Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,895)

Search Parameters:
Keywords = sustainability criteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2005 KiB  
Systematic Review
Remote Sensing for Wildfire Mapping: A Comprehensive Review of Advances, Platforms, and Algorithms
by Ruth E. Guiop-Servan, Alexander Cotrina-Sanchez, Jhoivi Puerta-Culqui, Manuel Oliva-Cruz and Elgar Barboza
Fire 2025, 8(8), 316; https://doi.org/10.3390/fire8080316 (registering DOI) - 7 Aug 2025
Abstract
The use of remote sensing technologies for mapping forest fires has experienced significant growth in recent decades, driven by advancements in remote sensors, processing platforms, and artificial intelligence algorithms. This study presents a review of 192 scientific articles published between 1990 and 2024, [...] Read more.
The use of remote sensing technologies for mapping forest fires has experienced significant growth in recent decades, driven by advancements in remote sensors, processing platforms, and artificial intelligence algorithms. This study presents a review of 192 scientific articles published between 1990 and 2024, selected using PRISMA criteria from the Scopus database. Trends in the use of active and passive sensors, spectral indices, software, and processing platforms as well as machine learning and deep learning approaches are analyzed. Bibliometric analysis reveals a concentration of publications in Northern Hemisphere countries such as the United States, Spain, and China as well as in Brazil in the Southern Hemisphere, with sustained growth since 2015. Additionally, the publishers, journals, and authors with the highest scientific output are identified. The normalized burn ratio (NBR) and the normalized difference vegetation index (NDVI) were the most frequently used indices in fire mapping, while random forest (RF) and convolutional neural networks (CNN) were prominent among the applied algorithms. Finally, the main technological and methodological limitations as well as emerging opportunities to enhance fire detection, monitoring, and prediction in various regions are discussed. This review provides a foundation for future research in remote sensing applied to fire management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Burned Area Mapping)
34 pages, 2584 KiB  
Article
An Extended FullEX Method: An Application to the Selection of Online Orders Distribution Modes Based on the Shared Economy
by Milena Ninović, Momčilo Dobrodolac, Sara Bošković, Đorđije Dupljanin, Dragan Lazarević and Slaviša Dumnić
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 207; https://doi.org/10.3390/jtaer20030207 - 7 Aug 2025
Abstract
Urbanization and the rapid growth of e-commerce have significantly increased delivery volumes in cities, creating challenges in terms of cost, efficiency, and sustainability in last-mile delivery (LMD). To address these challenges, this paper proposes an innovative methodological framework for selecting optimal delivery strategies [...] Read more.
Urbanization and the rapid growth of e-commerce have significantly increased delivery volumes in cities, creating challenges in terms of cost, efficiency, and sustainability in last-mile delivery (LMD). To address these challenges, this paper proposes an innovative methodological framework for selecting optimal delivery strategies in urban environments, grounded in the principles of collaboration. The framework integrates an Extended FullEx method, developed to calculate criteria weights while accounting for expert reputation based on education and experience, with the MARCOS multi-criteria decision-making (MCDM) method used to rank delivery strategies. The Extended FullEx method proposed in this paper differs from the original FullEx by providing two improvements. The first concerns the introduction of the normalization procedure in the calculation of experts’ reputations, while the second addresses the different scoring of educational degrees, providing a more precise mathematical basis for the process. Four collaborative delivery strategies are evaluated against twelve sustainability-related criteria identified through an extensive literature review. The proposed framework is applied to a real-life case study in Novi Sad, Republic of Serbia. Results indicate that the most suitable delivery strategy is a hybrid model that combines the use of a consolidation center with smaller urban delivery hubs, providing practical insights for enhancing the sustainability and efficiency of urban delivery. This study contributes both methodologically, by advancing MCDM techniques, and practically, by offering decision-makers a comprehensive tool that integrates subjective expert knowledge and objective criteria assessment in the selection of sustainable LMD solutions. Full article
Show Figures

Figure 1

41 pages, 827 KiB  
Systematic Review
Reviewing Evidence for the Impact of Lion Farming in South Africa on African Wild Lion Populations
by Jennah Green, Angie Elwin, Catherine Jakins, Stephanie-Emmy Klarmann, Louise de Waal, Madeleine Pinkess and Neil D’Cruze
Animals 2025, 15(15), 2316; https://doi.org/10.3390/ani15152316 - 7 Aug 2025
Abstract
The scope and scale of commercial captive lion breeding (CLB) in South Africa have rapidly increased since the 1990s. We conducted a qualitative systematic review using the PRISMA protocol to determine whether CLB provides a sustainable supply side intervention to reduce pressure on [...] Read more.
The scope and scale of commercial captive lion breeding (CLB) in South Africa have rapidly increased since the 1990s. We conducted a qualitative systematic review using the PRISMA protocol to determine whether CLB provides a sustainable supply side intervention to reduce pressure on wild lion populations. A search was performed using three academic databases for sources published between 2008 and 2023. We collated and reviewed the data using an evaluation framework to determine the potential benefits and threats of CLB in the context of conservation. Among the 126 peer-reviewed and 37 grey literature articles identified, we found evidence suggesting that the framework’s criteria were not fully met, raising concerns that CLB may facilitate the demand for lions, their parts, and derivatives. Our findings further indicate a reasonable cause to doubt that the CLB provides a sustainable supply side intervention to meet the commercial demand for lions, their parts, and derivatives. This could adversely impact conservation of wild lion populations. We conclude that further research is required to effectively evaluate the purported conservation benefits of CLB. These insights may also have implications for the policy and governance of commercial predator breeding operations in South Africa and globally. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

30 pages, 2141 KiB  
Article
Enhancing Efficiency in Sustainable IoT Enterprises: Modeling Indicators Using Pythagorean Fuzzy and Interval Grey Approaches
by Mimica R. Milošević, Miloš M. Nikolić, Dušan M. Milošević and Violeta Dimić
Sustainability 2025, 17(15), 7143; https://doi.org/10.3390/su17157143 - 6 Aug 2025
Abstract
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many [...] Read more.
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many IoT-related products, challenges pertaining to their effective implementation, particularly the lack of knowledge and confidence about security, must be addressed. To provide IoT-based enterprises with a platform for efficiency and sustainability, this study aims to identify the critical elements that influence the growth of a successful company integrated with an IoT system. This study proposes a decision support tool that evaluates the influential features of IoT using the Pythagorean Fuzzy and Interval Grey approaches within the Analytical Hierarchy Process (AHP). This study demonstrates that security, value, and connectivity are more critical than telepresence and intelligence indicators. When both strategies are used, market demand and information privacy become significant indicators. Applying the Pythagorean Fuzzy approach enables the identification of sensor networks, authorization, market demand, and data management in terms of importance. The application of the Interval Grey approach underscores the importance of data management, particularly in sensor networks. The indicators that were finally ranked are compared to obtain a good coefficient of agreement. These findings offer practical insights for promoting sustainability in enterprise operations by optimizing IoT infrastructure and decision-making processes. Full article
Show Figures

Figure 1

27 pages, 7041 KiB  
Article
Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data
by Mikhaïl Jean De Dieu Dotou Padonou, Antoine Denis, Yvon-Carmen H. Hountondji, Bernard Tychon and Gérard Nounagnon Gouwakinnou
Environments 2025, 12(8), 271; https://doi.org/10.3390/environments12080271 - 6 Aug 2025
Abstract
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This [...] Read more.
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This study aims to develop a multi-criteria assessment method of the negative environmental externalities of rural landscapes in the northern Benin agricultural basin, based on satellite-derived data. Starting from a 12-class land cover map produced through satellite image classification, the evaluation was conducted in three steps. First, the 12 land cover classes were reclassified into Human Disturbance Coefficients (HDCs) via a weighted sum model multi-criteria analysis based on nine criteria related to the negative environmental externalities of anthropogenic activities. Second, the HDC classes were spatially aggregated using a regular grid of 1 km2 landscape cells to produce the Landscape Environmental Sustainability Index (LESI). Finally, various discretization methods were applied to the LESI for cartographic representation, enhancing spatial interpretation. Results indicate that most areas exhibit moderate environmental externalities (HDC and LESI values between 2.5 and 3.5), covering 63–75% (HDC) and 83–94% (LESI) of the respective sites. Areas of low environmental externalities (values between 1.5 and 2.5) account for 20–24% (HDC) and 5–13% (LESI). The LESI, derived from accessible and cost-effective satellite data, offers a scalable, reproducible, and spatially explicit tool for monitoring landscape sustainability. It holds potential for guiding territorial governance and supporting transitions towards more sustainable land management practices. Future improvements may include, among others, refining the evaluation criteria and introducing variable criteria weighting schemes depending on land cover or region. Full article
Show Figures

Figure 1

30 pages, 3560 KiB  
Article
The Planning of Best Site Selection for Wind Energy in Indonesia: A Synergistic Approach Using Data Envelopment Analysis and Fuzzy Multi-Criteria Decision-Making
by Chia-Nan Wang, Yu-Chi Chung, Fajar Dwi Wibowo, Thanh-Tuan Dang and Ngoc-Ai-Thy Nguyen
Energies 2025, 18(15), 4176; https://doi.org/10.3390/en18154176 - 6 Aug 2025
Abstract
The objective of this study is to create an integrated and sustainability-centered framework to identify optimal locations for wind energy projects in Indonesia. This research employs a novel two-phase multi-criteria decision-making (MCDM) framework that combines the strengths of Data Envelopment Analysis (DEA), Fuzzy [...] Read more.
The objective of this study is to create an integrated and sustainability-centered framework to identify optimal locations for wind energy projects in Indonesia. This research employs a novel two-phase multi-criteria decision-making (MCDM) framework that combines the strengths of Data Envelopment Analysis (DEA), Fuzzy Analytic Hierarchy Process (FAHP), and Fuzzy Combined Compromise Solution (F-CoCoSo). Initially, DEA is utilized to pinpoint the most promising sites based on a variety of quantitative factors. Subsequently, these sites are evaluated against qualitative criteria such as technical, economic, environmental, and socio-political considerations using FAHP for criteria weighting and F-CoCoSo for ranking the sites. Comprehensive sensitivity analysis of the criteria weights and a comparative assessment of methodologies substantiate the robustness of the proposed framework. The results converge on consistent rankings across methods, highlighting the effectiveness of the integrated approach. Notably, the results consistently identify Lampung, Aceh, and Riau as the top-ranked provinces, showcasing their strategic suitability for wind plant development. This framework provides a systematic approach for enhancing resource efficiency and strategic planning in Indonesia’s renewable energy sector. Full article
(This article belongs to the Special Issue Progress and Challenges in Wind Farm Optimization)
Show Figures

Figure 1

30 pages, 8483 KiB  
Article
Research on Innovative Design of Two-in-One Portable Electric Scooter Based on Integrated Industrial Design Method
by Yang Zhang, Xiaopu Jiang, Shifan Niu and Yi Zhang
Sustainability 2025, 17(15), 7121; https://doi.org/10.3390/su17157121 - 6 Aug 2025
Abstract
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty [...] Read more.
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty fades for users, the usage frequency declines, resulting in considerable resource wastage. This research collected user needs via surveys and employed the KJ method (affinity diagram) to synthesize fragmented insights into cohesive thematic clusters. Subsequently, a hierarchical needs model for electric scooters was constructed using analytical hierarchy process (AHP) principles, enabling systematic prioritization of user requirements through multi-criteria evaluation. By establishing a house of quality (HoQ), user needs were transformed into technical characteristics of electric scooter products, and the corresponding weights were calculated. After analyzing the positive and negative correlation degrees of the technical characteristic indicators, it was found that there are technical contradictions between functional zoning and compact size, lightweight design and material structure, and smart interaction and usability. Then, based on the theory of inventive problem solving (TRIZ), the contradictions were classified, and corresponding problem-solving principles were identified to achieve a multi-functional innovative design for electric scooters. This research, leveraging a systematic industrial design analysis framework, identified critical pain points among electric scooter users, established hierarchical user needs through priority ranking, and improved product lifecycle sustainability. It offers novel methodologies and perspectives for advancing theoretical research and design practices in the electric scooter domain. Full article
Show Figures

Figure 1

28 pages, 11518 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

38 pages, 1136 KiB  
Review
Efficacy of Transcranial Magnetic Stimulation and Transcranial Direct-Current Stimulation in Primary Progressive Aphasia Treatment: A Review
by Elena Gobbi, Ilaria Pagnoni, Elena Campana, Rosa Manenti and Maria Cotelli
Brain Sci. 2025, 15(8), 839; https://doi.org/10.3390/brainsci15080839 - 5 Aug 2025
Abstract
Background: In recent years, there has been increasing interest in the application of repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct-Current Stimulation (tDCS) to enhance and rehabilitate the language abilities in individuals with neurodegenerative diseases. Objective: The aim of this narrative [...] Read more.
Background: In recent years, there has been increasing interest in the application of repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct-Current Stimulation (tDCS) to enhance and rehabilitate the language abilities in individuals with neurodegenerative diseases. Objective: The aim of this narrative literature review is to investigate the usefulness of rTMS and tDCS to improve language abilities in people with Primary Progressive Aphasia (PPA). Methods: This narrative literature review was conducted through a search of the PubMed online database to identify studies investigating the effects of multiple sessions of rTMS or tDCS on language abilities in PPA patients, applied either as stand-alone interventions or in combination with language treatment. Results: Thirty-three studies fulfilled the inclusion criteria; five studies employed rTMS without language treatment; two studies applied tDCS as stand-alone intervention; twenty-two studies combined tDCS with language treatment; and four studies assessed the effects of tDCS during verbal task without language treatment. Conclusions: rTMS and tDCS applied with or without concomitant language treatment appear to be promising interventions for enhancing language abilities in PPA, with sustained effects reported over time. Further research is necessary to optimise stimulation protocols and to improve our understanding of their long-term effects. Moreover, randomised controlled trials (RCTs) with larger sample sizes are critically needed to clarify the true impact of brain stimulation in PPA, with a focus on changes in cognitive and functional performance, neural activity, and potential molecular correlates. Full article
(This article belongs to the Special Issue Latest Research on the Treatments of Speech and Language Disorders)
Show Figures

Figure 1

26 pages, 1062 KiB  
Article
Sustainability Audit of University Websites in Poland: Analysing Carbon Footprint and Sustainable Design Conformity
by Karol Król
Appl. Sci. 2025, 15(15), 8666; https://doi.org/10.3390/app15158666 - 5 Aug 2025
Abstract
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design [...] Read more.
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design criteria. The sustainability audit employed a methodology encompassing carbon emissions measurement, technical website analysis, and SEO evaluation. The author analysed 63 websites of public universities in Poland using seven independent audit tools, including an original AI Custom GPT agent preconfigured in the ChatGPT ecosystem. The results revealed a substantial differentiation in CO2 emissions and website optimisation, with an average EcoImpact Score of 66.41/100. Nearly every fourth website exhibited a significant carbon footprint and excessive component sizes, which indicates poor asset optimisation and energy-intensive design techniques. The measurements exposed considerable variability in emission intensities and resource intensity among the university websites, suggesting the need for standardised digital sustainability practices. Regulations on the carbon footprint of public institutions’ websites and mobile applications could become vital strategic components for digital climate neutrality. Promoting green hosting, “Green SEO” practices, and sustainability audits could help mitigate the environmental impact of digital technologies and advance sustainable design standards for the public sector. The proposed auditing methodology can effectively support the institutional transition towards sustainable management of digital infrastructure by integrating technical, sustainability, and organisational aspects. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

13 pages, 532 KiB  
Systematic Review
A Systematic Review of Early-Career Teacher Wellbeing, Stress, Burnout and Support Mechanisms During and Post COVID-19 Pandemic
by Trent Davis and Eunjae Park
Educ. Sci. 2025, 15(8), 996; https://doi.org/10.3390/educsci15080996 - 5 Aug 2025
Abstract
Early-career teachers (ECTs) entered the profession during the COVID-19 pandemic, a period that introduced unique stressors to an already-demanding career phase. This systematic review examines empirical studies published between 2020 and February 2025 to explore how the pandemic influenced ECT wellbeing, with particular [...] Read more.
Early-career teachers (ECTs) entered the profession during the COVID-19 pandemic, a period that introduced unique stressors to an already-demanding career phase. This systematic review examines empirical studies published between 2020 and February 2025 to explore how the pandemic influenced ECT wellbeing, with particular attention to stressors and protective factors impacting long-term retention and professional sustainability. Guided by PRISMA protocols, databases including Web of Science, ERIC, Google Scholar, and Scopus were searched, screening 470 records and identifying 30 studies that met inclusion criteria: peer-reviewed, empirical, focused on early-career teachers (within the first five years), and situated in or explicitly addressing the pandemic and its ongoing impacts. The results of Braun and Clarke’s thematic analysis (2006) revealed that pandemic-related challenges such as increased workload, professional isolation, disrupted induction processes, and emotional strain have persisted into the post-pandemic era, contributing to sustained risks of burnout and attrition. Regardless, protective factors identified during the pandemic—including high-quality mentoring, structured induction programmes, collegial support, professional autonomy, and effective individual coping strategies—continue to offer essential support, enhancing resilience and professional wellbeing. These findings underscore the necessity of institutionalising targeted supports to address the enduring effects of pandemic-related stressors on ECT wellbeing. By prioritising sustained mental health initiatives and structural supports, education systems can effectively mitigate long-term impacts and improve retention outcomes for early-career teachers in a post-pandemic educational landscape. Full article
(This article belongs to the Special Issue Education for Early Career Teachers)
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Viewed by 40
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

30 pages, 11220 KiB  
Article
Rainwater Harvesting Site Assessment Using Geospatial Technologies in a Semi-Arid Region: Toward Water Sustainability
by Ban AL-Hasani, Mawada Abdellatif, Iacopo Carnacina, Clare Harris, Bashar F. Maaroof and Salah L. Zubaidi
Water 2025, 17(15), 2317; https://doi.org/10.3390/w17152317 (registering DOI) - 4 Aug 2025
Viewed by 118
Abstract
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote [...] Read more.
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote sustainable farming practices. An integrated geospatial approach was adopted, combining Remote Sensing (RS), Geographic Information Systems (GIS), and Multi-Criteria Decision Analysis (MCDA). Key thematic layers, including soil type, land use/land cover, slope, and drainage density were processed in a GIS environment to model runoff potential. The Soil Conservation Service Curve Number (SCS-CN) method was used to estimate surface runoff. Criteria were weighted using the Analytical Hierarchy Process (AHP), enabling a structured and consistent evaluation of site suitability. The resulting suitability map classifies the region into four categories: very high suitability (10.2%), high (26.6%), moderate (40.4%), and low (22.8%). The integration of RS, GIS, AHP, and MCDA proved effective for strategic RWH site selection, supporting cost-efficient, sustainable, and data-driven agricultural planning in water-stressed environments. Full article
Show Figures

Figure 1

58 pages, 8116 KiB  
Review
Electrochemical Detection of Heavy Metals Using Graphene-Based Sensors: Advances, Meta-Analysis, Toxicity, and Sustainable Development Challenges
by Muhammad Saqib, Anna N. Solomonenko, Nirmal K. Hazra, Shojaa A. Aljasar, Elena I. Korotkova, Elena V. Dorozhko, Mrinal Vashisth and Pradip K. Kar
Biosensors 2025, 15(8), 505; https://doi.org/10.3390/bios15080505 - 4 Aug 2025
Viewed by 301
Abstract
Contamination of food with heavy metals is an important factor leading to serious health concerns. Rapid identification of these heavy metals is of utmost priority. There are several methods to identify traces of heavy metals in food. Conventional methods for the detection of [...] Read more.
Contamination of food with heavy metals is an important factor leading to serious health concerns. Rapid identification of these heavy metals is of utmost priority. There are several methods to identify traces of heavy metals in food. Conventional methods for the detection of heavy metal residues have their limitations in terms of cost, analysis time, and complexity. In the last decade, voltammetric analysis has emerged as the most prominent electrochemical determination method for heavy metals. Voltammetry is a reliable, cost-effective, and rapid determination method. This review provides a detailed primer on recent advances in the development and application of graphene-based electrochemical sensors for heavy metal monitoring over the last decade. We critically examine aspects of graphene modification (fabrication process, stability, cost, reproducibility) and analytical properties (sensitivity, selectivity, rapid detection, lower detection, and matrix effects) of these sensors. Furthermore, to our knowledge, meta-analyses were performed for the first time for all investigated parameters, categorized based on graphene materials and heavy metal types. We also examined the pass–fail criteria according to the WHO drinking water guidelines. In addition, the effects of heavy metal toxicity on human health and the environment are discussed. Finally, the contribution of heavy metal contamination to the seventeen Sustainable Development Goals (SDGs) stated by the United Nations in 2015 is discussed in detail. The results confirm the significant impact of heavy metal contamination across twelve SDGs. This review critically examines the existing knowledge in this field and highlights significant research gaps and future opportunities. It is intended as a resource for researchers working on graphene-based electrochemical sensors for the detection of heavy metals in food safety, with the ultimate goal of improving consumer health protection. Full article
Show Figures

Graphical abstract

Back to TopTop