. [Google Scholar] [CrossRef]
- Abolhasani, A.; Samali, B.; Aslani, F. Physicochemical, Mineralogical, and Mechanical Properties of Calcium Aluminate Cement Concrete Exposed to Elevated Temperatures. Materials 2021, 14, 3855. [Google Scholar] [CrossRef]
- Asayesh, S.; Shirzadi Javid, A.A.; Ziari, H.; Mehri, B. Evaluating fresh state, hardened State, thermal expansion and bond properties of geopolymers for the repairing of concrete pavements under restrained conditions. Constr. Build. Mater. 2021, 292, 123398. [Google Scholar] [CrossRef]
- Lura, P.; Winnefeld, F.; Klemm, S. Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. J. Therm. Anal. Calorim. 2010, 101, 925–932. [Google Scholar] [CrossRef]
- Yager, J.; Hoult, N.; Bentz, E.; Woods, J. Measurement of Restrained and Unrestrained Shrinkage of Reinforced Concrete Using Distributed Fibre Optic Sensors. Sensors 2022, 22, 9397. [Google Scholar] [CrossRef] [PubMed]
- Ghafari, E.; Ghahari, S.A.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Constr. Build. Mater. 2016, 127, 43–48. [Google Scholar] [CrossRef]
- Rahman, M.; Chen, Y.; Lindquist, W.; Ibrahim, A.; Tobias, D.; Krstulovich, J.; Hindi, R. Large-scale testing of shrinkage mitigating concrete. J. Sustain. Cem.-Based Mater. 2019, 8, 39–54. [Google Scholar] [CrossRef]
- Sirtoli, D.; Wyrzykowski, M.; Riva, P.; Tortelli, S.; Marchi, M.; Lura, P. Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement. Cem. Concr. Compos. 2019, 98, 61–73. [Google Scholar] [CrossRef]
- Tosun, K.; Felekoğlu, B.; Baradan, B.; Altun, I. Portland Limestone Cement Part I—Preparation of Cements. Digest 2009, 20, 1137–1155. Available online: https://dergipark.org.tr/en/pub/tekderg/issue/12759/155231 (accessed on 28 July 2025).
- Tortelli, S.; Reggia, A.; Marchi, M.; Plizzari, G.A. Performance of Calcium-Sulpho Aluminate Cement for Concrete Pavement Applications: A Numerical and Experimental Investigation. In Proceedings of the 11th International Concrete Sustainability Conference, Guimarães, Portugal, 11–13 September 2024. [Google Scholar]
- Quezada, I.; Thomas, R.J.; Maguire, M. Internal Curing to Mitigate Cracking in Rapid Set Repair Media. Adv. Civ. Eng. Mater. 2018, 7, 660–671. [Google Scholar] [CrossRef]
- Guan, Y.; Gao, Y.; Sun, R.; Won, M.C.; Ge, Z. Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements. Front. Struct. Civ. Eng. 2017, 11, 338–345. [Google Scholar] [CrossRef]
- Qadri, F.; Nikumbh, R.K.; Jones, C. Freeze–Thaw Durability and Shrinkage of Calcium Sulfoaluminate Cement Concrete with Internal Curing. J. Mater. Civ. Eng. 2024, 36, 04024422. [Google Scholar] [CrossRef]
- Nontikansak, M.; Chaiyapoom, P.; Siriwatwechakul, W.; Jongvisuttisun, P.; Snguanyat, C. Control the early-stage hydration of expansive additive from calcium sulfoaluminate clinker by polymer encapsulation. Cement 2022, 8, 100021. [Google Scholar] [CrossRef]
- ACI Committee 306: ACI PRC-306-16 Guide to Cold Weather Concreting. Available online: https://www.concrete.org/store/productdetail.aspx?ItemID=30616&Language=English&Units=US_AND_METRIC (accessed on 8 March 2025).
- Djamila, B.; Othmane, B.; Said, K.; El-Hadj, K. Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC. Adv. Concr. Constr. 2018, 6, 69–85. [Google Scholar] [CrossRef]
- Ley, T. Synthesis of Rapid Setting Repair Materials; National Concrete Pavement Technology Center, Iowa State University: Ames, IA, USA, 2022; Available online: https://www.intrans.iastate.edu/wp-content/uploads/2022/02/rapid_setting_repair_materials_synthesis_w_cvr.pdf (accessed on 28 July 2025).
- Kujawa, W.; Tarach, I.; Olewnik-Kruszkowska, E.; Rudawska, A. Effect of Polymer Additives on the Microstructure and Mechanical Properties of Self-Leveling Rubberised Concrete. Materials 2022, 15, 249. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Dai, Y.; Zeng, Q.; Tian, Y.; Zhang, Z. Microstructure refinement of calcium-sulfate-aluminate and portland cement (CSA-PC) hybrids with accelerated CO2 curing (ACC). J. Mater. Res. Technol. 2024, 28, 1149–1164. [Google Scholar] [CrossRef]
- Gwon, S.; Jang, S.Y.; Shin, M. Microstructure evolution and strength development of ultra rapid hardening cement modified with redispersible polymer powder. Constr. Build. Mater. 2018, 192, 715–730. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Xu, L.; Zhou, Y.; Chen, Y.; Wu, K.; De Schutter, G. Synthesis and characterization of an intermediate for C-S-H structure tailoring. Cem. Concr. Res. 2022, 160, 106923. [Google Scholar] [CrossRef]
- Chen, I.A.; Hargis, C.W.; Juenger, M.C.G. Understanding expansion in calcium sulfoaluminate–belite cements. Cem. Concr. Res. 2012, 42, 51–60. [Google Scholar] [CrossRef]
- Khessaimi, Y.E. Synthèse et Hydratation de la Phase ye’elimite. Available online: https://theses.hal.science/tel-02464853/file/2019LIMO0090.pdf (accessed on 28 July 2025).
- Hargis, C.W.; Lothenbach, B.; Müller, C.J.; Winnefeld, F. Further insights into calcium sulfoaluminate cement expansion. Adv. Cem. Res. 2019, 31, 160–177. [Google Scholar] [CrossRef]
- Chaunsali, P. Early-Age Hydration and Volume Change of Calcium Sulfoaluminate Cement-Based Binders. Available online: https://www.proquest.com/docview/1746694417/abstract/4B83586CF2D14AE9PQ/1 (accessed on 4 May 2025).
- Chaunsali, P.; Mondal, P. Physico-chemical interaction between mineral admixtures and OPC–calcium sulfoaluminate (CSA) cements and its influence on early-age expansion. Cem. Concr. Res. 2016, 80, 10–20. [Google Scholar] [CrossRef]
- Xi, Y.-F.; Lee, J.; Chen, B.-L.; Yang, B.; Yu, M.-Z.; Yan, X.-Z.; Zhu, L. Impact of High-Performance Expansion and Shrinkage-Reducing Agents on the Mechanical Properties and Shrinkage Compensation of High-Strength Concrete. Buildings 2023, 13, 717. [Google Scholar] [CrossRef]
- Antara Choudhary, R.; Ghantous, O.H.; Opdahl, O.; Isgor, W. Weiss Heat of Hydration, Shrinkage, and Flexural Strength of Portland Limestone Cement Mortar. Adv. Civ. Eng. Mater. 2022, 11, 501–519. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Zajac, M.; Ben Haha, M.; Scrivener, K.L. Factors influencing the hydration kinetics of ye’elimite; effect of mayenite. Cem. Concr. Res. 2019, 116, 113–119. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Zajac, M. Factors influencing the hydration kinetics of ye’elimite; effect of free lime. Cem. Concr. Res. 2024, 180, 107516. [Google Scholar] [CrossRef]
- Chen, J.; Xie, B.; Lu, Z.; He, S.; Ma, S. Early Hydration Characteristics and Kinetics Model of Ordinary Portland Cement-Calcium Sulfoaluminate Cement Composites. Materials 2025, 18, 2559. [Google Scholar] [CrossRef]
Mix Type | Cement (lb/yd3) | Coarse Aggregate (¾ in., lb/yd3) | Fine Aggregate (lb/yd3) | Water (w/cm Ratio) | Admixtures per Mass of Cement | |
---|---|---|---|---|---|---|
Laboratory | CSAP | 658 | 1783 | 1192 | 0.38 | 1% MasterAir, 0.15% Citric Acid |
CSA-LLP | 658 | 1787 | 1202 | 0.38 | 1% MasterAir, 0.15% Citric Acid, 0.40% MasterGlenium, 10 fl oz/cwt Liquid Polymer | |
Type III (Control) | 658 | 1783 | 1192 | 0.38 | 0.10% MasterAir, 0.25% MasterGlenium | |
Outdoor | CSAP | 658 | 1783 | 1192 | 0.36 | 1% MasterAir, 0.15% Citric Acid |
CSA-LLP | 658 | 1787 | 1202 | 0.36 | 1% MasterAir, 0.15% Citric Acid, 0.40% MasterGlenium, 10 fl oz/cwt Liquid Polymer | |
Type IL | 564 | 2180 | 1011 | 0.44 | 0.496 lb. Daravair 1000, 1.286 lb. WRDA 64 |
Mix Type | Initial Slump (in.) | Air Content (%) | Initial Placement Temperature (°F) |
---|---|---|---|
CSAP (Lab) | 31-inch spread (slump flow) | 3.4 | 87 |
CSA-LLP (Lab) | 8.5 | 4.0 | 78 |
Type III (Control-Lab) | 9.0 | 4.7 | 84 |
CSAP Outdoor | 8.5 | 4.5 | 62 |
CSA-LLP Outdoor | 4.8 | 4.0 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akerele, D.D.; Aguayo, F. A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance. Buildings 2025, 15, 2759. https://doi.org/10.3390/buildings15152759
Akerele DD, Aguayo F. A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance. Buildings. 2025; 15(15):2759. https://doi.org/10.3390/buildings15152759
Chicago/Turabian StyleAkerele, Daniel D., and Federico Aguayo. 2025. "A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance" Buildings 15, no. 15: 2759. https://doi.org/10.3390/buildings15152759
APA StyleAkerele, D. D., & Aguayo, F. (2025). A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance. Buildings, 15(15), 2759. https://doi.org/10.3390/buildings15152759