Remote Sensing for Wildfire Mapping: A Comprehensive Review of Advances, Platforms, and Algorithms
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Analysis
3.1.1. Number of Publications and Geographic Distribution
3.1.2. Publishers and Journals
3.1.3. Authors and Citation Numbers
3.2. Approaches and Tools for Fire Mapping
3.2.1. Sensors
3.2.2. Spectral Indices
3.2.3. Software and Processing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The Global Distribution of Ecosystems in a World without Fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef]
- Scott, A.C. The Pre-Quaternary History of Fire. Palaeogeogr. Palaeoclim. Palaeoecol. 2000, 164, 281–329. [Google Scholar] [CrossRef]
- Moroeng, O.M.; Moore, T.A.; Shen, J.; Esterle, J.S.; Liu, J. Isotopic and Petrographic Implications for Fire Type, Temperature and Formation of Degradosemifusinite in Fusain Layers from an Early Cretaceous Coal Bed, Hailar Basin, Inner Mongolia, China. Fuel 2025, 384, 133895. [Google Scholar] [CrossRef]
- Yin, J.; He, B.; Fan, C.; Chen, R.; Zhang, H.; Zhang, Y. Drought-Related Wildfire Accounts for One-Third of the Forest Wildfires in Subtropical China. Agric. Meteorol. 2024, 346, 109893. [Google Scholar] [CrossRef]
- Kloss, C.; Sellitto, P.; Rüdiger, C.; Turquety, S. Editorial: Observations and Modelling of Recent Extreme Wild Fire Events and Their Impact on the Environment and Climate. Front. Environ. Sci. 2023, 10, 1123727. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global Patterns of Interannual Climate–Fire Relationships. Glob. Change Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, J.; Clark, J.; Boustras, G. Governing Wildfires: Toward a Systematic Analytical Framework. Ecol. Soc. 2023, 28, 6. [Google Scholar] [CrossRef]
- van Oldenborgh, G.J.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; van Weele, M.; Haustein, K.; Li, S.; Wallom, D.; et al. Attribution of the Australian Bushfire Risk to Anthropogenic Climate Change. Nat. Hazards Earth Syst. Sci. 2021, 21, 941–960. [Google Scholar] [CrossRef]
- Xie, Y.; Lin, M.; Decharme, B.; Delire, C.; Horowitz, L.W.; Lawrence, D.M.; Li, F.; Séférian, R. Tripling of Western US Particulate Pollution from Wildfires in a Warming Climate. Proc. Natl. Acad. Sci. USA 2022, 119, e2111372119. [Google Scholar] [CrossRef]
- Fairman, T.A.; Aryal, J.; Baker, P.J.; Best, A.; Cawson, J.; Clarke, H.; Fletcher, M.S.; Gibbs, L.; Foliente, G.; Godden, L.; et al. Interdisciplinary Challenges for Wildfire Futures. Environ. Sci Policy 2025, 171, 104175. [Google Scholar] [CrossRef]
- Fleming, J.; Robertson, R.G.; The Osborne Firefinder. USDA Forest Service, San Dimas Technology & Development Center, 2003. Available online: https://www.fs.usda.gov/t-d/pubs/pdf/hi_res/03511311hi.pdf (accessed on 4 April 2025).
- Bouabdellah, K.; Noureddine, H.; Larbi, S. Using Wireless Sensor Networks for Reliable Forest Fires Detection. Procedia Comput. Sci. 2013, 19, 794–801. [Google Scholar] [CrossRef]
- Koutsias, N.; Panourgia, K.; Nakas, G.; Petanidou, T. The Importance of Landscape and Fire-History as Factors Explaining Post-Fire Vegetation Recovery in a Mediterranean Island Using Sentinel-2 Satellite Data. Sci. Total Environ. 2024, 957, 177443. [Google Scholar] [CrossRef] [PubMed]
- Lever, J.; Arcucci, R. Sentimental Wildfire: A Social-Physics Machine Learning Model for Wildfire Nowcasting. J. Comput. Soc. Sci. 2022, 5, 1427–1465. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A Summary of the Special Issue on Remote Sensing of Land Change Science with Google Earth Engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Yao, J.; Raffuse, S.M.; Brauer, M.; Williamson, G.J.; Bowman, D.M.J.S.; Johnston, F.H.; Henderson, S.B. Predicting the Minimum Height of Forest Fire Smoke within the Atmosphere Using Machine Learning and Data from the CALIPSO Satellite. Remote Sens. Environ. 2018, 206, 98–106. [Google Scholar] [CrossRef]
- Liu, S.; Xue, Y.; Chen, H.; Chen, Y.; Zhan, T. Segmentation of Any Fire Event (SAFE): A Rapid and High-Precision Approach for Burned Area Extraction Using Sentinel-2 Imagery. Remote Sens. 2024, 17, 54. [Google Scholar] [CrossRef]
- Pinto, G.S.; Bernini, H.; Messias, C.G.; Silva, O.A.S.; Cunha, P.W.; Victorino, P.S.; Morelli, F. Assessment of Active Fire Detection in Serra Da Canastra National Park Using MODIS and VIIRS Sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 407–412. [Google Scholar] [CrossRef]
- Wall, W.A.; Hohmann, M.G.; Just, M.G.; Hoffmann, W.A. Characterizing Past Fire Occurrence in Longleaf Pine Ecosystems with the Mid-Infrared Burn Index and a Random Forest Classifier. Ecol. Manag. 2021, 500, 119635. [Google Scholar] [CrossRef]
- Güney, C.O.; Mert, A.; Gülsoy, S. Assessing Fire Severity in Turkey’s Forest Ecosystems Using Spectral Indices from Satellite Images. J. Res. 2023, 34, 1747–1761. [Google Scholar] [CrossRef]
- Lazzeri, G.; Frodella, W.; Rossi, G.; Moretti, S. Multitemporal Mapping of Post-Fire Land Cover Using Multiplatform PRISMA Hyperspectral and Sentinel-UAV Multispectral Data: Insights from Case Studies in Portugal and Italy. Sensors 2021, 21, 3982. [Google Scholar] [CrossRef]
- Peón, J.; Fernández, S.; Recondo, C.; Calleja, J.F. Evaluation of the Spectral Characteristics of Five Hyperspectral and Multispectral Sensors for Soil Organic Carbon Estimation in Burned Areas. Int. J. Wildland Fire 2017, 26, 230–239. [Google Scholar] [CrossRef]
- Seydi, S.T.; Sadegh, M. Improved Burned Area Mapping Using Monotemporal Landsat-9 Imagery and Convolutional Shift-Transformer. Measurement 2023, 216, 112961. [Google Scholar] [CrossRef]
- Bouvier, I.; Caldwell, P.; Houser, P. Spatio-Temporal Vegetation and Catchment Dynamics Following Wildfires in the Southern Appalachian Ecoregion. For. Ecol. Manag. 2025, 595, 122996. [Google Scholar] [CrossRef]
- Pacheco, A.D.P.; da Silva Junior, J.A.; Ruiz-Armenteros, A.M.; Henriques, R.F.F.; de Oliveira Santos, I. Analysis of Spectral Separability for Detecting Burned Areas Using Landsat-8 OLI/TIRS Images under Different Biomes in Brazil and Portugal. Forests 2023, 14, 663. [Google Scholar] [CrossRef]
- Shirvani, Z.; Abdi, O.; Goodman, R.C. High-Resolution Semantic Segmentation of Woodland Fires Using Residual Attention UNet and Time Series of Sentinel-2. Remote Sens. 2023, 15, 1342. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, J.; Song, W.; Cheng, Y.; Li, R. Satellite Observed Response of Fire Dynamics to Vegetation Water Content and Weather Conditions in Southeast Asia. ISPRS J. Photogramm. Remote Sens. 2023, 202, 230–245. [Google Scholar] [CrossRef]
- Widya, L.K.; Lee, C.-W. Geospatial Technologies for Estimating Post-Wildfire Severity through Satellite Imagery and Vegetation Types: A Case Study of the Gangneung Wildfire, South Korea. Geosci. J. 2024, 28, 247–260. [Google Scholar] [CrossRef]
- Taghikhah, F.; Erfani, E.; Bakhshayeshi, I.; Tayari, S.; Karatopouzis, A.; Hanna, B. Artificial Intelligence and Sustainability. In Artificial Intelligence and Data Science in Environmental Sensing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 93–108. [Google Scholar]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine Learning in Geosciences and Remote Sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
- Priya, R.S.; Vani, K. Vegetation Change Detection and Recovery Assessment Based on Post-Fire Satellite Imagery Using Deep Learning. Sci. Rep. 2024, 14, 12611. [Google Scholar] [CrossRef]
- Coffield, S.R.; Graff, C.A.; Chen, Y.; Smyth, P.; Foufoula-Georgiou, E.; Randerson, J.T. Machine Learning to Predict Final Fire Size at the Time of Ignition. Int. J. Wildland Fire 2019, 28, 861–873. [Google Scholar] [CrossRef]
- Milanović, S.; Trailović, Z.; Milanović, S.D.; Hochbichler, E.; Kirisits, T.; Immitzer, M.; Čermák, P.; Pokorný, R.; Jankovský, L.; Jaafari, A. Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data. Sustainability 2023, 15, 5269. [Google Scholar] [CrossRef]
- Santos, F.L.; Couto, F.T.; Dias, S.S.; de Almeida Ribeiro, N.; Salgado, R. Vegetation Fuel Characterization Using Machine Learning Approach over Southern Portugal. Remote Sens. Appl. 2023, 32, 101017. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive Modeling of Wildfires: A New Dataset and Machine Learning Approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Wang, B.; Quan, Y.; Liu, J. Using Artificial Intelligence to Estimate the Probability of Forest Fires in Heilongjiang, Northeast China. Remote Sens. 2021, 13, 1813. [Google Scholar] [CrossRef]
- Zerouali, B.; Santos, C.A.G.; do Nascimento, T.V.M.; da Silva, R.M. A Cloud-Integrated GIS for Forest Cover Loss and Land Use Change Monitoring Using Statistical Methods and Geospatial Technology over Northern Algeria. J. Environ. Manag. 2023, 341, 118029. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Kang, M.; Dai, L.; Jing, Y.; Han, P.; Hou, C. Identifying Forest Burned Area Using a Deep Learning Model Based on Post-Fire Optical and SAR Remote Sensing Images. IEEE Access 2024, 12, 188102–188113. [Google Scholar] [CrossRef]
- Dogan, S.; Datta Barua, P.; Kutlu, H.; Baygin, M.; Fujita, H.; Tuncer, T.; Acharya, U.R. Automated Accurate Fire Detection System Using Ensemble Pretrained Residual Network. Expert Syst. Appl. 2022, 203, 117407. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, Y. Aerial Imagery-Based Building Footprint Detection with an Integrated Deep Learning Framework: Applications for Fine Scale Wildland–Urban Interface Mapping. Remote Sens. 2022, 14, 3622. [Google Scholar] [CrossRef]
- Kang, Y.; Jang, E.; Im, J.; Kwon, C. A Deep Learning Model Using Geostationary Satellite Data for Forest Fire Detection with Reduced Detection Latency. GIsci. Remote Sens. 2022, 59, 2019–2035. [Google Scholar] [CrossRef]
- Parsaeimehr, E.; Fartash, M.; Torkestani, J.A. An Enhanced Deep Neural Network-Based Architecture for Joint Extraction of Entity Mentions and Relations. Int. J. Fuzzy Log. Intell. Syst. 2020, 20, 69–76. [Google Scholar] [CrossRef]
- Thi Ngo, P.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of Deep Learning Algorithms for National Scale Landslide Susceptibility Mapping of Iran. Geosci. Front. 2021, 12, 505–519. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Tao, C.V.; Hu, Y. A Comprehensive Study of the Rational Function Model for Photogrammetric Processing. Photogramm. Eng. Remote Sens. 2001, 67, 1347–1357. Available online: https://www.asprs.org/wp-content/uploads/pers/2001journal/december/2001_dec_1347-1357.pdf (accessed on 6 April 2025).
- Wulder, M.A.; White, J.C.; Cranny, M.; Hall, R.J.; Luther, J.E.; Beaudoin, A.; Goodenough, D.G.; Dechka, J.A. Monitoring Canada’s Forests. Part 1: Completion of the EOSD Land Cover Project. Can. J. Remote Sens. 2008, 34, 549–562. [Google Scholar] [CrossRef]
- Özel, B.; Alam, M.S.; Khan, M.U. Review of Modern Forest Fire Detection Techniques: Innovations in Image Processing and Deep Learning. Information 2024, 15, 538. [Google Scholar] [CrossRef]
- Giglio, L.; van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P. Global Estimation of Burned Area Using MODIS Active Fire Observations. Atmos. Chem. Phys. 2006, 6, 957–974. [Google Scholar] [CrossRef]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of Burn Severity Assessments Using Differenced Normalized Burn Ratio and Ground Data. Int. J. Wildland Fire 2005, 14, 189–198. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A Red-Edge Spectral Indices Suitability for Discriminating Burn Severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping Burned Areas from Landsat TM/ETM+ Data with a Two-Phase Algorithm: Balancing Omission and Commission Errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L. Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating Burn Severity from Landsat DNBR and RdNBR Indices across Western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Roy, D.P.; Huang, H.; Boschetti, L.; Giglio, L.; Yan, L.; Zhang, H.H.; Li, Z. Landsat-8 and Sentinel-2 Burned Area Mapping—A Combined Sensor Multi-Temporal Change Detection Approach. Remote Sens. Environ. 2019, 231, 111254. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.-J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping Burned Areas Using Dense Time-Series of Landsat Data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. Burn Severity Estimation from Remotely Sensed Data: Performance of Simulation versus Empirical Models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar] [CrossRef]
- Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and mapping wildfire severity: A comparison of methods. Photogramm. Eng. Remote Sens. 2005. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Measuring and Remote Sensing of Burn Severity: The CBI and NBR. In Proceedings of the NASA Goddard Space Flight Center 3rd ERTS-1 Symposium, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1974; Volume 1, Section A, Paper A-20. pp. 309–317. Available online: https://www.frames.gov/documents/catalog/key_benson_1999_MeasuringRemoteSensingBurnSeverityCBIandNBR_poster.pdf (accessed on 6 April 2025).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERT. In Proceedings of the NASA. Goddard Space Flight Center 3d ERTS-1 Symp, Washington, DC, USA, 1 January 1974; Volume 351, p. 309. [Google Scholar]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA): Sampling and Analysis Methods. In FIREMON: Fire Effects Monitoring and Inventory System; USDA Forest Service Gen. Tech. Rep. RMRS-GTR-164-CD; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. LA-1–LA-55. Available online: https://www.fs.usda.gov/rm/pubs_series/rmrs/gtr/rmrs_gtr164/rmrs_gtr164_13_land_assess.pdf (accessed on 6 April 2025).
- Trigg, S.; Flasse, S. An Evaluation of Different Bi-Spectral Spaces for Discriminating Burned Shrub-Savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martín, M.P.; Palacios, A. Assessment of Different Spectral Indices in the Red-near-Infrared Spectral Domain for Burned Land Discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M.M. GEMI: A Non-Linear Index to Monitor Global Vegetation from Satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. GeoCBI: A Modified Version of the Composite Burn Index for the Initial Assessment of the Short-Term Burn Severity from Remotely Sensed Data. Remote Sens. Environ. 2009, 113, 554–562. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Filipponi, F. BAIS2: Burned Area Index for Sentinel-2. Proceedings 2018, 2, 364. [Google Scholar] [CrossRef]
- Santos, S.M.B.D.; Bento-Gonçalves, A.; Vieira, A. Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests 2021, 12, 604. [Google Scholar] [CrossRef]
- Finizio, M.; Pontieri, F.; Bottaro, C.; Di Febbraro, M.; Innangi, M.; Sona, G.; Carranza, M.L. Remote Sensing for Urban Biodiversity: A Review and Meta-Analysis. Remote Sens. 2024, 16, 4483. [Google Scholar] [CrossRef]
- Li, J.; Chen, B. Global Revisit Interval Analysis of Landsat-8 -9 and Sentinel-2A -2B Data for Terrestrial Monitoring. Sensors 2020, 20, 6631. [Google Scholar] [CrossRef]
- Roy, D.P.; Huang, H.; Houborg, R.; Martins, V.S. A Global Analysis of the Temporal Availability of PlanetScope High Spatial Resolution Multi-Spectral Imagery. Remote Sens. Environ. 2021, 264, 112586. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Pérez-Navarro, A.; Conesa-García, C.; Zema, D.A.; Amado-Álvarez, J.P. What Is Going on within Google Earth Engine? A Systematic Review and Meta-Analysis. Remote Sens. Appl. 2023, 29, 100907. [Google Scholar] [CrossRef]
- von Essen, M.; Carlson, K.M.; Ordway, E.M.; Sonwa, D.J.; Boyd, W. Barriers to Using Remote Sensing Data and Tools for Forest Governance in the Tropics. 2025. Available online: https://ssrn.com/abstract=5141463 (accessed on 20 April 2025).
- Jones, S.S.; Matsala, M.; Delin, E.V.; Subramanian, N.; Nilsson, U.; Holmström, E.; Drobyshev, I. Forest Structure, Roads and Soil Moisture Provide Realistic Predictions of Fire Spread in Modern Swedish Landscape. Ecol. Model. 2025, 499, 110942. [Google Scholar] [CrossRef]
- LeDrew, E.F.; Chen, K.S. Editorial: Scope of the New IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 2–3. [Google Scholar] [CrossRef]
- NASA Landsat 1|Ciencia Landsat. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-1/ (accessed on 27 April 2025).
- NASA Goddard Space Flight Center. Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Available online: https://landsat.gsfc.nasa.gov/etm-plus/ (accessed on 16 January 2025).
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Schmidt, G.L.; Beal, Y.-J.; Picotte, J.J.; Takacs, J.D.; Falgout, J.T.; Dwyer, J.L. The Landsat Burned Area Algorithm and Products for the Conterminous United States. Remote Sens. Environ. 2020, 244, 111801. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty Years of Landsat Science and Impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Hosseini, M.; Lim, S. Burned Area Detection Using Sentinel-1 SAR Data: A Case Study of Kangaroo Island, South Australia. Appl. Geogr. 2023, 151, 102854. [Google Scholar] [CrossRef]
- Domenech, M.B.; Amiotti, N.M.; Costa, J.L.; Castro-Franco, M. Prediction of Topsoil Properties at Field-Scale by Using C-Band SAR Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102197. [Google Scholar] [CrossRef]
- Gruber, A.; De Lannoy, G.; Albergel, C.; Al-Yaari, A.; Brocca, L.; Calvet, J.-C.; Colliander, A.; Cosh, M.; Crow, W.; Dorigo, W.; et al. Validation Practices for Satellite Soil Moisture Retrievals: What Are (the) Errors? Remote Sens. Environ. 2020, 244, 111806. [Google Scholar] [CrossRef]
- Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marujo, R.F.B.; Simões, R.E.O.; Ferreira, K.R.; et al. Comparison of Cloud Cover Detection Algorithms on Sentinel–2 Images of the Amazon Tropical Forest. Remote Sens. 2020, 12, 1284. [Google Scholar] [CrossRef]
- Nazarova, T.; Martin, P.; Giuliani, G. Monitoring Vegetation Change in the Presence of High Cloud Cover with Sentinel-2 in a Lowland Tropical Forest Region in Brazil. Remote Sens. 2020, 12, 1829. [Google Scholar] [CrossRef]
- Barboza Castillo, E.; Turpo Cayo, E.; de Almeida, C.; Salas López, R.; Rojas Briceño, N.; Silva López, J.; Barrena Gurbillón, M.; Oliva, M.; Espinoza-Villar, R. Monitoring Wildfires in the Northeastern Peruvian Amazon Using Landsat-8 and Sentinel-2 Imagery in the GEE Platform. ISPRS Int. J. Geoinf. 2020, 9, 564. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI Data for Initial Assessing of Burn Severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Ndaimani, H.; Kavhu, B. Exploring the Utility of Sentinel-2 MSI Derived Spectral Indices in Mapping Burned Areas in Different Land-Cover Types. Sci. Afr. 2020, 10, e00565. [Google Scholar] [CrossRef]
- Pinto, M.M.; Trigo, R.M.; Trigo, I.F.; DaCamara, C.C. A Practical Method for High-Resolution Burned Area Monitoring Using Sentinel-2 and VIIRS. Remote Sens. 2021, 13, 1608. [Google Scholar] [CrossRef]
- Molema, T.R.; Tesfamichael, S.G.; Fundisi, E. Optical and Radar Remote Sensing for Burn Scar Mapping in the Grassland Biome. Remote Sens. Appl. 2025, 38, 101548. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for Land Cover Mapping via a Multi-Source Deep Learning Architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Fernández-Manso, A.; Quintano, C.; Fernández-García, V.; Cerrillo, A.; Marqués, G.; Cascallana, G.; Calvo, L. FIREMAP: Cloud-Based Software to Automate the Estimation of Wildfire-Induced Ecological Impacts and Recovery Processes Using Remote Sensing Techniques. Ecol. Inf. 2024, 81, 102591. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Mohod, S.; Thakare, R.D.; Bhoyar, D.B.; Khade, S.S.; Fulzele, P. Remote Sensing Application for Analysis of Forest Change Detection. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 22 January 2022; IEEE: Piscataway, NJ, USA; pp. 1–7. [Google Scholar]
- Nelson, D.M.; He, Y.; Moore, G.W.K. Trends and Applications in Wildfire Burned Area Mapping: Remote Sensing Data, Cloud Geoprocessing Platforms, and Emerging Algorithms. Geomatica 2024, 76, 100008. [Google Scholar] [CrossRef]
- Lin, S.; Li, L.; Liu, S.; Gao, G.; Zhao, X.; Chen, L.; Qi, J.; Shen, Q.; Huang, H. Stratified Burn Severity Assessment by Integrating Spaceborne Spectral and Waveform Attributes in Great Xing’an Mountain. Remote Sens. Environ. 2024, 307, 114152. [Google Scholar] [CrossRef]
- Villagra, P.E.; Cesca, E.; Alvarez, L.M.; Delgado, S.; Villalba, R. Spatial and Temporal Patterns of Forest Fires in the Central Monte: Relationships with Regional Climate. Ecol. Process. 2024, 13, 5. [Google Scholar] [CrossRef]
- Smith, H.; de Beurs, K.M.; Neeson, T.M. Evaluation of Low-Resolution Remotely Sensed Datasets for Burned Area Assessment within the Wildland-Urban Interface. Remote Sens. Appl. 2022, 26, 100752. [Google Scholar] [CrossRef]
- Khankeshizadeh, E.; Tahermanesh, S.; Mohsenifar, A.; Moghimi, A.; Mohammadzadeh, A. FBA-DPAttResU-Net: Forest Burned Area Detection Using a Novel End-to-End Dual-Path Attention Residual-Based U-Net from Post-Fire Sentinel-1 and Sentinel-2 Images. Ecol. Indic. 2024, 167, 112589. [Google Scholar] [CrossRef]
- Johnson, B.R.; McGlinchy, J.; Joseph, M.; Scholl, V.; Cattau, M. Harnessing Commercial Satellite Technologies to Monitor Our Forests. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability XV, San Diego, CA, USA, 18 September 2018; Gao, W., Chang, N.-B., Wang, J., Eds.; SPIE: Bellingham, WA, USA; p. 1. [Google Scholar]
- Fraser, R.; Van der Sluijs, J.; Hall, R. Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada. Remote Sens. 2017, 9, 279. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.; Sanz-Ablanedo, E.; Suárez-Seoane, S.; Calvo, L. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges. Sensors 2018, 18, 586. [Google Scholar] [CrossRef]
- Pla, M.; Duane, A.; Brotons, L. Potencial de Las Imágenes UAV Como Datos de Verdad Terreno Para La Clasificación de La Severidad de Quema de Imágenes Landsat: Aproximaciones a Un Producto Útil Para La Gestión Post Incendio. Rev. Teledetección 2017, 91, 7140. [Google Scholar] [CrossRef]
- Shin, J.; Seo, W.; Kim, T.; Park, J.; Woo, C. Using UAV Multispectral Images for Classification of Forest Burn. Severity—A Case Study of the 2019 Gangneung Forest Fire. Forests 2019, 10, 1025. [Google Scholar] [CrossRef]
- Yilmaz, E.O.; Kavzoglu, T. Burned Area Detection with Sentinel-2A Data: Using Deep Learning Techniques with EXplainable Artificial Intelligence. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 10, 251–257. [Google Scholar] [CrossRef]
- McDonald, E.; Webb, E.A.; Dech, J.P. Oxygen Isotope Values of Charred Tree Bark as an Indicator of Forest Fire Severity. Trees People 2025, 20, 100786. [Google Scholar] [CrossRef]
- Tiengo, R.; Merino-De-Miguel, S.; Uchôa, J.; Guiomar, N.; Gil, A. Burned Areas Mapping Using Sentinel-2 Data and a Rao’s Q Index-Based Change Detection Approach: A Case Study in Three Mediterranean Islands’ Wildfires (2019–2022). Remote Sens. 2025, 17, 830. [Google Scholar] [CrossRef]
- Asangaliyev, E.; Apshikur, B.; Lutay, S.; Assylkhanova, Z. Spatial Analysis and Mapping of Potential Wildfires from Landsat Satellite Data. InterCarto InterGIS 2024, 30, 476–490. [Google Scholar] [CrossRef]
- Ibarra-Bonilla, J.S.; Pinedo-Alvarez, A.; Prieto-Amparán, J.A.; Siller-Clavel, P.; Santellano-Estrada, E.; Álvarez-Holguín, A.; Villarreal-Guerrero, F. Post-Fire Vegetation Dynamics of a Temperate Mixed Forest: An Assessment Based on the Variability of Landsat Spectral Indices. Trees People 2024, 17, 100648. [Google Scholar] [CrossRef]
- Bhattacharya, O.; Sinha, S.; Mishra, V.N.; Kumari, M.; Hasher, F.F.B.; Barman, J.; Zhran, M. Harnessing Geospatial Tools to Map the Forest Fire: Risk Zonation in Pauri Garhwal, Uttarakhand. Results Eng. 2025, 25, 103694. [Google Scholar] [CrossRef]
- Pérez, C.C.; Olthoff, A.E.; Hernández-Trejo, H.; Rullán-Silva, C.D. Evaluating the Best Spectral Indices for Burned Areas in the Tropical Pantanos de Centla Biosphere Reserve, Southeastern Mexico. Remote Sens. Appl. 2022, 25, 100664. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, N.; Luo, F. Spatio-Temporal Feature of Active Fire Occurrence on the Loess Plateau from 2001 to 2020 Based on MODIS. Quat. Sci. 2024, 44, 191–200. [Google Scholar] [CrossRef]
- Atakul, C.; Di, L. Assessing Wildfire Burn Severity Indices Using Sentinel-2 Data: A Comparative Study of Common Remote Sensing Burn Indices and CBI Field Data. In Proceedings of the 2023 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Wuhan, China, 25 July 2023; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- NASA Sistema de Información Sobre Incendios FIRMS Para La Gestión de Recursos. Available online: https://firms.modaps.eosdis.nasa.gov/ (accessed on 16 May 2025).
- Simes, T.; Pádua, L.; Moutinho, A. Wildfire Burnt Area Severity Classification from UAV-Based RGB and Multispectral Imagery. Remote Sens. 2023, 16, 30. [Google Scholar] [CrossRef]
- Tan, Y.-C.; Duarte, L.; Teodoro, A.C. Comparative Study of Random Forest and Support Vector Machine for Land Cover Classification and Post-Wildfire Change Detection. Land 2024, 13, 1878. [Google Scholar] [CrossRef]
- Wu, M.; Huang, Q.; Sui, T.; Peng, B.; Yu, M. A Remote Sensing Spectral Index Guided Bitemporal Residual Attention Network for Wildfire Burn Severity Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 17187–17206. [Google Scholar] [CrossRef]
- Hashemi, S.F.; Mohammad Asgari, H. Integrating Long Term Satellite Data and Machine Learning to Spatiotemporal Fire Analysis in Hour al Azim International Wetland. Water Air Soil. Pollut. 2024, 235, 426. [Google Scholar] [CrossRef]
- Zikiou, N.; Rushmeier, H.; Capel, M.I.; Kandakji, T.; Rios, N.; Lahdir, M. Remote Sensing and Machine Learning for Accurate Fire Severity Mapping in Northern Algeria. Remote Sens. 2024, 16, 1517. [Google Scholar] [CrossRef]
- Sdraka, M.; Dimakos, A.; Malounis, A.; Ntasiou, Z.; Karantzalos, K.; Michail, D.; Papoutsis, I. FLOGA: A Machine-Learning-Ready Dataset, a Benchmark, and a Novel Deep Learning Model for Burnt Area Mapping with Sentinel-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7801–7824. [Google Scholar] [CrossRef]
- Radman, A.; Shah-Hosseini, R.; Homayouni, S. A Deep Convolutional Neural Network for Burn Progression Mapping Using Sentinel-1 SAR Time-Series. Int. J. Remote Sens. 2023, 44, 2196–2215. [Google Scholar] [CrossRef]
- Bjånes, A.; De La Fuente, R.; Mena, P. A Deep Learning Ensemble Model for Wildfire Susceptibility Mapping. Ecol. Inf. 2021, 65, 101397. [Google Scholar] [CrossRef]
- Indah, L.; Lalita, L.; Indah, F.; Harwahyu, R.; Fitri, S. Machine Learning Approaches for Burned Area Identification Using Sentinel-2 in Central Kalimantan. J. Appl. Eng. Sci. 2020, 18, 207–215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
No. | Attribute | Description |
---|---|---|
1 | Authors | Author names |
2 | Title | Article title |
3 | Journal title | Title of the journal |
4 | Year | Year of publication |
5 | Citations | Number of article citations |
6 | Affiliation | Author affiliation country |
7 | Method used | ML, DL, regression, etc. |
8 | Use of UAVs | Fixed-wing, multirotor, etc. |
9 | Sensor type | Optical, SAR, etc. |
10 | VIs used | NDVI, EVI, etc. |
11 | Platform | GEE, MODIS, etc. |
12 | Software | ArcGIS, QGIS, etc. |
13 | Satellites | Landsat, Sentinel, Himawari, etc. |
Authors | Year | Title | Journal | Number of Citations |
---|---|---|---|---|
Giglio et al. [48] | 2006 | “Global estimation of burned areas using MODIS active fire observations” | Atmospheric Chemistry and Physics | 484 |
Cocke et al. [49] | 2005 | “Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data” | International Journal of Wildland Fire | 374 |
Fernández-Manso et al. [50] | 2016 | “SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity” | International Journal of Applied Earth Observation and Geoinformation | 303 |
Bastarrika et al. [51] | 2011 | “Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors” | Remote Sensing of Environment | 218 |
Roy & Boschetti [52] | 2009 | “Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products” | Transactions on Geoscience and Remote Sensing | 203 |
Soverel et al. [53] | 2010 | “Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada” | Remote Sensing of Environment | 191 |
Roy et al. [54] | 2019 | “Landsat-8 and Sentinel-2 burned area mapping—A combined sensor multi-temporal change detection approach” | Remote Sensing of Environment | 178 |
Hawbaker et al. [55] | 2017 | “Mapping burned areas using dense time-series of Landsat data” | Remote Sensing of Environment | 164 |
Santis & Chuvieco [56] | 2007 | “Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models” | Remote Sensing of Environment | 157 |
Brewer et al. [57] | 2005 | “Classifying and mapping wildfire severity: A comparison of methods” | Photogrammetric Engineering and Remote Sensing | 156 |
Acronym (%) | Index Name | Formula | Reference |
---|---|---|---|
NBR (42.19) | Normalized Burn Ratio | Key & Benson, 1999 [58] | |
NDVI (39.06) | Normalized Difference Vegetation Index | Rouse et al., 1974 [59] | |
CBI (18.23) | Composite Burn Index | Key & Benson, 2006 [60] | |
MIRBI (10.42) | Mid-Infrared Burn Index | Trigg & Flasse, 2001 [61] | |
BAI (8.85) | Burned Area Index | Huete, 1988 [62] | |
SAVI (8.85) | Soil-Adjusted Vegetation Index | Chuvieco et al., 2002 [63] | |
EVI (7.29) | Enhanced Vegetation Index | Huete et al., 2002 [64] | |
NBR2 (5.73) | Normalized Burn Ratio 2 | Key & Benson, 2006 [60] | |
NDMI (4.69) | Normalized Difference Moisture Index | Wilson & Sader, 2002 [65] | |
MSAVI (4.17) | Modified Soil-Adjusted Vegetation Index | Qi et al., 1994 [66] | |
GEMI (4.17) | Global Environment Monitoring Index | Pinty & Verstraete, 1992 [67] | |
Geo CBI (3.13) | Geospatial Composite Burn Index | De Santis & Chuvieco, 2009 [68] | |
NDWI (2.60) | Normalized Difference Water Index | Gitelson et al., 1996 [69] | |
GNDVI (2.60) | Green Normalized Difference Vegetation Index | McFeeters, 1996 [70] | |
BAIS2 (2.08) | Burned Area Index for Sentinel-2 | Filipponi, 2018 [71] | |
Others (29.17) | Other indices |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guiop-Servan, R.E.; Cotrina-Sanchez, A.; Puerta-Culqui, J.; Oliva-Cruz, M.; Barboza, E. Remote Sensing for Wildfire Mapping: A Comprehensive Review of Advances, Platforms, and Algorithms. Fire 2025, 8, 316. https://doi.org/10.3390/fire8080316
Guiop-Servan RE, Cotrina-Sanchez A, Puerta-Culqui J, Oliva-Cruz M, Barboza E. Remote Sensing for Wildfire Mapping: A Comprehensive Review of Advances, Platforms, and Algorithms. Fire. 2025; 8(8):316. https://doi.org/10.3390/fire8080316
Chicago/Turabian StyleGuiop-Servan, Ruth E., Alexander Cotrina-Sanchez, Jhoivi Puerta-Culqui, Manuel Oliva-Cruz, and Elgar Barboza. 2025. "Remote Sensing for Wildfire Mapping: A Comprehensive Review of Advances, Platforms, and Algorithms" Fire 8, no. 8: 316. https://doi.org/10.3390/fire8080316
APA StyleGuiop-Servan, R. E., Cotrina-Sanchez, A., Puerta-Culqui, J., Oliva-Cruz, M., & Barboza, E. (2025). Remote Sensing for Wildfire Mapping: A Comprehensive Review of Advances, Platforms, and Algorithms. Fire, 8(8), 316. https://doi.org/10.3390/fire8080316