Efficacy of Transcranial Magnetic Stimulation and Transcranial Direct-Current Stimulation in Primary Progressive Aphasia Treatment: A Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection Criteria
- Original research;
- Conducted on participants diagnosed with PPA according to the consensus criteria [2];
- Application of multiple sessions of rTMS or tDCS, with or without language treatment;
- Inclusion of at least one language outcome measure;
- Publication before 30 June 2025.
- Studies that did not report statistical information on the effects of the intervention (e.g., lack of test statistics, p-values, or effect sizes);
- Studies that included, even partially, the same participants as a main study already selected, without assessing different language outcome measures.
3. Results
3.1. Studies That Assessed the Effects of rTMS as a Stand-Alone Intervention
3.2. Studies That Assessed the Effects of tDCS as a Stand-Alone Intervention
3.3. Studies That Assessed the Effects of tDCS Combined with Language Treatment
3.3.1. RCTs Studies
3.3.2. Case-Series and Single-Case Studies
3.4. Studies That Assessed the Effects of tDCS During Verbal Task Without Language Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAT | Aachener Aphasie Test |
AD | Alzheimer’s Disease |
BNT | Boston Naming Test |
CAL | Communicative Activity Log |
CBI | Cambridge Behaviour Inventory |
CILT | Constraint-Induced Language Therapy |
DLPFC | Dorsolateral Prefrontal Cortex |
DMN | Default Mode Network |
EEG | Electroencephalogram |
fMRI | functional Magnetic Resonance Imaging |
FTLD | Frontotemporal Lobar Degeneration |
HD-tDCS | High-Definition transcranial Direct-Current Stimulation |
Hz | Hertz |
IFG | Inferior Frontal Gyrus |
IPL | Inferior Parietal Lobe |
lvPPA | logopenic variant of Primary Progressive Aphasia |
L1 | Native language |
L2 | Second language |
LTP | Long-Term Potentiation |
mA | Milliampere |
MEG | Magnetoencephalography |
nf/avPPA | non-fluent/agrammatic variant of Primary Progressive Aphasia |
NPI | Neuropsychiatric Inventory |
PET | Positron Emission Tomography |
PFC | Prefrontal Cortex |
PPA | Primary Progressive Aphasia |
PPAOS | Primary Progressive Apraxia Of Speech |
PPR | Posterior Perisylvian Region |
RCT | Randomised Controlled Trial |
rTMS | repetitive Transcranial Magnetic Stimulation |
SAQOL-39 | Stroke and Aphasia Quality-of-Life Scale-39 |
SLT | Speech and Language Therapy |
SMG | Supramarginal Gyrus |
svPPA | semantic variant of Primary Progressive Aphasia |
tDCS | transcranial Direct-Current Stimulation |
TPJ | Temporoparietal Junction |
VNeST | Verb Network-Strengthening Treatment |
References
- Gorno-Tempini, M.L.; Dronkers, N.F.; Rankin, K.P.; Ogar, J.M.; Phengrasamy, L.; Rosen, H.J.; Johnson, J.K.; Weiner, M.W.; Miller, B.L. Cognition and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 2004, 55, 335–346. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef]
- Mesulam, M.M. Primary progressive aphasia. Ann. Neurol. 2001, 49, 425–432. [Google Scholar] [CrossRef]
- Rogalski, E.; Blum, D.; Rademaker, A.; Weintraub, S. False recognition of incidentally learned pictures and words in primary progressive aphasia. Neuropsychologia 2007, 45, 368–377. [Google Scholar] [CrossRef]
- Rogalski, E.J.; Mesulam, M.M. Clinical trajectories and biological features of primary progressive aphasia (PPA). Curr. Alzheimer Res. 2009, 6, 331–336. [Google Scholar] [CrossRef]
- Rohrer, J.D.; Knight, W.D.; Warren, J.E.; Fox, N.C.; Rossor, M.N.; Warren, J.D. Word-finding difficulty: A clinical analysis of the progressive aphasias. Brain 2008, 131, 8–38. [Google Scholar] [CrossRef] [PubMed]
- Tee, B.L.; Gorno-Tempini, M.L. Primary progressive aphasia: A model for neurodegenerative disease. Curr. Opin. Neurol. 2019, 32, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Bonner, M.F.; Ash, S.; Grossman, M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr. Neurol. Neurosci. Rep. 2010, 10, 484–490. [Google Scholar] [CrossRef]
- Harciarek, M.; Sitek, E.J.; Kertesz, A. The patterns of progression in primary progressive aphasia—Implications for assessment and management. Aphasiology 2014, 28, 964–980. [Google Scholar] [CrossRef]
- Mendez, M.F.; Nasir, I. Distinguishing Semantic Variant Primary Progressive Aphasia from Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2023, 7, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Croot, K.; Ballard, K.; Leyton, C.E.; Hodges, J.R. Apraxia of speech and phonological errors in the diagnosis of nonfluent/agrammatic and logopenic variants of primary progressive aphasia. J. Speech Lang. Hear. Res. 2012, 55, S1562–S1572. [Google Scholar] [CrossRef] [PubMed]
- De Leon, J.; Mandelli, M.L.; Nolan, A.; Miller, Z.A.; Mead, C.; Watson, C.; Welch, A.E.; Henry, M.L.; Bourakova, V.; La Joie, R.; et al. Atypical clinical features associated with mixed pathology in a case of non-fluent variant primary progressive aphasia. Neurocase 2019, 25, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Grossman, M. Primary progressive aphasia: Clinicopathological correlations. Nat. Rev. Neurol. 2010, 6, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Rahul, D.R.; Joseph Ponniah, R. Language impairment in primary progressive aphasia and other neurodegenerative diseases. J. Genet. 2019, 98, 95. [Google Scholar] [CrossRef]
- Marshall, C.R.; Hardy, C.J.D.; Volkmer, A.; Russell, L.L.; Bond, R.L.; Fletcher, P.D.; Clark, C.N.; Mummery, C.J.; Schott, J.M.; Rossor, M.N.; et al. Primary progressive aphasia: A clinical approach. J. Neurol. 2018, 265, 1474–1490. [Google Scholar] [CrossRef]
- Henry, M.L.; Gorno-Tempini, M.L. The logopenic variant of primary progressive aphasia. Curr. Opin. Neurol. 2010, 23, 633–637. [Google Scholar] [CrossRef]
- Tippett, D.C. Classification of primary progressive aphasia: Challenges and complexities. F1000Research 2020, 9, 64. [Google Scholar] [CrossRef]
- Utianski, R.L.; Botha, H.; Martin, P.R.; Schwarz, C.G.; Duffy, J.R.; Clark, H.M.; Machulda, M.M.; Butts, A.M.; Lowe, V.J.; Jack Jr, C.R. Clinical and neuroimaging characteristics of clinically unclassifiable primary progressive aphasia. Brain Lang. 2019, 197, 104676. [Google Scholar] [CrossRef]
- Kiymaz, T.; Khan Suheb, M.Z.; Lui, F.; De Jesus, O. Primary Progressive Aphasia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Spinelli, E.G.; Mandelli, M.L.; Miller, Z.A.; Santos-Santos, M.A.; Wilson, S.M.; Agosta, F.; Grinberg, L.T.; Huang, E.J.; Trojanowski, J.Q.; Meyer, M. Typical and atypical pathology in primary progressive aphasia variants. Ann. Neurol. 2017, 81, 430–443. [Google Scholar] [CrossRef]
- Ortiz, G.G.; González-Usigli, H.; Nava-Escobar, E.R.; Ramírez-Jirano, J.; Mireles-Ramírez, M.A.; Orozco-Barajas, M.; Becerra-Solano, L.E.; Sánchez-González, V.J. Primary Progressive Aphasias: Diagnosis and Treatment. Brain Sci. 2025, 15, 245. [Google Scholar] [CrossRef]
- Coyle-Gilchrist, I.T.; Dick, K.M.; Patterson, K.; Vázquez Rodríquez, P.; Wehmann, E.; Wilcox, A.; Lansdall, C.J.; Dawson, K.E.; Wiggins, J.; Mead, S. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016, 86, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Logroscino, G.; Piccininni, M.; Binetti, G.; Zecca, C.; Turrone, R.; Capozzo, R.; Tortelli, R.; Battista, P.; Bagoj, E.; Barone, R.; et al. Incidence of frontotemporal lobar degeneration in Italy: The Salento-Brescia Registry study. Neurology 2019, 92, e2355–e2363. [Google Scholar] [CrossRef]
- Logroscino, G.; Piccininni, M.; Graff, C.; Hardiman, O.; Ludolph, A.C.; Moreno, F.; Otto, M.; Remes, A.M.; Rowe, J.B.; Seelaar, H. Incidence of syndromes associated with frontotemporal lobar degeneration in 9 European countries. JAMA Neurol. 2023, 80, 279–286. [Google Scholar] [CrossRef]
- Turcano, P.; Whitwell, J.L.; Duffy, J.R.; Machulda, M.M.; Mullan, A.; Josephs, K.A.; Savica, R. Incidence of Primary Progressive Apraxia of Speech and Primary Progressive Aphasia in Olmsted County, MN, 2011–2022. Neurology 2024, 103, e209693. [Google Scholar] [CrossRef] [PubMed]
- Pagnoni, I.; Gobbi, E.; Premi, E.; Borroni, B.; Binetti, G.; Cotelli, M.; Manenti, R. Language training for oral and written naming impairment in primary progressive aphasia: A review. Transl. Neurodegener. 2021, 10, 24. [Google Scholar] [CrossRef]
- Volkmer, A.; Rogalski, E.; Henry, M.; Taylor-Rubin, C.; Ruggero, L.; Khayum, R.; Kindell, J.; Gorno-Tempini, M.L.; Warren, J.D.; Rohrer, J.D. Speech and language therapy approaches to managing primary progressive aphasia. Pract. Neurol. 2020, 20, 154–161. [Google Scholar] [CrossRef]
- Roheger, M.; Riemann, S.; Brauer, A.; McGowan, E.; Grittner, U.; Flöel, A.; Meinzer, M. Non-pharmacological interventions for improving language and communication in people with primary progressive aphasia. Cochrane Database Syst. Rev. 2024, 5, CD015067. [Google Scholar] [CrossRef] [PubMed]
- Manenti, R.; Gobbi, E.; Cotelli, M. Non-invasive transcranial brain stimulation to treat cognitive aspects of other neurological diseases. In The Handbook of Non-Invasive Transcranial Brain Stimulation in the Cognitive Domain: Methods, Psychophysiology, Neuroenhancement and Therapeutic Applications; Elsevier: Amsterdam, The Netherlands, 2025; in press. [Google Scholar]
- Mattioli, F.; Maglianella, V.; D’Antonio, S.; Trimarco, E.; Caligiore, D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J. Neurol. Sci. 2024, 456, 122825. [Google Scholar] [CrossRef]
- Sanches, C.; Stengel, C.; Godard, J.; Mertz, J.; Teichmann, M.; Migliaccio, R.; Valero-Cabré, A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front. Aging Neurosci. 2020, 12, 578339. [Google Scholar] [CrossRef]
- Antal, A.; Luber, B.; Brem, A.K.; Bikson, M.; Brunoni, A.R.; Cohen Kadosh, R.; Dubljević, V.; Fecteau, S.; Ferreri, F.; Flöel, A.; et al. Non-invasive brain stimulation and neuroenhancement. Clin. Neurophysiol. Pract. 2022, 7, 146–165. [Google Scholar] [CrossRef]
- Boros, K.; Poreisz, C.; Münchau, A.; Paulus, W.; Nitsche, M.A. Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur. J. Neurosci. 2008, 27, 1292–1300. [Google Scholar] [CrossRef]
- Elder, G.J.; Taylor, J.P. Transcranial magnetic stimulation and transcranial direct current stimulation: Treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimer’s Res. Ther. 2014, 6, 74. [Google Scholar] [CrossRef]
- Hsu, W.Y.; Ku, Y.; Zanto, T.P.; Gazzaley, A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol. Aging 2015, 36, 2348–2359. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Lu, M.K.; Antal, A.; Classen, J.; Nitsche, M.; Ziemann, U.; Ridding, M.; Hamada, M.; Ugawa, Y.; Jaberzadeh, S.; et al. Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clin. Neurophysiol. 2017, 128, 2318–2329. [Google Scholar] [CrossRef]
- Kricheldorff, J.; Göke, K.; Kiebs, M.; Kasten, F.H.; Herrmann, C.S.; Witt, K.; Hurlemann, R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci. 2022, 12, 929. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Menardi, A.; Rossi, S.; Koch, G.; Hampel, H.; Vergallo, A.; Nitsche, M.A.; Stern, Y.; Borroni, B.; Cappa, S.F.; Cotelli, M.; et al. Toward noninvasive brain stimulation 2.0 in Alzheimer’s disease. Ageing Res. Rev. 2022, 75, 101555. [Google Scholar] [CrossRef]
- Nitsche, M.; Antal, A.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Induction and modulation of neuroplasticity by transcranial direct current stimulation. Adv. Biol. Psychiatry 2007, 23, 172. [Google Scholar]
- Ridding, M.C.; Ziemann, U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 2010, 588, 2291–2304. [Google Scholar] [CrossRef]
- Jamil, A.; Batsikadze, G.; Kuo, H.I.; Labruna, L.; Hasan, A.; Paulus, W.; Nitsche, M.A. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J. Physiol. 2017, 595, 1273–1288. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Transcranial direct current stimulation—Update 2011. Restor. Neurol. Neurosci. 2011, 29, 463–492. [Google Scholar] [CrossRef]
- Priori, A.; Hallett, M.; Rothwell, J.C. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2009, 2, 241–245. [Google Scholar] [CrossRef]
- Dayan, E.; Censor, N.; Buch, E.R.; Sandrini, M.; Cohen, L.G. Noninvasive brain stimulation: From physiology to network dynamics and back. Nat. Neurosci. 2013, 16, 838–844. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Tormos, J.M.; Keenan, J.; Tarazona, F.; Cañete, C.; Catalá, M.D. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J. Clin. Neurophysiol. 1998, 15, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, V.; Zorzo, C.; Méndez, M. Differential approach to stroke aphasia and primary progressive aphasia using transcranial magnetic stimulation: A systematic review. Acta Neurobiol. Exp. 2023, 83, 280–298. [Google Scholar] [CrossRef]
- Ridding, M.C.; Rothwell, J.C. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat. Rev. Neurosci. 2007, 8, 559–567. [Google Scholar] [CrossRef]
- Sheppard, S.M. Noninvasive brain stimulation to augment language therapy for primary progressive aphasia. Handb. Clin. Neurol. 2022, 185, 251–260. [Google Scholar] [CrossRef]
- Adenzato, M.; Manenti, R.; Enrici, I.; Gobbi, E.; Brambilla, M.; Alberici, A.; Cotelli, M.S.; Padovani, A.; Borroni, B.; Cotelli, M. Transcranial direct current stimulation enhances theory of mind in Parkinson’s disease patients with mild cognitive impairment: A randomized, double-blind, sham-controlled study. Transl. Neurodegener. 2019, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Cotelli, M.; Manenti, R.; Alberici, A.; Brambilla, M.; Cosseddu, M.; Zanetti, O.; Miozzo, A.; Padovani, A.; Miniussi, C.; Borroni, B. Prefrontal cortex rTMS enhances action naming in progressive non-fluent aphasia. Eur. J. Neurol. 2012, 19, 1404–1412. [Google Scholar] [CrossRef]
- Huey, E.D.; Probasco, J.C.; Moll, J.; Stocking, J.; Ko, M.H.; Grafman, J.; Wassermann, E.M. No effect of DC brain polarization on verbal fluency in patients with advanced frontotemporal dementia. Clin. Neurophysiol. 2007, 118, 1417–1418. [Google Scholar] [CrossRef][Green Version]
- Margolis, S.A.; Festa, E.K.; Papandonatos, G.D.; Korthauer, L.E.; Gonsalves, M.A.; Oberman, L.; Heindel, W.C.; Ott, B.R. A pilot study of repetitive transcranial magnetic stimulation in primary progressive aphasia. Brain Stimul. 2019, 12, 1340–1342. [Google Scholar] [CrossRef]
- Moral-Rubio, C.; Suárez-Coalla, P.; Fernandez-Romero, L.; Pérez-Izquierdo, C.; Delgado-Alvarez, A.; Delgado-Alonso, C.; Gil-Moreno, M.J.; Matias-Guiu, J.; Pytel, V.; Ayala, J.L.; et al. Effects of single-session repetitive transcranial magnetic stimulation to identify the optimal brain target in primary progressive aphasia. J. Alzheimer’s Dis. 2025, 13872877251315182. [Google Scholar] [CrossRef]
- Sanches, C.; Amzallag, F.; Dubois, B.; Lévy, R.; Truong, D.Q.; Bikson, M.; Teichmann, M.; Valero-Cabré, A. Evaluation of the effect of transcranial direct current stimulation on language impairments in the behavioural variant of frontotemporal dementia. Brain Commun. 2022, 4, fcac050. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, M.; Lesoil, C.; Godard, J.; Vernet, M.; Bertrand, A.; Levy, R.; Dubois, B.; Lemoine, L.; Truong, D.Q.; Bikson, M.; et al. Direct current stimulation over the anterior temporal areas boosts semantic processing in primary progressive aphasia. Ann. Neurol. 2016, 80, 693–707. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, M.; Sanches, C.; Bourbon, A.; Truong, D.Q.; Bikson, M.; Valero-Cabré, A. Transcranial direct current stimulation over the temporal-parietal junction yields no lexical-semantic effects in logopenic primary progressive aphasia: A double-blind sham-controlled study. NeuroImage Clin. 2025, 46, 103798. [Google Scholar] [CrossRef]
- Ke, Y.; Liu, S.; Chen, L.; Wang, X.; Ming, D. Lasting enhancements in neural efficiency by multi-session transcranial direct current stimulation during working memory training. NPJ Sci. Learn. 2023, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef]
- Šimko, P.; Pupíková, M.; Gajdoš, M.; Klobušiaková, P.; Vávra, V.; Šimo, A.; Rektorová, I. Exploring the impact of intensified multiple session tDCS over the left DLPFC on brain function in MCI: A randomized control trial. Sci. Rep. 2024, 14, 1512. [Google Scholar] [CrossRef]
- Valero-Cabré, A.; Pascual-Leone, A.; Rushmore, R.J. Cumulative sessions of repetitive transcranial magnetic stimulation (rTMS) build up facilitation to subsequent TMS-mediated behavioural disruptions. Eur. J. Neurosci. 2008, 27, 765–774. [Google Scholar] [CrossRef]
- Au, J.; Smith-Peirce, R.N.; Carbone, E.; Moon, A.; Evans, M.; Jonides, J.; Jaeggi, S.M. Effects of Multisession Prefrontal Transcranial Direct Current Stimulation on Long-term Memory and Working Memory in Older Adults. J. Cogn. Neurosci. 2022, 34, 1015–1037. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Nitsche, M.A.; Lv, Y.; Han, H.; Lin, X.; Qi, F. The effects of repetitive transcranial magnetic and transcranial direct current stimulation on memory functions in older adults with mild cognitive impairment: A systematic review and meta-analysis. Front. Hum. Neurosci. 2024, 18, 1436448. [Google Scholar] [CrossRef]
- Monte-Silva, K.; Kuo, M.F.; Hessenthaler, S.; Fresnoza, S.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013, 6, 424–432. [Google Scholar] [CrossRef]
- Fernandes, S.M.; Mendes, A.J.; Rodrigues, P.F.S.; Conde, A.; Rocha, M.; Leite, J. Efficacy and safety of repetitive Transcranial Magnetic Stimulation and transcranial Direct Current Stimulation in memory deficits in patients with Alzheimer’s disease: Meta-analysis and systematic review. Int. J. Clin. Health Psychol. 2024, 24, 100452. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, M.; Jähnigen, S.; Copland, D.A.; Darkow, R.; Grittner, U.; Avirame, K.; Rodriguez, A.D.; Lindenberg, R.; Flöel, A. Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex 2014, 50, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Rushmore, R.J.; DeSimone, C.; Valero-Cabré, A. Multiple sessions of transcranial direct current stimulation to the intact hemisphere improves visual function after unilateral ablation of visual cortex. Eur. J. Neurosci. 2013, 38, 3799–3807. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Altomare, D.; Benussi, A.; Bréchet, L.; Casula, E.P.; Dodich, A.; Pievani, M.; Santarnecchi, E.; Frisoni, G.B. The emerging field of non-invasive brain stimulation in Alzheimer’s disease. Brain 2024, 147, 4003–4016. [Google Scholar] [CrossRef]
- Antonenko, D.; Fromm, A.E.; Thams, F.; Kuzmina, A.; Backhaus, M.; Knochenhauer, E.; Li, S.C.; Grittner, U.; Flöel, A. Cognitive training and brain stimulation in patients with cognitive impairment: A randomized controlled trial. Alzheimer’s Res. Ther. 2024, 16, 6. [Google Scholar] [CrossRef]
- Yang, T.; Liu, W.; He, J.; Gui, C.; Meng, L.; Xu, L.; Jia, C. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Alzheimer’s Res. Ther. 2024, 16, 140. [Google Scholar] [CrossRef]
- Bagattini, C.; Zanni, M.; Barocco, F.; Caffarra, P.; Brignani, D.; Miniussi, C.; Defanti, C.A. Enhancing cognitive training effects in Alzheimer’s disease: rTMS as an add-on treatment. Brain Stimul. 2020, 13, 1655–1664. [Google Scholar] [CrossRef]
- Coemans, S.; Struys, E.; Vandenborre, D.; Wilssens, I.; Engelborghs, S.; Paquier, P.; Tsapkini, K.; Keulen, S. A Systematic Review of Transcranial Direct Current Stimulation in Primary Progressive Aphasia: Methodological Considerations. Front. Aging Neurosci. 2021, 13, 710818. [Google Scholar] [CrossRef]
- Cotelli, M.; Fertonani, A.; Miozzo, A.; Rosini, S.; Manenti, R.; Padovani, A.; Ansaldo, A.I.; Cappa, S.F.; Miniussi, C. Anomia training and brain stimulation in chronic aphasia. Neuropsychol. Rehabil. 2011, 21, 717–741. [Google Scholar] [CrossRef]
- Cotelli, M.; Manenti, R.; Ferrari, C.; Gobbi, E.; Macis, A.; Cappa, S.F. Effectiveness of language training and non-invasive brain stimulation on oral and written naming performance in Primary Progressive Aphasia: A meta-analysis and systematic review. Neurosci. Biobehav. Rev. 2020, 108, 498–525. [Google Scholar] [CrossRef]
- Fridriksson, J.; Rorden, C.; Elm, J.; Sen, S.; George, M.S.; Bonilha, L. Transcranial Direct Current Stimulation vs Sham Stimulation to Treat Aphasia After Stroke: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 1470–1476. [Google Scholar] [CrossRef]
- Nissim, N.R.; Moberg, P.J.; Hamilton, R.H. Efficacy of Noninvasive Brain Stimulation (tDCS or TMS) Paired with Language Therapy in the Treatment of Primary Progressive Aphasia: An Exploratory Meta-Analysis. Brain Sci. 2020, 10, 597. [Google Scholar] [CrossRef] [PubMed]
- Poppe, A.; Ritter, F.D.E.; Bais, L.; Pustejovsky, J.E.; van Tol, M.J.; Ćurčić-Blake, B.; Pijnenborg, G.H.M.; van der Meer, L. The efficacy of combining cognitive training and noninvasive brain stimulation: A transdiagnostic systematic review and meta-analysis. Psychol. Bull. 2024, 150, 192–213. [Google Scholar] [CrossRef] [PubMed]
- Thiel, A.; Black, S.E.; Rochon, E.A.; Lanthier, S.; Hartmann, A.; Chen, J.L.; Mochizuki, G.; Zumbansen, A.; Heiss, W.D. Non-invasive repeated therapeutic stimulation for aphasia recovery: A multilingual, multicenter aphasia trial. J. Stroke Cerebrovasc. Dis. 2015, 24, 751–758. [Google Scholar] [CrossRef]
- Thiel, A.; Hartmann, A.; Rubi-Fessen, I.; Anglade, C.; Kracht, L.; Weiduschat, N.; Kessler, J.; Rommel, T.; Heiss, W.D. Effects of noninvasive brain stimulation on language networks and recovery in early poststroke aphasia. Stroke 2013, 44, 2240–2246. [Google Scholar] [CrossRef]
- Tippett, D.C.; Hillis, A.E.; Tsapkini, K. Treatment of Primary Progressive Aphasia. Curr. Treat. Options Neurol. 2015, 17, 362. [Google Scholar] [CrossRef]
- Zhang, F.; Qin, Y.; Xie, L.; Zheng, C.; Huang, X.; Zhang, M. High-frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer’s disease. J. Neural Transm. 2019, 126, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, K.; Williamson, K.; Herrmann, O.; Afthinos, A.; Gallegos, J.; Martin, N.; Tippett, D.C.; Tsapkini, K. Home-Based Transcranial Direct Current Stimulation in Primary Progressive Aphasia: A Pilot Study. Brain Sci. 2024, 14, 391. [Google Scholar] [CrossRef]
- Gholami, M.; Pourbaghi, N.; Taghvatalab, S. Evaluation of rTMS in patients with poststroke aphasia: A systematic review and focused meta-analysis. Neurol. Sci. 2022, 43, 4685–4694. [Google Scholar] [CrossRef] [PubMed]
- Wong, I.S.; Tsang, H.W. A review on the effectiveness of repetitive transcranial magnetic stimulation (rTMS) on post-stroke aphasia. Rev. Neurosci. 2013, 24, 105–114. [Google Scholar] [CrossRef]
- Gholami, M.; Pourbaghi, N.; Taghvatalab, S. A meta-analysis of the effects of repetitive transcranial magnetic stimulation on aphasia rehabilitation in stroke patients. Neurol. Asia 2021, 26, 491–500. [Google Scholar] [CrossRef]
- Naeser, M.A.; Martin, P.I.; Nicholas, M.; Baker, E.H.; Seekins, H.; Kobayashi, M.; Theoret, H.; Fregni, F.; Maria-Tormos, J.; Kurland, J. Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: An open-protocol study. Brain Lang. 2005, 93, 95–105. [Google Scholar] [CrossRef]
- Chieffo, R.; Ferrari, F.; Battista, P.; Houdayer, E.; Nuara, A.; Alemanno, F.; Abutalebi, J.; Zangen, A.; Comi, G.; Cappa, S.F.; et al. Excitatory deep transcranial magnetic stimulation with H-coil over the right homologous Broca’s region improves naming in chronic post-stroke aphasia. Neurorehabil. Neural Repair 2014, 28, 291–298. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia after stroke: A systematic review with network meta-analysis of randomized controlled trials. J. Neuroeng. Rehabil. 2020, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Fridriksson, J.; Richardson, J.D.; Baker, J.M.; Rorden, C. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: A double-blind, sham-controlled study. Stroke 2011, 42, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Fridriksson, J.; Hillis, A.E. Current Approaches to the Treatment of Post-Stroke Aphasia. J. Stroke 2021, 23, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Cotelli, M.; Manenti, R.; Paternicò, D.; Cosseddu, M.; Brambilla, M.; Petesi, M.; Premi, E.; Gasparotti, R.; Zanetti, O.; Padovani, A.; et al. Grey Matter Density Predicts the Improvement of Naming Abilities After tDCS Intervention in Agrammatic Variant of Primary Progressive Aphasia. Brain Topogr. 2016, 29, 738–751. [Google Scholar] [CrossRef]
- Cotelli, M.; Manenti, R.; Petesi, M.; Brambilla, M.; Cosseddu, M.; Zanetti, O.; Miniussi, C.; Padovani, A.; Borroni, B. Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training. J. Alzheimer’s Dis. 2014, 39, 799–808. [Google Scholar] [CrossRef]
- Tsapkini, K.; Frangakis, C.; Gomez, Y.; Davis, C.; Hillis, A.E. Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: Preliminary results and challenges. Aphasiology 2014, 28, 1112–1130. [Google Scholar] [CrossRef]
- Tsapkini, K.; Webster, K.T.; Ficek, B.N.; Desmond, J.E.; Onyike, C.U.; Rapp, B.; Frangakis, C.E.; Hillis, A.E. Electrical brain stimulation in different variants of primary progressive aphasia: A randomized clinical trial. Alzheimer’s Dement. 2018, 4, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Byeon, H. Meta-Analysis on the Effects of Transcranial Direct Current Stimulation on Naming of Elderly with Primary Progressive Aphasia. Int. J. Enviorn. Res. Public Health 2020, 17, 1095. [Google Scholar] [CrossRef]
- Vitali, P.; Abutalebi, J.; Tettamanti, M.; Danna, M.; Ansaldo, A.I.; Perani, D.; Joanette, Y.; Cappa, S.F. Training-induced brain remapping in chronic aphasia: A pilot study. Neurorehabil. Neural Repair 2007, 21, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Norise, C.; Hamilton, R.H. Non-invasive Brain Stimulation in the Treatment of Post-stroke and Neurodegenerative Aphasia: Parallels, Differences, and Lessons Learned. Front. Hum. Neurosci. 2016, 10, 675. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Chen, Y.; Pei, S.; Shan, C.; Zhang, J.; Zhou, Z.; Wu, J.; Lu, Y.; Chen, Y.; Chen, Y. Advances in Neuromodulation Techniques for Aphasia Rehabilitation: A Comprehensive Review. Med. Sci. Monit. 2025, 31, e947213. [Google Scholar] [CrossRef]
- Berthier, M.L.; Pulvermüller, F. Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nat. Rev. Neurol. 2011, 7, 86–97. [Google Scholar] [CrossRef]
- Lomi, F.; Simonelli, I.; Cappa, S.; Pasqualetti, P.; Rossi, S. Noninvasive brain stimulation in primary progressive aphasia with and without concomitant speech and language therapy: Systematic review and meta-analysis. Neuropsychol. Rev. 2025, 1–27. [Google Scholar] [CrossRef]
- Sebastian, R.; Tsapkini, K.; Tippett, D.C. Transcranial direct current stimulation in post stroke aphasia and primary progressive aphasia: Current knowledge and future clinical applications. NeuroRehabilitation 2016, 39, 141–152. [Google Scholar] [CrossRef]
- Cotelli, M.; Pagnoni, I.; Gobbi, E.; Campana, E.; Bellini, S.; Longobardi, A.; Saraceno, C.; Geviti, A.; Cantoni, V.; Alberici, A.; et al. A multimodal approach for the treatment of Nonfluent/agrammatic variant of Primary Progressive Aphasia. Brain Commun. 2025; in press. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Finocchiaro, C.; Maimone, M.; Brighina, F.; Piccoli, T.; Giglia, G.; Fierro, B. A case study of Primary Progressive Aphasia: Improvement on verbs after rTMS treatment. Neurocase 2006, 12, 317–321. [Google Scholar] [CrossRef]
- Trebbastoni, A.; Raccah, R.; de Lena, C.; Zangen, A.; Inghilleri, M. Repetitive deep transcranial magnetic stimulation improves verbal fluency and written language in a patient with primary progressive aphasia-logopenic variant (LPPA). Brain Stimul. 2013, 6, 545–553. [Google Scholar] [CrossRef]
- Bereau, M.; Magnin, E.; Nicolier, M.; Berthet, L.; Dariel, E.; Ferreira, S.; Sylvestre, G.; Monnin, J.; Chopard, G.; Bouladour, H.; et al. Left Prefrontal Repetitive Transcranial Magnetic Stimulation in a Logopenic Variant of Primary Progressive Aphasia: A Case Report. Eur. Neurol. 2016, 76, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Pytel, V.; Cabrera-Martín, M.N.; Delgado-Álvarez, A.; Ayala, J.L.; Balugo, P.; Delgado-Alonso, C.; Yus, M.; Carreras, M.T.; Carreras, J.L.; Matías-Guiu, J.; et al. Personalized Repetitive Transcranial Magnetic Stimulation for Primary Progressive Aphasia. J. Alzheimer’s Dis. 2021, 84, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tan, Y.; Hao, H.; Li, J.; Liu, C.; Hu, Y.; Wu, Y.; Ding, Q.; Zhou, Y.; Li, Y.; et al. Treatment of primary progressive aphasia by repetitive transcranial magnetic stimulation: A randomized, double-blind, placebo-controlled study. J. Neural Transm. 2023, 130, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, D.; Chen, Y.; Yuan, Y.; Zhang, M. Effects of transcranial direct current stimulation on language improvement and cortical activation in nonfluent variant primary progressive aphasia. Neurosci. Lett. 2013, 549, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Dell’Era, V.; Cosseddu, M.; Cantoni, V.; Cotelli, M.S.; Cotelli, M.; Manenti, R.; Benussi, L.; Brattini, C.; Alberici, A.; et al. Transcranial stimulation in frontotemporal dementia: A randomized, double-blind, sham-controlled trial. Alzheimer’s Dement. 2020, 6, e12033. [Google Scholar] [CrossRef]
- Hung, J.; Bauer, A.; Grossman, M.; Hamilton, R.H.; Coslett, H.B.; Reilly, J. Semantic Feature Training in Combination with Transcranial Direct Current Stimulation (tDCS) for Progressive Anomia. Front. Hum. Neurosci. 2017, 11, 253. [Google Scholar] [CrossRef]
- Roncero, C.; Kniefel, H.; Service, E.; Thiel, A.; Probst, S.; Chertkow, H. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer’s disease and frontotemporal dementia. Alzheimer’s Dement. 2017, 3, 247–253. [Google Scholar] [CrossRef]
- Fenner, A.S.; Webster, K.T.; Ficek, B.N.; Frangakis, C.E.; Tsapkini, K. Written Verb Naming Improves After tDCS Over the Left IFG in Primary Progressive Aphasia. Front. Psychol. 2019, 10, 1396. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.D.; Wang, Z.; Ficek, B.; Webster, K.; Edden, R.A.; Tsapkini, K. Reductions in GABA following a tDCS-language intervention for primary progressive aphasia. Neurobiol. Aging 2019, 79, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Roncero, C.; Service, E.; De Caro, M.; Popov, A.; Thiel, A.; Probst, S.; Chertkow, H. Maximizing the Treatment Benefit of tDCS in Neurodegenerative Anomia. Front. Neurosci. 2019, 13, 1231. [Google Scholar] [CrossRef] [PubMed]
- Shah-Basak, P.; Fernandez, A.; Armstrong, S.E.; Hodzic-Santor, B.H.; Lavoie, M.; Jokel, R.; Meltzer, J.A. Behavioural and neurophysiological responses to written naming treatment and high definition tDCS: A case study in advanced primary progressive aphasia. Aphasiology 2022, 36, 1182–1205. [Google Scholar] [CrossRef]
- Themistocleous, C.; Webster, K.; Tsapkini, K. Effects of tDCS on Sound Duration in Patients with Apraxia of Speech in Primary Progressive Aphasia. Brain Sci. 2021, 11, 335. [Google Scholar] [CrossRef]
- de Aguiar, V.; Rofes, A.; Wendt, H.; Ficek, B.N.; Webster, K.; Tsapkini, K. Treating lexical retrieval using letter fluency and tDCS in primary progressive aphasia: A single-case study. Aphasiology 2022, 36, 353–379. [Google Scholar] [CrossRef]
- Nickels, K.; Beeson, P.M.; Rising, K.; Jebahi, F.; Kielar, A. Positive changes to written language following phonological treatment in logopenic variant primary progressive aphasia: Case report. Front. Hum. Neurosci. 2022, 16, 1006350. [Google Scholar] [CrossRef]
- Nissim, N.R.; Harvey, D.Y.; Haslam, C.; Friedman, L.; Bharne, P.; Litz, G.; Phillips, J.S.; Cousins, K.A.Q.; Xie, S.X.; Grossman, M.; et al. Through Thick and Thin: Baseline Cortical Volume and Thickness Predict Performance and Response to Transcranial Direct Current Stimulation in Primary Progressive Aphasia. Front. Hum. Neurosci. 2022, 16, 907425. [Google Scholar] [CrossRef]
- Borrego-Écija, S.; Montagut, N.; Martín-Trias, P.; Vaqué-Alcázar, L.; Illán-Gala, I.; Balasa, M.; Lladó, A.; Casanova-Mollà, J.; Bargalló, N.; Valls-Solé, J.; et al. Multifocal Transcranial Direct Current Stimulation in Primary Progressive Aphasia Does Not Provide a Clinical Benefit Over Speech Therapy. J. Alzheimer’s Dis. 2023, 93, 1169–1180. [Google Scholar] [CrossRef]
- Wang, Z.; Ficek, B.N.; Webster, K.T.; Herrmann, O.; Frangakis, C.E.; Desmond, J.E.; Onyike, C.U.; Caffo, B.; Hillis, A.E.; Tsapkini, K. Specificity in Generalization Effects of Transcranial Direct Current Stimulation Over the Left Inferior Frontal Gyrus in Primary Progressive Aphasia. Neuromodulation 2023, 26, 850–860. [Google Scholar] [CrossRef]
- Coemans, S.; De Aguiar, V.; Paquier, P.; Tsapkini, K.; Engelborghs, S.; Struys, E.; Keulen, S. Effects of Cerebellar Transcranial Direct Current Stimulation in Bilingual Logopenic Primary Progressive Aphasia. J. Alzheimer’s Dis. Rep. 2024, 8, 1253–1273. [Google Scholar] [CrossRef]
- Strunk, K.; Weiss, S.; Müller, H.M. High-Frequency Language Therapy with Semantic Feature Analysis (SFA) and Transcranial Direct Current Stimulation (tDCS): A Longitudinal Single-Case Report of Semantic Variant of Primary Progressive Aphasia (svPPA). Brain Sci. 2024, 14, 133. [Google Scholar] [CrossRef]
- George, A.; McConathey, E.; Vogel-Eyny, A.; Galletta, E.; Pilloni, G.; Charvet, L. Feasibility of home-based transcranial direct current stimulation combined with personalized word retrieval for improving naming in primary progressive aphasia. Front. Neurol. 2025, 16, 1543712. [Google Scholar] [CrossRef] [PubMed]
- Granadillo, E.D.; Fellmeth, M.; Youssofzadeh, V.; Heffernan, J.; Shah-Basak, P.P.; Pillay, S.B.; Ustine, C.; Kraegel, P.; Schold, S.; Mueller, K.D.; et al. Behavioral and neural effects of temporoparietal high-definition transcranial direct current stimulation in logopenic variant primary progressive aphasia: A preliminary study. Front. Psychol. 2025, 16, 1492447. [Google Scholar] [CrossRef]
- Nickels, K.; Beeson, P.M.; Kielar, A. Addressing Phonological Deficit in Primary Progressive Aphasia With Behavioral Intervention and Transcranial Direct Current Stimulation. J. Speech Lang. Hear. Res. 2025, 68, 2348–2385. [Google Scholar] [CrossRef]
- Sheppard, S.M.; Goldberg, E.B.; Sebastian, R.; Vitti, E.; Ruch, K.; Meier, E.L.; Hillis, A.E. Augmenting Verb-Naming Therapy With Neuromodulation Decelerates Language Loss in Primary Progressive Aphasia. Am. J. Speech Lang. Pathol. 2025, 34, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Gervits, F.; Ash, S.; Coslett, H.B.; Rascovsky, K.; Grossman, M.; Hamilton, R. Transcranial direct current stimulation for the treatment of primary progressive aphasia: An open-label pilot study. Brain Lang. 2016, 162, 35–41. [Google Scholar] [CrossRef]
- McConathey, E.M.; White, N.C.; Gervits, F.; Ash, S.; Coslett, H.B.; Grossman, M.; Hamilton, R.H. Baseline Performance Predicts tDCS-Mediated Improvements in Language Symptoms in Primary Progressive Aphasia. Front. Hum. Neurosci. 2017, 11, 347. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; McConathey, E.; Tassoni, M.; Grossman, M.; Coslett, H.; Hamilton, R. Proceedings #10: Transcranial Direct Current Stimulation Mediates Improvements in Verbal Fluency for Patients with Primary Progressive Aphasia. Brain Stimul. 2019, 12, e69–e71. [Google Scholar] [CrossRef]
- Crowley, S.J.; Iordan, A.D.; Rinna, K.; Barmada, S.; Hampstead, B.M. Comparing high definition transcranial direct current stimulation to left temporoparietal junction and left inferior frontal gyrus for logopenic primary progressive aphasia: A single-case study. Neuropsychol. Rehabil. 2024, 34, 1478–1503. [Google Scholar] [CrossRef]
- de Aguiar, V.; Zhao, Y.; Faria, A.; Ficek, B.; Webster, K.T.; Wendt, H.; Wang, Z.; Hillis, A.E.; Onyike, C.U.; Frangakis, C.; et al. Brain volumes as predictors of tDCS effects in primary progressive aphasia. Brain Lang. 2020, 200, 104707. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar, V.; Zhao, Y.; Ficek, B.N.; Webster, K.; Rofes, A.; Wendt, H.; Frangakis, C.; Caffo, B.; Hillis, A.E.; Rapp, B.; et al. Cognitive and language performance predicts effects of spelling intervention and tDCS in Primary Progressive Aphasia. Cortex 2020, 124, 66–84. [Google Scholar] [CrossRef] [PubMed]
- Ficek, B.N.; Wang, Z.; Zhao, Y.; Webster, K.T.; Desmond, J.E.; Hillis, A.E.; Frangakis, C.; Vasconcellos Faria, A.; Caffo, B.; Tsapkini, K. The effect of tDCS on functional connectivity in primary progressive aphasia. Neuroimage Clin. 2018, 19, 703–715. [Google Scholar] [CrossRef]
- Herrmann, O.; Ficek, B.; Webster, K.T.; Frangakis, C.; Spira, A.P.; Tsapkini, K. Sleep as a predictor of tDCS and language therapy outcomes. Sleep 2022, 45, zsab275. [Google Scholar] [CrossRef]
- Licata, A.E.; Zhao, Y.; Herrmann, O.; Hillis, A.E.; Desmond, J.; Onyike, C.; Tsapkini, K. Sex differences in effects of tDCS and language treatments on brain functional connectivity in primary progressive aphasia. Neuroimage Clin. 2023, 37, 103329. [Google Scholar] [CrossRef]
- Tao, Y.; Ficek, B.; Wang, Z.; Rapp, B.; Tsapkini, K. Selective Functional Network Changes Following tDCS-Augmented Language Treatment in Primary Progressive Aphasia. Front. Aging Neurosci. 2021, 13, 681043. [Google Scholar] [CrossRef]
- Wang, Z.; Gallegos, J.; Tippett, D.; Onyike, C.U.; Desmond, J.E.; Hillis, A.E.; Frangakis, C.E.; Caffo, B.; Tsapkini, K. Baseline functional connectivity predicts who will benefit from neuromodulation: Evidence from primary progressive aphasia. medRxiv 2024. [Google Scholar] [CrossRef]
- Zhao, Y.; Ficek, B.; Webster, K.; Frangakis, C.; Caffo, B.; Hillis, A.E.; Faria, A.; Tsapkini, K. White Matter Integrity Predicts Electrical Stimulation (tDCS) and Language Therapy Effects in Primary Progressive Aphasia. Neurorehabil. Neural Repair 2021, 35, 44–57. [Google Scholar] [CrossRef]
- Alrasheed, A.S.; Alshamrani, R.A.; Al Ameer, A.A.; Alkahtani, R.M.; AlMohish, N.M.; AlQarni, M.A.; Alabdali, M.M. Safety and Efficacy of Different Therapeutic Interventions for Primary Progressive Aphasia: A Systematic Review. J. Clin. Med. 2025, 14, 3063. [Google Scholar] [CrossRef]
- Arheix-Parras, S.; Barrios, C.; Python, G.; Cogné, M.; Sibon, I.; Engelhardt, M.; Dehail, P.; Cassoudesalle, H.; Moucheboeuf, G.; Glize, B. A systematic review of repetitive transcranial magnetic stimulation in aphasia rehabilitation: Leads for future studies. Neurosci. Biobehav. Rev. 2021, 127, 212–241. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, B.E.; Barwood, C.H. Non-invasive brain stimulation: A new frontier in the treatment of neurogenic speech-language disorders. Int. J. Speech Lang. Pathol. 2013, 15, 234–244. [Google Scholar] [CrossRef]
- Fernandez, L.; Rogasch, N.C.; Do, M.; Clark, G.; Major, B.P.; Teo, W.P.; Byrne, L.K.; Enticott, P.G. Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation-a Systematic Review of Combined TMS and EEG Studies. Cerebellum 2020, 19, 309–335. [Google Scholar] [CrossRef]
- Ferrucci, R.; Priori, A. Noninvasive stimulation. Handb. Clin. Neurol. 2018, 155, 393–405. [Google Scholar] [CrossRef]
- Grimaldi, G.; Argyropoulos, G.P.; Boehringer, A.; Celnik, P.; Edwards, M.J.; Ferrucci, R.; Galea, J.M.; Groiss, S.J.; Hiraoka, K.; Kassavetis, P.; et al. Non-invasive cerebellar stimulation—A consensus paper. Cerebellum 2014, 13, 121–138. [Google Scholar] [CrossRef]
- Kim, J.H.; Cust, S.; Lammers, B.; Sheppard, S.M.; Keator, L.M.; Tippett, D.C.; Hillis, A.E.; Sebastian, R. Cerebellar tDCS Enhances Functional Communication Skills in Chronic Aphasia. Aphasiology 2024, 38, 1895–1915. [Google Scholar] [CrossRef] [PubMed]
- Pauly, M.G.; Steinmeier, A.; Bolte, C.; Hamami, F.; Tzvi, E.; Münchau, A.; Bäumer, T.; Weissbach, A. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. Sci. Rep. 2021, 11, 3070. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Chen, M.; Shen, Y.; Xu, X.; Gao, F.; Huang, G.; Ji, Y.; Su, B.; Song, D.; Fang, H.; et al. Cerebellar Continuous Theta Burst Stimulation for Aphasia Rehabilitation: Study Protocol for a Randomized Controlled Trial. Front. Aging Neurosci. 2022, 14, 909733. [Google Scholar] [CrossRef]
- Zheng, Z.S.; Wang, J.; Lee, S.; Wang, K.X.; Zhang, B.; Howard, M.; Rosario, E.; Schnakers, C. Cerebellar transcranial direct current stimulation improves quality of life in individuals with chronic poststroke aphasia. Sci. Rep. 2025, 15, 6898. [Google Scholar] [CrossRef] [PubMed]
- Hong-Yu, L.; Zhi-Jie, Z.; Juan, L.; Ting, X.; Wei-Chun, H.; Ning, Z. Effects of Cerebellar Transcranial Direct Current Stimulation in Patients with Stroke: A Systematic Review. Cerebellum 2023, 22, 973–984. [Google Scholar] [CrossRef]
- Kazdin, A.E. Single-case experimental designs. Evaluating interventions in research and clinical practice. Behav. Res. Ther. 2019, 117, 3–17. [Google Scholar] [CrossRef]
- Smith, A. The Challenge of Assessing Treatment Effectiveness in a Real-World Setting. Clin. Ther. 2021, 43, 2026–2029. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Kashyap, R.; Goodwill, A.M.; O’Brien, B.A.; Rapp, B.; Oishi, K.; Desmond, J.E.; Chen, S.H.A. Sex difference in tDCS current mediated by changes in cortical anatomy: A study across young, middle and older adults. Brain Stimul. 2022, 15, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Indahlastari, A.; Hardcastle, C.; Albizu, A.; Alvarez-Alvarado, S.; Boutzoukas, E.M.; Evangelista, N.D.; Hausman, H.K.; Kraft, J.; Langer, K.; Woods, A.J. A Systematic Review and Meta-Analysis of Transcranial Direct Current Stimulation to Remediate Age-Related Cognitive Decline in Healthy Older Adults. Neuropsychiatr. Dis. Treat. 2021, 17, 971–990. [Google Scholar] [CrossRef]
- Lee, S.; Chung, S.W.; Rogasch, N.C.; Thomson, C.J.; Worsley, R.N.; Kulkarni, J.; Thomson, R.H.; Fitzgerald, P.B.; Segrave, R.A. The influence of endogenous estrogen on transcranial direct current stimulation: A preliminary study. Eur. J. Neurosci. 2018, 48, 2001–2012. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527 Pt 3, 633–639. [Google Scholar] [CrossRef]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef]
- Stockbridge, M.D.; Elm, J.; Teklehaimanot, A.A.; Cassarly, C.; Spell, L.A.; Fridriksson, J.; Hillis, A.E. Individual Differences in Response to Transcranial Direct Current Stimulation With Language Therapy in Subacute Stroke. Neurorehabil. Neural Repair 2023, 37, 519–529. [Google Scholar] [CrossRef]
- Thomas, C.; Ghodratitoostani, I.; Delbem, A.C.B.; Ali, A.; Datta, A. Influence of gender-related differences in transcranial direct current stimulation: A Computational Study. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019; pp. 5196–5199. [Google Scholar] [CrossRef]
- Cotelli, M.; Baglio, F.; Manenti, R.; Blasi, V.; Galimberti, D.; Gobbi, E.; Pagnoni, I.; Rossetto, F.; Rotondo, E.; Esposito, V.; et al. A Multimodal Approach for Clinical Diagnosis and Treatment of Primary Progressive Aphasia (MAINSTREAM): A Study Protocol. Brain Sci. 2023, 13, 1060. [Google Scholar] [CrossRef] [PubMed]
Study | Patients | Age: Mean (SD); Sex: M/F | Protocol Design | rTMS (Number of Sessions, Target Area, and Parameters) | Placebo | Follow-Up | Outcome Measures | Results | ||
---|---|---|---|---|---|---|---|---|---|---|
Language | Clinical and Cognitive | Language | Clinical and Cognitive | |||||||
Finocchiaro et al., 2006 [105] | 1 PPA * | 60; M | Single-case crossover | - Sessions: ~5 min/session, 1 daily session, 5 sessions/1 week - Target area: left PFC, 6 cm anterior and 1 cm ventral from the motor spot - Frequency: 10 trains of 20 Hz (40 pulses per train, 30 s inter-train intervals) - Intensity: 90% MT - rTMS device: Cadwell, figure-of-eight coil | Yes | None | - Sentence-completion (verb) - Sentence-completion (noun or determiner) | - Memory span (pseudo-words and numbers) | ↑ Sentence-completion (verb) after active rTMS | No significant improvements |
Trebbastoni et al., 2013 [106] | 1 lvPPA | 50; M | Single-case crossover | - Sessions: 20 min/session, 1 daily session, 5 sessions/1 week - Target area: left BA44 and left BA45 - Frequency: 30 trains of 20 Hz (50 pulses per train) - Intensity: 100% MT - rTMS device: Magstim Rapid 2, Brainsway’s H-coil | Yes | 1 week post-treatment | - Phonemic fluency - Written production | - MMSE - FAB - CDT - BDT | ↑ Phonemic fluency after active rTMS ↑ Written production after active rTMS Gains not maintained at follow-up | No significant improvements |
Bereau et al., 2016 [107] | 1 lvPPA | 66; F | Single-case pre-post | - Sessions: 20 min/session, 2 daily sessions, 10 sessions/1 week - Target area: left DLPFC, 5 cm anterior, parasagittal line from the hand motor area - Frequency: 40 trains of 10 Hz (50 pulses per train, 25 s inter-train intervals) - Intensity: 100% MT - rTMS device: Magstim Super rapid, figure-of-eight coil | No | 12 weeks post-treatment | - Sentence Comprehension - Picture naming - Word, non-word, sentence repetition - Isaac Set Test - Phonemic fluency - Semantic fluency | - MMSE - MDRS - Crossing-Off Test - TMT, part A - Stroop - FCSRT - Digit span FW and BW - DMS48 | ↑ Phonemic fluency ↑ Semantic fluency Gain maintained at follow-up: ↑ Semantic fluency | ↑ MMSE ↑ TMT, part A ↑ Stroop |
Pytel et al., 2021 [108] | 14 nf/avPPA 6 svPPA | 66.9 (7.2); 8/12 | Case series pre-post (13 PPA) Crossover RCT (7 PPA) | - Sessions: 1 daily session, 15 sessions/3 weeks - Target areas: Left: IFG, SFG, DLPFC and anterior temporal lobe; Right: SFG - Frequency: Trains of 20 Hz (1500 pulses per session, 20 s inter-train intervals) - Intensity 100% MT - rTMS device: Magstim Rapid 2, figure-eight coil | Yes, on the RCT | None | - Spontaneous speech - Story Reading - Object naming - Repetition - Picture semantic association (only svPPA) | - ACE-III - Perception of change reported by the patient and caregiver - NPI | ↑ Spontaneous speech after active rTMS ↑ Story Reading after active rTMS ↑ Oral object naming after active rTMS ↑ Repetition after active rTMS | ↑ NPI (total score, depression and apathy subscores) after active rTMS ↑ Perception of change reported by the patient and caregiver after active rTMS |
Huang et al., 2023 [109] | 16 nf/avPPA 12 svPPA 12 lvPPA | n.a.; 19/21 | Parallel RCT | - Sessions: ~3 min/session, 1 daily session, 20 sessions/4 weeks - Target area: F3 for right-handed patients, F4 for left-handed patients - Frequency: 50 trains of 10 Hz (20 pulses per train, 2 s inter-train intervals) - Intensity: 120% MT - rTMS device: Magstim, figure-of-eight coil | Yes | 12 and 24 weeks post-treatment | - BNT - Spontaneous speech, auditory-verbal comprehension, repetition, naming, reading, writing, apraxia and aphasia quotient from WAB - CAL | - HAMA - HRDS | ↑ BNT in both groups (active > placebo) ↑ WAB—aphasia quotient in both groups (active > placebo) ↑ CAL in both groups (active > placebo) Gain maintained at 12 weeks follow-up: ↑ CAL in both groups (active > placebo) Gains maintained at 24 weeks follow-up: ↑ BNT in both groups (active > placebo) ↑ WAB—aphasia quotient in both groups (active > placebo) | No significant improvements |
Study | Patients | Age: Mean (SD); Sex: M/F | Protocol Design | tDCS (Number of Sessions, Montage, and Parameters) | Placebo | Follow-Up | Outcome Measures | Results | ||
---|---|---|---|---|---|---|---|---|---|---|
Language | Clinical and Cognitive | Language | Clinical and Cognitive | |||||||
Wang et al., 2013 [110] | 1 nf/avPPA | 67.0; F | Single-case crossover | - Sessions: 20 min/session, 2 daily sessions, 10 sessions/5 days - Montage: anode over left PPR (morning) and left Broca’s area (afternoon), cathode over shoulder - Electrodes size: anode 4.5 × 5.5 cm, cathode 4.5 × 5.5 cm. - Intensity: 1.2 mA - tDCS device: IS200 | Yes | None | - Auditory word-picture identifications from PACA - Picture naming from PACA - Oral word reading from PACA - Word repetition from PACA | None | ↑ Auditory word-picture identifications from PACA after anodal tDCS, ↑ Picture naming from PACA after anodal tDCS ↑ Oral word reading from PACA after anodal tDCS ↑ Word repetition from PACA after anodal tDCS | - |
Benussi et al., 2020 [111] | 30 PPA * | n.a. | Parallel RCT | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: anode over left PFC, cathode over right deltoid muscle - Electrodes size: anode 5 × 7 cm, cathode 5 × 7 cm - Intensity: 2 mA | Yes | 12 and 24 weeks from baseline | - Phonemic fluency | - MMSE - TMT - Stroop - Digit symbol - modified Ekman emotion recognition - CBI | ↑ Phonemic fluency in anodal tDCS group Gains maintained at follow-ups: - n.a. for PPA group | ↑ MMSE in anodal tDCS group ↑ TMT in anodal tDCS group ↑ Digit symbol in anodal tDCS group ↑ modified Ekman emotion recognition in anodal tDCS group ↑ CBI in anodal tDCS group Gains maintained at follow-ups: - n.a. for PPA group |
Study | Patients | Age: Mean (SD); Sex: M/F | Protocol Design | tDCS (Number of Sessions, Montage, and Parameters) | Language Treatment | Placebo | Follow-Up | Outcome Measures | Results | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Language | Clinical and Cognitive | Language | Clinical and Cognitive | ||||||||
Cotelli et al., 2014 [93] | 16 nf/avPPA | 66.9 (8.2); 6/10 | Parallel RCT | - Sessions: 25 min/day, 1 daily session, 10 sessions/2 weeks - Montage: anode over left DLPFC (BA8/9), cathode over right arm - Electrodes size: anode 5 × 5 cm, cathode 6 × 10 cm - Intensity: 2 mA - tDCS device: BrainStim | Individualised lexical retrieval treatment | Yes | 12 weeks from baseline | - Phonemic fluency - Semantic fluency - AAT - Naming and sentence comprehension from BADA - Oral naming of trained objects - Oral naming of untrained objects - Action naming - Lincoln Speech Questionnaire - ASRS | - MMSE - RCPM - Story Recall - ROCF - Digit span - TMT - SAQOL-39 | ↑ Naming from AAT in anodal tDCS group ↑ Oral naming of trained items in both groups (anodal > placebo) ↑ Oral naming of untrained items in both groups ↑ Lincoln Speech Questionnaire (production abilities) in anodal tDCS group Gains maintained at follow-up: ↑ Naming from AAT in anodal tDCS group ↑ Oral naming of trained items in both groups ↑ Oral naming of untrained items in both groups | ↑ SAQOL-39 (energy subscale) in anodal tDCS group Gains not maintained at follow-up |
Tsapkini et al., 2014 [94] | 2 nf/avPPA 4 lvPPA | n.a.; 3/3 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 15 sessions/3–5 weeks - Montage: anode over left IFG (F7) - Electrodes size: anode 2 × 2 inch, cathode 2 × 2 inch - Intensity: 1–2 mA - tDCS device: Chattanooga Ionto | Spelling therapy | Yes | 2 and 8 weeks post-treatment | - Written naming/spelling of trained sounds and words - Written naming/spelling of untrained sounds and words | None | ↑ Written naming/spelling of trained items after both conditions ↑ Written naming/spelling of untrained items after anodal tDCS Gains maintained at follow-ups: ↑ Written naming/spelling of trained items after anodal tDCS ↑ Written naming/spelling of untrained items after anodal tDCS | - |
Cotelli et al., 2016 [92] | 18 nf/avPPA | 66.5 (9.5); 9/9 | Case series pre-post | - Sessions: 25 min/day, 1 daily session, 10 sessions/2 weeks - Montage: anode over left DLPFC, cathode on right arm - Electrodes size: anode 5 × 5 cm, cathode 6 × 10 cm - Intensity: 2 mA - tDCS device: BrainStim | Individualised lexical retrieval treatment | No | 12 weeks from baseline | - Phonemic fluency - Semantic fluency - AAT - Sentence comprehension - Oral naming of trained objects - Oral naming of untrained objects - Action naming - Lincoln Speech Questionnaire - ASRS | - MMSE - RCPM - Story Recall - ROCF - Digit span - TMT - SAQOL-39 | ↑ Naming from AAT ↑ Oral naming of trained items ↑ Oral naming of untrained items Gains maintained at follow-up: ↑ Oral naming of trained items ↑ Oral naming of untrained items | No significant improvements |
Hung et al., 2017 [112] | 3 svPPA 1 lvPPA | 68.3 (7.7); 2/2 | Case series pre-post | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: Anode over left temporoparietal region (P3), cathode on forehead - Electrodes size: 1 cm2 electrode within 5 cm2 sponges - Intensity: 1.5 mA - tDCS device: Magstim Eldith | Semantic feature analysis therapy | No | 24 weeks post-treatment | - Oral naming of trained words - Oral naming of untrained words | None | ↑ Oral naming of trained items Gain not maintained at follow-up | - |
Roncero et al., 2017 [113] | 6 nf/avPPA 2 svPPA 2 lvPPA | 67.4 (5.9); 7/3 | Crossover RCT | - Sessions: 30 min/session, 1 daily session, 10 session/18 days - Montage: anode over left inferior parieto-temporal lobe (P3), cathode over right fronto-orbital - Electrodes size: anode 5 × 7 cm, cathode 5 × 7 cm - Intensity: 2 mA - tDCS device: NeuroConn DC Stimulator plus | Picture naming training | Yes | 2 weeks post-treatment | - Oral naming of trained objects - Oral naming of untrained objects - Phonemic fluency - Semantic fluency | - Digit span FW and BW - MoCA - MMSE - Informal caregiver interview | ↑ Oral naming of trained items after both conditions (anodal > placebo) ↑ Oral naming of untrained items after anodal tDCS Gains maintained at follow-up: ↑ Oral naming of trained items after anodal tDCS ↑ Oral naming of untrained items after anodal tDCS | Perception of positive change after anodal tDCS Gain at follow-up: Higher performance in Digit span after anodal tDCS |
Tsapkini et al., 2018 [95] | 14 nf/avPPA 10 svPPA 12 lvPPA | nf/avPPA: 70.0 (5.8); 9/5 svPPA: 68.6 (5.2); 5/5 l/phvPPA: 65.3 (8.4); 6/6 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 15 sessions/3 weeks - Montage: anode over left IFG (F7), cathode over right cheek - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 2 mA - tDCS device: Soterix Clinical Trials Model 1500 | Oral and written objects naming/spelling therapy | Yes | 2 and 8 weeks post-treatment | - Written naming/spelling of trained objects - Written naming/spelling of untrained objects | None | ↑ Written naming/spelling of trained items after both conditions (anodal > placebo) ↑ Written naming/spelling of untrained items after both conditions (anodal > placebo) Gains maintained at follow-ups: ↑ Written naming/spelling of trained items after anodal tDCS ↑ Written naming/spelling of untrained items after anodal tDCS | - |
Fenner et al., 2019 [114] | 6 nf/avPPA 5 lvPPA | 69.2 (5.9); 7/4 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 10–14 days/2–3 weeks - Montage: Anode over left IFG (F7), cathode over right cheek - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 2 mA - tDCS device: Soterix Clinical Trials Model 1500 | Oral and written action naming/spelling therapy | Yes | 2 and 8 weeks post-treatment | - Written naming/spelling of trained actions - Written naming/spelling of untrained actions | None | ↑ Written naming/spelling of trained items after both conditions (anodal > placebo) ↑ Written naming/spelling of untrained items after both conditions (anodal > placebo) Gains maintained at follow-ups: ↑ Written naming/spelling of untrained items after both conditions (anodal > placebo) | - |
Harris et al., 2019 [115] | 10 nf/avPPA 6 svPPA 6 lvPPA | 66.9 (7.5); 11/11 | Parallel RCT | - Sessions: 20 min/day, 1 daily session, 15 sessions/3 weeks - Montage: anode over left IFG (F7), cathode over right cheek - Electrodes size: anode 2 × 2 inch, cathode 2 × 2 inch - Intensity: 2 mA - tDCS device: Soterix Clinical Trials Model 1500 | Oral and written objects naming/spelling therapy | Yes | 8 weeks post-treatment | - Oral and written naming/spelling of trained objects | None | ↑ Oral and written naming/spelling of trained items in both groups (anodal > placebo) Gains maintained at follow-up: ↑ Oral naming/spelling of trained items in both groups (anodal > placebo) | - |
Roncero et al., 2019 [116] | 4 nf/avPPA 4 svPPA 4 lvPPA | 65.4 (6.0); 8/4 | Crossover RCT | - Sessions: 30 min/day, 1 daily session, 10 sessions/3 weeks - Montage: anode over left parieto-temporal area (TP9), cathode over right fronto-orbital area, or anode over left DLPFC (F3), cathode over right deltoid muscle - Electrodes size: anode 5 × 7 cm, cathode 5 × 7 cm - Intensity: 2 mA - tDCS device: NeuroConn DC Stimulator MC | Picture naming training | Yes | 2 and 8 weeks post-treatment | - Oral naming of trained objects - Oral naming of untrained objects - Phonemic fluency - Semantic fluency | - Digit span FW and BW - MoCA - MMSE | ↑ Oral naming of trained items after all conditions (anodal conditions > placebo) Gains at 2 weeks follow-up: ↑ Oral naming of trained items after anodal left parieto-temporal tDCS ↑ Oral naming of untrained items after anodal left parieto-temporal tDCS Gains not maintained at 8 weeks follow-up | No significant improvements |
Shah-Basak et al., 2022 [117] | 1 nf/avPPA | 67.0; M | Single-case crossover | - Sessions: 20 min/day, 1 daily session, 5 sessions/1 weeks - Montage: HD-tDCS, 3 × 1 centre-surround electrode, anode over left SMG - Intensity: 2 mA - HD-tDCS device: NeuroConn DC stimulator MC | Written naming therapy | Yes | 12 weeks | - Written naming of trained objects - Written naming of untrained objects | None | ↑ Written naming of trained items after both conditions ↑ Written naming of untrained items after both conditions Gains maintained at follow-up: ↑ Written naming of trained items after both conditions ↑ Written naming of untrained items after both conditions | - |
Themistocleous et al., 2021 [118] | 8 nf/avPPA with AOS | 66.0 (8.3); 4/4 | Parallel RCT | - Sessions: 20 min/day, 1 daily session, 15 sessions/3 weeks - Montage: anode over left IFG (F7), cathode over right check - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 2 mA - tDCS device: Soterix Clinical Trials Model 1500 | Oral word repetition therapy | Yes | 8 weeks post-treatment | - Sound duration for trained words - Sound duration for untrained words - Vowel duration for trained words - Vowel duration for untrained words - Consonant duration for trained words - Consonant duration for untrained words | None | ↑ Sound duration for trained and untrained items in anodal tDCS group ↑ Vowel duration for trained and untrained items in anodal tDCS group ↑ Consonant duration for trained and untrained items in anodal tDCS group Gains maintained at follow-up: ↑ Sound duration for trained items in anodal tDCS group ↑ Vowel duration for trained items in anodal tDCS group | - |
de Aguiar et al., 2022 [119] | 1 lvPPA | 72.0; M | Single-case crossover | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: Anode over left IFG (F7) or left IPL (TP3), cathode over right cheek - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 2 mA | Letter fluency therapy | No | 2 and 8 or 2 and 12 weeks post-treatment | - Letter fluency for trained letters (number of words) - Letter fluency for untrained letters (number of words) - Oral objects naming | None | ↑ Letter fluency for trained items after both conditions ↑ Letter fluency for untrained items after both conditions ↑ Oral objects naming after anodal left IFG Gains maintained at 2 weeks follow-up: ↑ Letter fluency for trained items after both conditions ↑ Letter fluency for untrained items after both conditions Gains maintained at 8 or 12 weeks follow-ups: ↑ Letter fluency for trained items after anodal left IFG tDCS ↑ Oral objects naming after anodal left IFG | - |
Nickels et al., 2022 [120] | 1 lvPPA | 71.0; F | Single-case crossover | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: anode over left IFG (F5), cathode over right supraorbital location (FP2) - Electrodes size: anode 5 × 7 cm, cathode 5 × 7 cm - Intensity: 1.5 mA - tDCS device: NeurConn DC Stimulator Plus | Phonological treatment | Yes | 8 weeks post-treatment | - Blending sounds for words and non-words - Reading non-words - Phonological manipulation (APB) - Letter-sound transcoding - Sound-letter transcoding - Aphasia quotient from WAB - BNT - Semantics Camel and Cactus test - Reading words and non-words - Spelling words and non-words - Rainbow passage - Written narratives skills - Repetition of word and non-word - Perception of change reported by the participant and by the caregiver | - Digit span FW and BW - Recognition of faces from Warrington memory test | ↑ Blending sounds for words after anodal tDCS ↑ Blending sounds for non-words after both conditions ↑ Reading non-words after anodal tDCS ↑ Phonological manipulation after both conditions ↑ Sound-letter transcoding after anodal tDCS ↑ Letter-sound transcoding after placebo tDCS ↑ Spelling non-words after anodal tDCS ↑ Written narratives skills after both conditions Perception of positive change reported by the participant and the caregiver after both conditions Gains maintained at follow-up: ↑ Blending sounds for words after anodal tDCS ↑ Reading non-words after anodal tDCS ↑ Phonological manipulation from APB after both conditions ↑ Sound-letter transcoding after anodal tDCS ↑ Spelling words and non-words after both conditions ↑ Written narratives after both conditions | No significant improvements |
Nissim et al., 2022 [121] | 2 nf/avPPA 1 svPPA 9 lvPPA | 66.9 (6.4); 8/4 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: HD-tDCS, 1 × 1 transcranial DC and 4 × 1 Multi-Channel Stimulation Interface; anode over left frontotemporal region (FT7), surrounding cathodes over F7, T7, FC5, FT9 - Intensity: 1.5 mA - HD-tDCS device: Soterix Medical | Constraint-induced language therapy | Yes | 6 weeks post-treatment | - Spontaneous speech, auditory-verbal comprehension, repetition and naming from WAB-R | None | ↑ Naming from WAB-R after anodal tDCS Gains maintained at follow-up: ↑ Naming from WAB-R after anodal tDCS | - |
Borrego-Écija et al., 2023 [122] | 6 nf/avPPA 4 svPPA 5 lvPPA | 63.0 (8.4); 5/10 | Crossover RCT | - Sessions: 26 min/day, 1 daily session, 10 sessions/2 weeks - Montage: multi-channel high-density tDCS with seven electrodes over left frontal and parietal regions vertex (C1, F7, FC1, 19 FC5, Fpz, P7, and PO8) - Electrodes size: 1 cm radius - Intensity: max 4 mA - tDCS device: StarStim | Speech therapy | Yes | 4 and 12 weeks post-treatment | - Phonemic fluency of trained letters - Phonemic fluency of untrained letters - Semantic fluency of trained semantic categories - Semantic fluency of untrained semantic categories - Oral naming of trained objects - Oral naming of untrained objects - Comprehension of trained single-word - Comprehension of untrained single-word - Trained semantic association - Untrained semantic association - Trained reading speed - Untrained reading speed | None | ↑ Composite score of all evaluated tasks after both tDCS conditions Gains maintained at 4 weeks follow-up: ↑ Composite score of all evaluated tasks after both tDCS conditions Gains not maintained at 12 weeks follow-up | - |
Wang et al., 2023 [123] | 13 nf/avPPA 9 svPPA 14 lvPPA | nf/avPPA: 69.8 (6.0); 8/5 svPPA: 67.9 (5.0); 4/5 l/phvPPA: 66.3 (8.1); 7/7 | Parallel RCT | - Sessions: 20 min/day, 1 daily session, ~12 sessions/3 weeks - Montage: anode over left IFG (F7), cathode over right cheek - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 2 mA - tDCS device: Soterix 1 × 1 Clinical Trials | Oral and written objects naming/spelling therapy | Yes | 2 and 8 weeks post-treatment | - Phonemic fluency - Semantic fluency | - Digit span FW and BW - TMT - PHQ-9 | ↑ Semantic fluency in anodal tDCS group Gain maintained at 2 weeks follow-up: ↑ Semantic fluency in anodal tDCS group Gain not maintained at 8 weeks follow-up | No significant improvements |
Coemans et al., 2024 [124] | 1 bilingual lvPPA (L1: French; L2: Dutch) | 59.0; M | Single-case crossover | - Sessions: 20 min/day, 1 daily session, 9 sessions/3 weeks - Montage: anode over right posterolateral cerebellum, cathode over right deltoid muscle - Electrodes size: anode 3 × 3 cm, cathode 3 × 3 cm - Intensity: 2 mA - tDCS device: Oasis Pro | Semantic and phonological speech and language therapy provided in L2 | Yes | 8 weeks post-treatment | - Oral naming of trained objects in L2 - Oral naming of untrained objects in L1 and L2 - BAT in L1 and L2 - Picture Description in L1 and L2 - Cookie Theft in L1 and L2 | - MMSE - ANT - Stroop | ↑ Oral naming of trained items in L2 after anodal tDCS ↑ Oral naming of untrained items in L1 and L2 after anodal tDCS ↑ Syntactic comprehension, Repetition of words and nonsense words from BAT in L2 after anodal tDCS Gains maintained at follow-up: ↑ Oral naming of trained items in L2 after anodal tDCS ↑ Oral naming of untrained items in L1 after anodal tDCS | ↑ ANT after anodal tDCS Gains maintained at follow-up: ↑ ANT after anodal tDCS |
Strunk et al., 2024 [125] | 1 svPPA | 56.0; F | Single-case pre-post | - Sessions: 20 min/day, 1 daily session, 40 sessions/14 months - Montage: anode over left anterior temporal pole (FT7- FT9), cathode over right supraorbital location (FP2) - Electrodes size: anode 5 × 7 cm, cathode 5 × 7 cm - Intensity: 1.5 mA - tDCS device: NeuroConn | Semantic feature analysis therapy | No | 2 and 4 weeks after every 10 sessions | - Oral naming of trained objects and actions - Oral naming of untrained objects and actions - RWT - BNT | None | ↑ Oral naming of trained items ↑ Oral naming of untrained items ↑ BNT Gains maintained at follow-ups: ↑ Oral naming of untrained items | - |
George et al., 2025 [126] | 2 svPPA 2 lvPPA 6 mixed/unclassifiable PPA | 70.0 (6.9); 6/4 | Case series pre-post | - Sessions: 30 min/day, 1 daily at-home session, 20 sessions/4 weeks - Montage: anode over left IFG (F7), cathode over O1 - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 2 mA - At-home tDCS device: Soterix mini-CT | Individualised lexical retrieval treatment | No | None | - Oral naming of trained objects and actions - Oral naming of untrained objects and actions - QAB - BNT - Phonemic fluency - Semantic fluency - ACOM - Perception of change reported by the caregiver | - SAQOL-39 - PROMIS | ↑ Oral naming of trained items ↑ BNT Perception of positive change reported by the caregiver | No significant improvements |
Granadillo et al., 2025 [127] | 4 lvPPA | 69.0 (5.1); 2/2 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: HD-tDCS, centre-surround 4 × 1 configuration, anode over left posterior SMG - Intensity: 2 mA - HD-tDCS device: MxN-9 | Non-word repetition and word/non-word reading training | Yes | 8 weeks post-treatment | - Repetition of trained non-words - Repetition of untrained non-words - Reading of trained words and non-words - Reading of untrained words and non-words - Rhyme matching of words and non-words - Oral picture naming from NAB - Phonemic fluency - Semantic fluency - Written words and sentence comprehension from NAB - Picture description from NAB | - Phonological short-term memory - Digit span - MoCA | ↑ Repetition of trained non-words after placebo tDCS for a participant ↑ Reading of trained non-words after placebo tDCS for two participants Gains at follow-up: ↑ Repetition of trained non-words after placebo tDCS for a participant ↑ Repetition of trained non-words after anodal tDCS for a participant ↑ Reading of trained words after anodal tDCS for a participant ↑ Reading of trained non-words after placebo tDCS for a participant | No significant improvements |
Nickels et al., 2025 [128] | 3 nf/avPPA 9 lvPPA | 70.7 (4.6); 3/9 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: anode over left IFG or left SMG, cathode over right supraorbital location - Electrodes size: anode 5 × 7 cm, cathode 5 × 7 cm - Intensity: 1.5 mA - tDCS device: NeuroConn DC Stimulator Plus | Phonological treatment | Yes | 8 weeks post-treatment | - Blending sounds for words and non-words -Reading non-words - Sound-letter transcoding from APB - Phonological manipulation from APB - Semantics Camel and Cactus test - Allographic conversion - Repetition of word and nonword - Reading words and non-words - Spelling words and non-words - Written narratives skills - BNT - Spontaneous speech, auditory-verbal comprehension, repetition, naming, reading, writing, apraxia and aphasia quotient from WAB - Perception of change reported by participants | - Digit span BW - Recognition of faces from Warrington memory test - MoCA - RCPM | ↑ Blending sounds for words after Phase 1 of anodal tDCS-first group ↑ Blending sounds for non-words after both Phases of anodal tDCS-first and after Phase 1 of placebo tDCS- first group ↑ Reading non-words after Phase 1 of anodal tDCS-first group ↑ Sound-letter transcoding after Phase 1 of anodal tDCS-first and placebo tDCS-first groups ↑ Phonological manipulation after Phase 1 of anodal tDCS-first group ↑ Written narratives skills after Phase 1 of anodal tDCS-first group ↑ Perception of change reported by participants after Phase 1 and Phase 2 of anodal tDCS-first group and Phase 1 of placebo tDCS-first group Gains at follow-up: ↑ Blending sounds for words after anodal tDCS-first ↑ Blending sounds for non-words after placebo tDCS-first ↑ Sound-letter transcoding after anodal tDCS-first ↑ Reading non-words after anodal tDCS-first ↑ Spelling non-words after anodal tDCS-first ↑ Written narratives skills after anodal tDCS-first | Gains at follow-up: ↑ Recognition of faces after anodal tDCS-first group |
Sheppard et al., 2025 [129] | 3 nf/avPPA 2 lvPPA 3 svPPA | 68.3 (5.7); 4/4 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 15 sessions/3–5 weeks - Montage: anode over left IFG (F7), cathode over right shoulder - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 1–2 mA - tDCS device: Soterix 1 × 1 Clinical Trials | Verb Network-Strengthening Treatment, VNeST | Yes | 8 weeks post-treatment | - Oral naming of trained verbs - Oral naming of untrained verbs - Oral naming of nouns - Sentence production from NAVS - Sentence comprehension from NAVS - Speech production (Cookie Theft picture from the BDAE) | None | ↑ Oral naming of trained verbs in both conditions ↑ Speech production in both conditions Higher performance at oral naming of untrained verbs after anodal tDCS Higher performance at sentence production after anodal tDCS Gains maintained at follow-up: Higher performance at oral naming of untrained verbs after anodal tDCS Higher performance at sentence comprehension after anodal tDCS | - |
Study | Patients | Age: Mean (SD); Sex: M/F | Protocol Design | tDCS (Number of Sessions, Montage, and Parameters) | Language Treatment | Placebo | Follow-Up | Outcome Measures | Results | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Language | Clinical and Cognitive | Language | Clinical and Cognitive | ||||||||
Gervits et al., 2016 [130] | 2 nf/avPPA 4 lvPPA | 66.2 (5.7); 1/5 | Case series pre-post | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: anode over left fronto-temporal region (F7), cathode over left occipito-parietal region (O1) - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 1.5 mA - tDCS device: Magstim Eldith | None (tDCS during narrative task) | No | 6 and 12 weeks post-treatment | - Speech production - Sentence Repetition - Grammatical Comprehension - Semantic Processing (BNT; PPT; Semantic fluency) - Averaged language performance | None | ↑ Speech production ↑ Grammatical Comprehension ↑ Averaged language performance Gains maintained at follow-ups: ↑ Grammatical Comprehension ↑ Averaged language performance | - |
McConathey et al., 2017 [131] | 6 nf/avPPA 1 lvPPA | 68.7 (6.9); 2/5 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: anode over left prefrontal region (F7), cathode over the left occipital region (O1) - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 1.5 mA - tDCS device: Magstim Eldith | None (tDCS during narrative task) | Yes | 6 and 12 weeks post-treatment | - Repetition (sentence repetition from NACC-FTLD consortium) - Grammatical Comprehension (TROG) - Semantic Processing (BNT; PPT; Semantic fluency) - Averaged language performance | None | No significant improvements No significant improvements at follow ups Averaged language performance, Grammatical Comprehension, Semantic Processing: improvement after anodal tDCS in individuals who scored lower at baseline Speech repetition: improvement after anodal tDCS in individuals who scored higher at baseline | - |
Hosseini et al., 2019 [132] | 3 nf/avPPA 3 lvPPA | 67.0 (10.6); 2/4 | Crossover RCT | - Sessions: 20 min/day, 1 daily session, 10 sessions/2 weeks - Montage: anode over left prefrontal regions (F7), cathode over left occipital region (O1) - Electrodes size: anode 5 × 5 cm, cathode 5 × 5 cm - Intensity: 1.5 mA | None (tDCS during narrative task) | Yes | 6 and 12 post-treatment | - Semantic fluency - Grammatical Comprehension (TROG) - PPT - BNT | None | ↑ Semantic fluency after anodal tDCS Gains at follow-ups: ↑ Semantic fluency after anodal tDCS | - |
Crowley et al., 2024 [133] | 1 lvPPA | 57.0; F | Single-case crossover | - Sessions: 20 min/day, 1 daily session, 30 sessions/8 weeks - Montage: HD-tDCS, anode over left TPJ, cathode over C1, CPz, Pz, Poz, O1, P9 or anode over left IFG, cathode over F9, FT7, FC1, F1, AFz, Fpz - Intensity: 4 mA - HD-tDCS device: MxN-9 | None (tDCS during narrative task) | No | None | - Phonemic fluency - Semantic fluency - MINT - UDS 3.0 - Picture description | None | ↑ MINT after anodal left TPJ tDCS ↑ Picture description after both conditions | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobbi, E.; Pagnoni, I.; Campana, E.; Manenti, R.; Cotelli, M. Efficacy of Transcranial Magnetic Stimulation and Transcranial Direct-Current Stimulation in Primary Progressive Aphasia Treatment: A Review. Brain Sci. 2025, 15, 839. https://doi.org/10.3390/brainsci15080839
Gobbi E, Pagnoni I, Campana E, Manenti R, Cotelli M. Efficacy of Transcranial Magnetic Stimulation and Transcranial Direct-Current Stimulation in Primary Progressive Aphasia Treatment: A Review. Brain Sciences. 2025; 15(8):839. https://doi.org/10.3390/brainsci15080839
Chicago/Turabian StyleGobbi, Elena, Ilaria Pagnoni, Elena Campana, Rosa Manenti, and Maria Cotelli. 2025. "Efficacy of Transcranial Magnetic Stimulation and Transcranial Direct-Current Stimulation in Primary Progressive Aphasia Treatment: A Review" Brain Sciences 15, no. 8: 839. https://doi.org/10.3390/brainsci15080839
APA StyleGobbi, E., Pagnoni, I., Campana, E., Manenti, R., & Cotelli, M. (2025). Efficacy of Transcranial Magnetic Stimulation and Transcranial Direct-Current Stimulation in Primary Progressive Aphasia Treatment: A Review. Brain Sciences, 15(8), 839. https://doi.org/10.3390/brainsci15080839