Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,410)

Search Parameters:
Keywords = sustainability decision-making

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1359 KiB  
Article
Enhancing Efficiency in Sustainable IoT Enterprises: Modeling Indicators Using Pythagorean Fuzzy and Interval Grey Approaches
by Mimica R. Milošević, Miloš M. Nikolić, Dušan M. Milošević and Violeta Dimić
Sustainability 2025, 17(15), 7143; https://doi.org/10.3390/su17157143 - 6 Aug 2025
Abstract
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many [...] Read more.
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many IoT-related products, challenges pertaining to their effective implementation, particularly the lack of knowledge and confidence about security, must be addressed. To provide IoT-based enterprises with a platform for efficiency and sustainability, this study aims to identify the critical elements that influence the growth of a successful company integrated with an IoT system. This study proposes a decision support tool that evaluates the influential features of IoT using the Pythagorean Fuzzy and Interval Grey approaches within the Analytical Hierarchy Process (AHP). This study demonstrates that security, value, and connectivity are more critical than telepresence and intelligence indicators. When both strategies are used, market demand and information privacy become significant indicators. Applying the Pythagorean Fuzzy approach enables the identification of sensor networks, authorization, market demand, and data management in terms of importance. The application of the Interval Grey approach underscores the importance of data management, particularly in sensor networks. The indicators that were finally ranked are compared to obtain a good coefficient of agreement. These findings offer practical insights for promoting sustainability in enterprise operations by optimizing IoT infrastructure and decision-making processes. Full article
30 pages, 3560 KiB  
Article
The Planning of Best Site Selection for Wind Energy in Indonesia: A Synergistic Approach Using Data Envelopment Analysis and Fuzzy Multi-Criteria Decision-Making
by Chia-Nan Wang, Yu-Chi Chung, Fajar Dwi Wibowo, Thanh-Tuan Dang and Ngoc-Ai-Thy Nguyen
Energies 2025, 18(15), 4176; https://doi.org/10.3390/en18154176 - 6 Aug 2025
Abstract
The objective of this study is to create an integrated and sustainability-centered framework to identify optimal locations for wind energy projects in Indonesia. This research employs a novel two-phase multi-criteria decision-making (MCDM) framework that combines the strengths of Data Envelopment Analysis (DEA), Fuzzy [...] Read more.
The objective of this study is to create an integrated and sustainability-centered framework to identify optimal locations for wind energy projects in Indonesia. This research employs a novel two-phase multi-criteria decision-making (MCDM) framework that combines the strengths of Data Envelopment Analysis (DEA), Fuzzy Analytic Hierarchy Process (FAHP), and Fuzzy Combined Compromise Solution (F-CoCoSo). Initially, DEA is utilized to pinpoint the most promising sites based on a variety of quantitative factors. Subsequently, these sites are evaluated against qualitative criteria such as technical, economic, environmental, and socio-political considerations using FAHP for criteria weighting and F-CoCoSo for ranking the sites. Comprehensive sensitivity analysis of the criteria weights and a comparative assessment of methodologies substantiate the robustness of the proposed framework. The results converge on consistent rankings across methods, highlighting the effectiveness of the integrated approach. Notably, the results consistently identify Lampung, Aceh, and Riau as the top-ranked provinces, showcasing their strategic suitability for wind plant development. This framework provides a systematic approach for enhancing resource efficiency and strategic planning in Indonesia’s renewable energy sector. Full article
(This article belongs to the Special Issue Progress and Challenges in Wind Farm Optimization)
Show Figures

Figure 1

25 pages, 1851 KiB  
Article
Evaluating Supply Chain Finance Instruments for SMEs: A Stackelberg Approach to Sustainable Supply Chains Under Government Support
by Shilpy and Avadhesh Kumar
Sustainability 2025, 17(15), 7124; https://doi.org/10.3390/su17157124 - 6 Aug 2025
Abstract
This research aims to investigate financing decisions of capital-constrained small and medium-sized enterprise (SME) manufacturers and distributors under a Green Supply Chain (GSC) framework. By evaluating the impact of Supply Chain Finance (SCF) instruments, this study utilizes Stackelberg game model to explore a [...] Read more.
This research aims to investigate financing decisions of capital-constrained small and medium-sized enterprise (SME) manufacturers and distributors under a Green Supply Chain (GSC) framework. By evaluating the impact of Supply Chain Finance (SCF) instruments, this study utilizes Stackelberg game model to explore a decentralized decision-making system. To our knowledge, this investigation represents the first exploration of game models that uniquely compares financing through trade credit, where the manufacturer offers zero-interest credit without discounts with reverse factoring, while also considering distributor’s efforts on sustainable marketing under the impact of supportive government policies. Our study suggests that manufacturers should adopt reverse factoring for optimal profits and actively participate in distributors’ financing decisions to address inefficiencies in decentralized systems. Furthermore, the distributor’s demand quantity, profits and sustainable marketing efforts show significant increase under reverse factoring, aided by favorable policies. Finally, the results are validated through Python 3.8.8 simulations in the Anaconda distribution, offering meaningful insights for policymakers and supply chain managers. Full article
Show Figures

Figure 1

43 pages, 3290 KiB  
Article
Hydroprocessed Ester and Fatty Acids to Jet: Are We Heading in the Right Direction for Sustainable Aviation Fuel Production?
by Mathieu Pominville-Racette, Ralph Overend, Inès Esma Achouri and Nicolas Abatzoglou
Energies 2025, 18(15), 4156; https://doi.org/10.3390/en18154156 - 5 Aug 2025
Abstract
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) [...] Read more.
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) reduction potential for the HEFA-tJ pathway compared to competing markets using the same resources for road diesel production. Moderate yield variations between air and road pathways lead to several hundred thousand tons less GHG reduction per project, which is generally not evaluated thoroughly in standard environmental assessments. This work demonstrates that, although the HEFA-tJ market seems to have more attractive features than biodiesel/renewable diesel, considerable viability risks might manifest as HEFA-tJ fuel market integration rises. The need for more transparent data and effort in this regard, before envisaging making decisions regarding the volume of HEFA-tJ production, is emphasized. Overall, reducing the carbon intensity of road diesel appears to be less capital-intensive, less risky, and several times more efficient in reducing GHG emissions. Full article
(This article belongs to the Special Issue Sustainable Approaches to Energy and Environment Economics)
Show Figures

Figure 1

28 pages, 11518 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

38 pages, 2949 KiB  
Article
Modeling the Evolutionary Mechanism of Multi-Stakeholder Decision-Making in the Green Renovation of Existing Residential Buildings in China
by Yuan Gao, Jinjian Liu, Jiashu Zhang and Hong Xie
Buildings 2025, 15(15), 2758; https://doi.org/10.3390/buildings15152758 - 5 Aug 2025
Abstract
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and [...] Read more.
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and risk perceptions among governments, energy service companies (ESCOs), and owners, the implementation of green renovation is hindered by numerous obstacles. In this study, we integrated prospect theory and evolutionary game theory by incorporating core prospect-theory parameters such as loss aversion and perceived value sensitivity, and developed a psychologically informed tripartite evolutionary game model. The objective was to provide a theoretical foundation and analytical framework for collaborative governance among stakeholders. Numerical simulations were conducted to validate the model’s effectiveness and explore how government regulation intensity, subsidy policies, market competition, and individual psychological factors influence the system’s evolutionary dynamics. The findings indicate that (1) government regulation and subsidy policies play central guiding roles in the early stages of green renovation, but the effectiveness has clear limitations; (2) ESCOs are most sensitive to policy incentives and market competition, and moderately increasing their risk costs can effectively deter opportunistic behavior associated with low-quality renovation; (3) owners’ willingness to participate is primarily influenced by expected returns and perceived renovation risks, while economic incentives alone have limited impact; and (4) the evolutionary outcomes are highly sensitive to parameters from prospect theory, The system’s evolutionary outcomes are highly sensitive to prospect theory parameters. High levels of loss aversion (λ) and loss sensitivity (β) tend to drive the system into a suboptimal equilibrium characterized by insufficient demand, while high gain sensitivity (α) serves as a key driving force for the system’s evolution toward the ideal equilibrium. This study offers theoretical support for optimizing green renovation policies for existing residential buildings in China and provides practical recommendations for improving market competition mechanisms, thereby promoting the healthy development of the green renovation market. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 344 KiB  
Article
Hot-Hand Belief and Loss Aversion in Individual Portfolio Decisions: Evidence from a Financial Experiment
by Marcleiton Ribeiro Morais, José Guilherme de Lara Resende and Benjamin Miranda Tabak
J. Risk Financial Manag. 2025, 18(8), 433; https://doi.org/10.3390/jrfm18080433 - 5 Aug 2025
Abstract
We investigate whether a belief in trend continuation, often associated with the so-called “hot-hand effect,” can be endogenously triggered by personal performance feedback in a controlled financial experiment. Participants allocated funds across assets with randomly generated prices, under conditions of known probabilities and [...] Read more.
We investigate whether a belief in trend continuation, often associated with the so-called “hot-hand effect,” can be endogenously triggered by personal performance feedback in a controlled financial experiment. Participants allocated funds across assets with randomly generated prices, under conditions of known probabilities and varying levels of risk. In a two-stage setup, participants were first exposed to random price sequences to learn the task and potentially develop perceptions of personal success. They then faced additional price paths under incentivized conditions. Our findings show that participants initially increased purchases following gains—consistent with a feedback-driven belief in momentum—but this pattern faded over time. When facing sustained losses, loss aversion dominated decision-making, overriding early optimism. These results highlight how cognitive heuristics and emotional biases interact dynamically, suggesting that belief in trend continuation is context-sensitive and constrained by the reluctance to realize losses. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

27 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

20 pages, 2225 KiB  
Article
Network Saturation: Key Indicator for Profitability and Sensitivity Analyses of PRT and GRT Systems
by Joerg Schweizer, Giacomo Bernieri and Federico Rupi
Future Transp. 2025, 5(3), 104; https://doi.org/10.3390/futuretransp5030104 - 4 Aug 2025
Abstract
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as [...] Read more.
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as they are low-emission and able to attract car drivers. The parameterized cost modeling framework developed in this paper has the advantage that profitability of different PRT/GRT systems can be rapidly verified in a transparent way and in function of a variety of relevant system parameters. This framework may contribute to a more transparent, rapid, and low-cost evaluation of PRT/GRT schemes for planning and decision-making purposes. The main innovation is the introduction of the “peak hour network saturation” S: the number of vehicles in circulation during peak hour divided by the maximum number of vehicles running at line speed with minimum time headways. It is an index that aggregates the main uncertainties in the planning process, namely the demand level relative to the supply level. Furthermore, a maximum S can be estimated for a PRT/GRT project, even without a detailed demand estimation. The profit per trip is analytically derived based on S and a series of more certain parameters, such as fares, capital and maintenance costs, daily demand curve, empty vehicle share, and physical properties of the system. To demonstrate the ability of the framework to analyze profitability in function of various parameters, we apply the methods to a single vehicle PRT, a platooned PRT, and a mixed PRT/GRT. The results show that PRT services with trip length proportional fares could be profitable already for S>0.25. The PRT capacity, profitability, and robustness to tripled infrastructure costs can be increased by vehicle platooning or GRT service during peak hours. Full article
Show Figures

Figure 1

25 pages, 2973 KiB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

14 pages, 1579 KiB  
Article
Predisposing Anatomical Patellofemoral Factors for Subsequent Patellar Dislocation
by Anna Kupczak, Bartłomiej Wilk, Ewa Tramś, Maciej Liszka, Bartosz Machnio, Aleksandra Jasiniewska, Jerzy Białecki and Rafał Kamiński
Life 2025, 15(8), 1239; https://doi.org/10.3390/life15081239 - 4 Aug 2025
Abstract
Background: Primary patellar dislocation is a relatively uncommon knee injury but carries a high risk of recurrence, particularly in young and physically active adolescent individuals. Anatomical features of the patellofemoral joint have been implicated as key contributors to instability. The purpose of this [...] Read more.
Background: Primary patellar dislocation is a relatively uncommon knee injury but carries a high risk of recurrence, particularly in young and physically active adolescent individuals. Anatomical features of the patellofemoral joint have been implicated as key contributors to instability. The purpose of this study was to evaluate anatomical risk factors associated with recurrent patellar dislocation following a primary traumatic event, using MRI-based parameters. Methods: Fifty-four patients who sustained a first-time lateral patellar dislocation were included. MRI was used to measure tibial tuberosity–trochlear groove (TT–TG) distance, tibial tuberosity–posterior cruciate ligament (TT–PCL) distance, Insall–Salvati ratio (IS), sulcus angle (SA), patellar tilt angle (PTA), patella length, and patellar tendon length. Trochlear dysplasia was assessed according to the Dejour classification. Recurrence was defined as a subsequent dislocation occurring within three years of the primary injury. Results: Significant differences were observed in TT–TG distance and patellar tendon length (p < 0.05). Patients with recurrent dislocation had lower TT–TG values and shorter patellar tendon lengths. Other parameters, including PTA, IS, and patella height, did not show statistically significant differences. Conclusion: Anatomical factors may contribute to the risk of recurrent patellar dislocation. Identifying these variables using imaging may support clinical decision making and guide individualized treatment plans following primary injury. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

37 pages, 3005 KiB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Viewed by 28
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Viewed by 27
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

26 pages, 1085 KiB  
Article
Evaluating Sustainable Battery Recycling Technologies Using a Fuzzy Multi-Criteria Decision-Making Approach
by Chia-Nan Wang, Nhat-Luong Nhieu and Yen-Hui Wang
Batteries 2025, 11(8), 294; https://doi.org/10.3390/batteries11080294 - 4 Aug 2025
Viewed by 128
Abstract
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling [...] Read more.
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling technologies under uncertainty. Ten key evaluation criteria—encompassing environmental, economic, and technological dimensions—were identified through expert consultation and literature synthesis. The T-Spherical Fuzzy DEMATEL method was first applied to analyze the causal interdependencies among criteria and determine their relative weights, revealing that environmental drivers such as energy consumption, greenhouse gas emissions, and waste generation exert the most systemic influence. Subsequently, six recycling alternatives were assessed and ranked using the CoCoSo method enhanced by Einstein-based aggregation, which captured the complex interactions present in the experts’ evaluations and assessments. Results indicate that Direct Recycling is the most favorable option, followed by the Hydrometallurgical and Bioleaching methods, while Pyrometallurgical Recycling ranked lowest due to its high energy demands and environmental burden. The proposed hybrid model effectively handles linguistic uncertainty, expert variability, and interdependent evaluation structures, offering a robust decision-support tool for sustainable technology selection in the circular battery economy. The framework is adaptable to other domains requiring structured expert-based evaluations under fuzzy environments. Full article
Show Figures

Figure 1

37 pages, 10560 KiB  
Article
Optimizing Building Performance with Dynamic Photovoltaic Shading Systems: A Comparative Analysis of Six Adaptive Designs
by Roshanak Roshan Kharrat, Giuseppe Perfetto, Roberta Ingaramo and Guglielmina Mutani
Smart Cities 2025, 8(4), 127; https://doi.org/10.3390/smartcities8040127 - 3 Aug 2025
Viewed by 179
Abstract
Dynamic and Adaptive solar systems demonstrate a greater potential to enhance the satisfaction of occupants, in terms of indoor environment quality and the energy efficiency of the buildings, than conventional shading solutions. This study has evaluated Dynamic and Adaptive Photovoltaic Shading Systems (DAPVSSs) [...] Read more.
Dynamic and Adaptive solar systems demonstrate a greater potential to enhance the satisfaction of occupants, in terms of indoor environment quality and the energy efficiency of the buildings, than conventional shading solutions. This study has evaluated Dynamic and Adaptive Photovoltaic Shading Systems (DAPVSSs) through a comprehensive analysis of six shading designs in which their energy production and the comfort of occupants were considered. Energy generation, thermal comfort, daylight, and glare control have been assessed in this study, considering multiple orientations throughout the seasons, and a variety of tools, such as Rhino 6.0, Grasshopper, ClimateStudio 2.1, and Ladybug, have been exploited for these purposes. The results showed that the prototypes that were geometrically more complex, designs 5 and 6 in particular, had approximately 485 kWh higher energy production and energy savings for cooling and 48% better glare control than the other simplified configurations while maintaining the minimum daylight as the threshold (min DF: 2%) due to adaptive and control methodologies. Design 6 demonstrated optimal balanced performance for all the aforementioned criteria, achieving 587 kWh/year energy production while maintaining the daylight factor within the 2.1–2.9% optimal range and ensuring visual comfort compliance during 94% of occupied hours. This research has established a framework that can be used to make well-informed design decisions that could balance energy production, occupants’ wellbeing, and architectural integration, while advancing sustainable building envelope technologies. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

Back to TopTop