Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (145)

Search Parameters:
Keywords = surrounding dielectrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3899 KiB  
Article
Uncooled Insulated Monopole Antenna for Microwave Ablation: Improved Performance with Coaxial Cable Annealing
by Federico Cilia, Lourdes Farrugia, Charles Sammut, Arif Rochman, Julian Bonello, Iman Farhat and Evan Joe Dimech
Appl. Sci. 2025, 15(12), 6616; https://doi.org/10.3390/app15126616 - 12 Jun 2025
Viewed by 290
Abstract
There is growing interest in measuring the temperature-dependent dielectric properties of bio-tissues using dual-mode techniques (scattering measurements and thermal treatment). Uncooled coaxial antennas are preferred for their direct contact with the measured medium and reduced complexity; however, they exhibit structural changes during ablation [...] Read more.
There is growing interest in measuring the temperature-dependent dielectric properties of bio-tissues using dual-mode techniques (scattering measurements and thermal treatment). Uncooled coaxial antennas are preferred for their direct contact with the measured medium and reduced complexity; however, they exhibit structural changes during ablation due to the thermal expansion of polytetrafluoroethylene (PTFE). This paper presents an experimental study on PTFE expansion in an uncooled coaxial insulated monopole antenna in response to changes in the tissue’s thermal environment. Furthermore, it presents a methodology to mitigate these effects through coaxial annealing. The investigation consists of two distinct experiments: characterising PTFE expansion and assessing the effects of annealing through microwave ablation. This was achieved by simulating the thermal effects experienced during ablation by immersing the test antenna in heated peanut oil. PTFE expansion was measured through camera monitoring and using a toolmaker’s microscope, revealing two expansion modalities: linear PTFE expansion and non-linear plastic deformation from manufacturing processes. The return loss during ablation and consequential changes in the ablated lesion were also assessed. Antenna pre-annealing increased resilience against structural changes in the antenna, improving lesion ellipticity. Therefore, this study establishes a fabrication method for achieving an uncooled thermally stable antenna, leading to an optimised dual-mode ablation procedure, enabling quasi-real-time permittivity measurement of the surrounding tissue. Full article
Show Figures

Figure 1

9 pages, 1300 KiB  
Perspective
Revealing the Role of Interfacial Charge Transfer in Mechanoluminescence
by Xinyi Huo, Shaoxin Li, Bing Sun, Zhonglin Wang and Di Wei
Nanomaterials 2025, 15(9), 656; https://doi.org/10.3390/nano15090656 - 26 Apr 2025
Viewed by 979
Abstract
Mechanoluminescence (ML) involves light emission induced by mechanical stress, categorized into triboluminescence (TL), piezoluminescence (PL), sonoluminescence (SL), and triboelectrification-induced electroluminescence (TIEL). The most common is TL, in which crystal fracture generates opposing charges that excite surrounding molecules. In PL, applied pressure induces light [...] Read more.
Mechanoluminescence (ML) involves light emission induced by mechanical stress, categorized into triboluminescence (TL), piezoluminescence (PL), sonoluminescence (SL), and triboelectrification-induced electroluminescence (TIEL). The most common is TL, in which crystal fracture generates opposing charges that excite surrounding molecules. In PL, applied pressure induces light emission via charge recombination. SL occurs in gas-saturated liquids under sudden pressure changes. TIEL has gained increasing attention as it operates without the need for asymmetric crystal structures or strain fields. However, conventional ML faces practical limitations due to its dependence on complex structures or strain fields. In contrast, contact-electro-luminescence (CEL) has emerged as a promising alternative, enabling luminol luminescence via charge transfer and reactive oxygen species generation through contact electrification (CE) between inert dielectrics and water. CEL provides a simpler and more versatile approach than traditional ML techniques, underscoring the pivotal role of charge-transfer processes. This perspective highlights the potential of CEL in expanding ML applications across sensing, energy conversion, and environmental monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

13 pages, 4482 KiB  
Article
Dielectric Constant Estimation of Spherical Particle-Filled Nanocomposites Based on the Poon and Shin Model, Considering Interphase Properties
by Bin Tang, Xue Liu, Shengxiang Deng, Wei Zhong and Jiang Shao
Polymers 2025, 17(8), 1035; https://doi.org/10.3390/polym17081035 - 11 Apr 2025
Viewed by 565
Abstract
A revised version of the Poon and Shin (PS) model, incorporating the effects of the interphase, is introduced to predict the dielectric permittivity of polymer nanocomposites reinforced with spherical nanoparticles. In this modified approach, both the spherical nanoparticle and its surrounding interphase region [...] Read more.
A revised version of the Poon and Shin (PS) model, incorporating the effects of the interphase, is introduced to predict the dielectric permittivity of polymer nanocomposites reinforced with spherical nanoparticles. In this modified approach, both the spherical nanoparticle and its surrounding interphase region are treated as an equivalent nanoparticle, modeled as a core–shell structure. This assumption enables a more accurate representation of the composite, where the polymer matrix and the equivalent nanoparticles form a homogeneous mixture. The process of calculating the dielectric permittivity of the composite occurs in two distinct steps. Initially, the dielectric permittivity of the equivalent particle—comprising both the nanoparticle core and its interphase—is computed. Subsequently, the overall dielectric permittivity of the composite material is determined, considering the properties of the polymer substrate and the equivalent nanoparticles, all within the framework of the modified PS model. To verify the validity of the proposed model, experimental data are compared against the predicted values, showing a high level of agreement when the interphase characteristics are appropriately incorporated. Additionally, the influence of various factors, including the properties of the spherical nanoparticles, the interphase, and the polymer matrix, on the dielectric performance of the nanocomposite is thoroughly investigated. This enhanced PS model offers a valuable theoretical framework for designing polymer–spherical nanoparticle composites with superior dielectric properties, paving the way for their potential application in advanced electronic and energy storage devices. Full article
Show Figures

Figure 1

30 pages, 8161 KiB  
Article
A Three-Dimensional FDTD(2,4) Subgridding Algorithm for the Airborne Ground-Penetrating Radar Detection of Landslide Models
by Lifeng Mao, Xuben Wang, Yuelong Chi, Su Pang, Xiangpeng Wang and Qilin Huang
Remote Sens. 2025, 17(6), 1107; https://doi.org/10.3390/rs17061107 - 20 Mar 2025
Cited by 1 | Viewed by 638
Abstract
The finite-difference time-domain (FDTD) method is a robust numerical approach for the three-dimensional forward modeling of airborne ground-penetrating radar responses of complex geological structures, particularly landslides. However, standard FDTD implementations encounter significant memory demands as aircraft altitude increases and when modeling high-permittivity subsurface [...] Read more.
The finite-difference time-domain (FDTD) method is a robust numerical approach for the three-dimensional forward modeling of airborne ground-penetrating radar responses of complex geological structures, particularly landslides. However, standard FDTD implementations encounter significant memory demands as aircraft altitude increases and when modeling high-permittivity subsurface media (e.g., water-saturated soils), often exceeding ordinary computational resources. Existing subgridding FDTD methods, tailored for simple localized target models, are also inadequate for simulating landslide models. To overcome these limitations, we thus propose a novel high-order FDTD-based subgridding algorithm that applies coarse grids to the air layer and fine grids to the subsurface medium, enabling the simulation of arbitrarily complex landslide models with significantly reduced memory consumption. This study achieves the first implementation of the high-order FDTD(2,4) method in both coarse- and fine-grid regions, which enables larger grid sizes in both regions. As a result, the proposed approach not only preserves high-order spatial accuracy but also achieves significant memory savings. To mitigate the challenges posed by higher-order difference stencils, we introduce a specialized grid configuration with an overlap zone between coarse and fine grids, supplemented by surrounding virtual nodes. The algorithm accommodates various grid refinement factors, ensuring adaptability to dielectric models with diverse permittivity values and structural complexities. By optimizing the grid refinement factor based on the subsurface medium’s maximum permittivity, simulations can be performed with minimal memory usage. Field updates within the overlapping region are followed by weighted corrections to ensure numerical stability, whereas simulations without these novel measures exhibit oscillatory artifacts. Wavefield snapshots reveal seamless transitions across grid boundaries without spurious artifacts. Numerical experiments on deposition-type landslide models and water-bearing media confirm the validity and stability of the proposed method. Notably, using the optimal grid refinement factor reduces memory consumption to less than 8% of the standard FDTD method for aquifer model simulations. Full article
Show Figures

Figure 1

17 pages, 4928 KiB  
Article
The Role of Medium Polarity in the Efficiency of Albumin Binding with Hydrophobic Ligands: Experimental Studies and a Molecular Dynamics Investigation
by Gabriel Zazeri, Ana Paula Ribeiro Povinelli, Luiza de Carvalho Bertozo, Alan M. Jones and Valdecir Farias Ximenes
Int. J. Mol. Sci. 2024, 25(23), 12664; https://doi.org/10.3390/ijms252312664 - 25 Nov 2024
Viewed by 1006
Abstract
This study evaluates how the polarity of the medium affects the binding efficiency of hydrophobic ligands with human serum albumin (HSA). The polarity of the aqueous medium was changed by adding 1,4-dioxane in concentrations of 0%, 10%, and 20% w/w, [...] Read more.
This study evaluates how the polarity of the medium affects the binding efficiency of hydrophobic ligands with human serum albumin (HSA). The polarity of the aqueous medium was changed by adding 1,4-dioxane in concentrations of 0%, 10%, and 20% w/w, resulting in solvent mixtures with decreasing dielectric constants (ε = 80, 72, and 63). The addition of 1,4-dioxane did not affect the integrity of the protein, as confirmed by Far-UV-CD, Rayleigh scattering, and time-resolved fluorescence experiments. The impact of medium polarity on the binding constants was evaluated using 1,6-diphenyl-1,3,5-hexatriene (DPH), octyl gallate (OG), quercetin, and rutin as ligands. The association constants of DPH decreased as the medium hydrophobicity increased: at 0%, Ka = 19.8 × 105 M−1; at 10%, Ka = 5.3 × 105 M−1; and at 20%, Ka = 1.7 × 105 M−1. The decrease was still higher using OG: at 0%, Ka = 5.2 × 106 M−1; and at 20%, Ka = 2.2 × 105 M−1. The results in the same direction were obtained using quercetin and rutin as ligands. Molecular dynamics simulations illustrated the hydrophobic effect at the molecular level. The energy barrier for DPH to detach from the protein’s hydrophobic site and to move into the bulk solution was higher at 0% (9 kcal/mol) than at 20% 1,4-dioxane (7 kcal/mol). The difference was higher for OG, with 14 and 6 kcal/mol, respectively. Based on these findings, it was shown that the difference in hydrophobicity between the protein’s microenvironment and the surrounding solvent is an essential component for the effectiveness of the interaction. These results shed light on albumin–ligand complexation, a molecular interaction that has been extensively studied. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

18 pages, 2990 KiB  
Article
A Theoretical Study of the Electron–Surface Optical Phonon Interaction in Monolayer Transition Metal Dichalcogenides Deposited on SiC and hexagonal BN Dielectric Substrates in the Vicinity of the Points K+(K) of the Brillouin Zone
by Mounira Mahdouani, Ramzi Bourguiga and Spiros Gardelis
Materials 2024, 17(22), 5552; https://doi.org/10.3390/ma17225552 - 14 Nov 2024
Cited by 1 | Viewed by 1459
Abstract
We theoretically investigated the electron–surface optical phonon interaction across the long-range Fröhlich coupling in monolayer transition metal dichalcogenides, such as WS2, WSe2, MoS2, and MoSe2 monolayers, on SiC and hexagonal BN dielectric substrates. We [...] Read more.
We theoretically investigated the electron–surface optical phonon interaction across the long-range Fröhlich coupling in monolayer transition metal dichalcogenides, such as WS2, WSe2, MoS2, and MoSe2 monolayers, on SiC and hexagonal BN dielectric substrates. We employed the effective Hamiltonian in the K+(K) valley of the hexagonal Brillouin zone to assess the electronic energy shifts induced by the interaction between electronic states and surface polar optical phonons. Our results indicate that the interaction between electrons and surface optical phonons depends upon the polar nature of the substrate. We have also calculated the polaronic oscillator strength, as well as the polaronic scattering rate of the lower polaron state in monolayer WS2, WSe2, MoS2, and MoSe2 on SiC and hexagonal BN dielectric substrates. As a result, we have theoretically proved the following: firstly, the enhancement of the polaronic scattering rate with temperature, and secondly, the notable influence of the careful selection of surrounding dielectrics on both the polaronic oscillator strength and the polaronic scattering rate. Thus, optimal dielectrics would be those exhibiting both elevated optical phonon energy and a high static dielectric constant. Full article
(This article belongs to the Special Issue Low-Dimensional Materials: Design and Optoelectronic Properties)
Show Figures

Figure 1

21 pages, 6755 KiB  
Article
A Theoretical Model for the Hydraulic Permeability of Clayey Sediments Considering the Impact of Pore Fluid Chemistry
by Lixue Cao, Hang Zhao, Baokai Yang, Jian Zhang, Hongzhi Song, Xiaomin Fu and Lele Liu
J. Mar. Sci. Eng. 2024, 12(11), 1937; https://doi.org/10.3390/jmse12111937 - 29 Oct 2024
Viewed by 1048
Abstract
The chemistry of the pore fluid within clayey sediments frequently changes in various processes. However, the impacts of pore fluid chemistry have not been well included in the hydraulic permeability model, and the physical bases behind the salinity sensitivity of the hydraulic permeability [...] Read more.
The chemistry of the pore fluid within clayey sediments frequently changes in various processes. However, the impacts of pore fluid chemistry have not been well included in the hydraulic permeability model, and the physical bases behind the salinity sensitivity of the hydraulic permeability remains elusive. In this study, a theoretical model for the hydraulic permeability of clayey sediments is proposed, and impacts of the pore fluid chemistry are quantitatively considered by introducing electrokinetic flow theory. Available experimental data were used to verify the theoretical model, and the verified model was further applied as a sensitivity analysis tool to explore more deeply how hydraulic permeability depends on pore fluid chemistry under different conditions. Coupling effects of pore water desalination and the effective stress enhancement on the hydraulic permeability of marine sediments surrounding a depressurization wellbore during hydrate production are discussed. Results and discussion show that the hydraulic permeability reduction is significant only when the electric double layer thickness is comparable to the characteristic pore size, and the reduction becomes more obvious when the ion mobility of the saline solution is smaller and the surface dielectric potential of clay minerals is lower. During gas hydrate production in the ocean, the salinity sensitivity of the hydraulic permeability could become either stronger and weaker, depending on whether the original characteristic pore size of marine sediments is relatively large or small. Full article
(This article belongs to the Special Issue Advances in Marine Geological and Geotechnical Hazards)
Show Figures

Figure 1

15 pages, 1634 KiB  
Article
WS2 Nanosheet-Based Ultrascaled Field-Effect Transistor for Hydrogen Gas Sensing: Addressing the Sensitivity-Downscaling Trade-Off
by Khalil Tamersit
Sensors 2024, 24(20), 6730; https://doi.org/10.3390/s24206730 - 19 Oct 2024
Cited by 2 | Viewed by 1410
Abstract
In this paper, we propose an ultrascaled WS2 field-effect transistor equipped with a Pd/Pt sensitive gate for high-performance and low-power hydrogen gas sensing applications. The proposed nanosensor is simulated by self-consistently solving a quantum transport equation with electrostatics at the ballistic limit. [...] Read more.
In this paper, we propose an ultrascaled WS2 field-effect transistor equipped with a Pd/Pt sensitive gate for high-performance and low-power hydrogen gas sensing applications. The proposed nanosensor is simulated by self-consistently solving a quantum transport equation with electrostatics at the ballistic limit. The gas sensing principle is based on the gas-induced change in the metal gate work function. The hydrogen gas nanosensor leverages the high sensitivity of two-dimensional WS2 to its sur-rounding electrostatic environment. The computational investigation encompasses the nanosensor’s behavior in terms of potential profile, charge density, current spectrum, local density of states (LDOS), transfer characteristics, and sensitivity. Additionally, the downscaling-sensitivity trade-off is analyzed by considering the impact of drain-to-source voltage and the electrostatics parameters on subthreshold performance. The simulation results indicate that the downscaling-sensitivity trade-off can be optimized through enhancements in electrostatics, such as utilizing high-k dielectrics and reducing oxide thickness, as well as applying a low drain-to-source voltage, which also contributes to improved energy efficiency. The proposed nanodevice meets the prerequisites for cutting-edge gas nanosensors, offering high sensing performance, improved scaling capability, low power consumption, and complementary metal–oxide–semiconductor compatibility, making it a compelling candidate for the next generation of ultrascaled FET-based gas nanosensors. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

13 pages, 3320 KiB  
Communication
Colossal Dielectric Constant of Nanocrystalline/Amorphous Homo-Composite BaTiO3 Films Deposited via Pulsed Laser Deposition Technique
by Shinya Kondo, Taichi Murakami, Loick Pichon, Joël Leblanc-Lavoie, Takashi Teranishi, Akira Kishimoto and My Ali El Khakani
Nanomaterials 2024, 14(20), 1677; https://doi.org/10.3390/nano14201677 - 18 Oct 2024
Cited by 1 | Viewed by 1396
Abstract
We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO3 (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant (εr) and extremely low dielectric loss (tan δ). By varying the substrate deposition temperature (T [...] Read more.
We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO3 (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant (εr) and extremely low dielectric loss (tan δ). By varying the substrate deposition temperature (Td) over a wide range (300–800 °C), we identified Td = 550 °C as the optimal temperature for growing BTO films with an εr as high as ~3060 and a tan δ as low as 0.04 (at 20 kHz). High-resolution transmission electron microscopy revealed that the PLD-BTO films consist of BTO nanocrystals (~20–30 nm size) embedded within an otherwise amorphous BTO matrix. The impressive dielectric behavior is attributed to the combination of highly crystallized small BTO nanograins, which amplify interfacial polarization, and the surrounding amorphous matrix, which effectively isolates the nanograins from charge carrier transport. Our findings could facilitate the development of next-generation integrated dielectric devices. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

18 pages, 9222 KiB  
Article
PTFE-Based Circular Terahertz Dielectric Waveguides
by Hao Li, Dehai Zhang and Haotian Zhu
Photonics 2024, 11(10), 921; https://doi.org/10.3390/photonics11100921 - 29 Sep 2024
Cited by 1 | Viewed by 1893
Abstract
This paper presents the transmission characteristics of flexible solid circular dielectric waveguides in the terahertz frequency band. In this paper, we measured the electrical properties of certain polymers within 325–500 GHz. Through simulation and measurement, the transmission loss, bending loss, and electric field [...] Read more.
This paper presents the transmission characteristics of flexible solid circular dielectric waveguides in the terahertz frequency band. In this paper, we measured the electrical properties of certain polymers within 325–500 GHz. Through simulation and measurement, the transmission loss, bending loss, and electric field distribution of solid-core polymer dielectric waveguides were analyzed and discussed. Additionally, we considered the surrounding cladding of the dielectric waveguide, the signal-feeding mode transmitter, and the interconnection of the dielectric waveguide. Ultimately, in the operating frequency range of 325–500 GHz, we selected PTFE rods with diameters of 0.5 mm and 1 mm as the dielectric waveguides, with measured transmission loss of less than 30 dB/m and 33 dB/m, respectively, and bending loss of less than 1 dB/m. The described dielectric waveguide has engineering significance for short-distance connections in complex geometric environments and provides a reference for subsequent research. Full article
(This article belongs to the Special Issue Terahertz Advancements in Fibers, Waveguides and Devices)
Show Figures

Figure 1

13 pages, 3367 KiB  
Article
Recovery and Analysis of Bacterial Membrane Vesicle Nanoparticles from Human Plasma Using Dielectrophoresis
by Jason P. Ware, Delaney K. Shea, Shelby L. Nicholas, Ella A. Stimson, Jessica L. Riesterer and Stuart D. Ibsen
Biosensors 2024, 14(10), 456; https://doi.org/10.3390/bios14100456 - 25 Sep 2024
Cited by 1 | Viewed by 4752
Abstract
Bacterial membrane vesicle (BMV) nanoparticles are secreted naturally by bacteria throughout their lifecycle and are a rich source of biomarkers from the parent bacteria, but they are currently underutilized for clinical diagnostic applications, such as pathogen identification, due to the time-consuming and low-yield [...] Read more.
Bacterial membrane vesicle (BMV) nanoparticles are secreted naturally by bacteria throughout their lifecycle and are a rich source of biomarkers from the parent bacteria, but they are currently underutilized for clinical diagnostic applications, such as pathogen identification, due to the time-consuming and low-yield nature of traditional recovery methods required for analysis. The recovery of BMVs is particularly difficult from complex biological fluids. Here, we demonstrate a recovery method that uses dielectrophoretic (DEP) forces generated on electrokinetic microfluidic chips to isolate and analyze BMVs from human plasma. DEP takes advantage of the natural difference in dielectric properties between the BMVs and the surrounding plasma fluid to quickly and consistently collect these particles from as little as 25 µL of plasma. Using DEP and immunofluorescence staining of the LPS biomarker carried on BMVs, we have demonstrated a lower limit of detection of 4.31 × 109 BMVs/mL. The successful isolation of BMVs from human plasma using DEP, and subsequent on-chip immunostaining for biomarkers, enables the development of future assays to identify the presence of specific bacterial species by analyzing BMVs from small amounts of complex body fluid. Full article
Show Figures

Figure 1

12 pages, 2046 KiB  
Communication
Tunable Characteristics of Wedge Plasmonic Waveguide with Thin Metallic Layers
by Ha Trinh Thi, Duong Nguyen Van, Hieu Dang Van and Hoang Manh Chu
Photonics 2024, 11(9), 842; https://doi.org/10.3390/photonics11090842 - 5 Sep 2024
Viewed by 1392
Abstract
In this study, we propose a mechanism for tuning the modal characteristics of a wedge plasmonic waveguide. The wedge plasmonic waveguide is composed of a thin metallic layer deposited on a wedge-shaped dielectric waveguide. The tuning mechanism is based on controlling the surface [...] Read more.
In this study, we propose a mechanism for tuning the modal characteristics of a wedge plasmonic waveguide. The wedge plasmonic waveguide is composed of a thin metallic layer deposited on a wedge-shaped dielectric waveguide. The tuning mechanism is based on controlling the surface plasmon polariton (SPP) mode at the interface between the metal layer and the dielectric waveguide instead of controlling the SPP mode at the interface between the wedge-shaped metal layer and the surrounding media. This mechanism is performed by modulating the effective refractive index of the dielectric waveguide using a closely coupled tuning waveguide. The numerically investigated results show that the propagation length of the device can be tuned more than 100%; this characteristic has not been explored yet in previous studies. The effective mode area with deep-subwavelength size is almost kept constant while tuning the propagation length. This study offers new insights into tailoring the modal characteristics of plasmonic waveguides based on controlling the mode property at the interface between the metal layer and the dielectric waveguide. This study is also a guideline for developing active plasmonic devices such as tunable nanoscale lightwave guiding waveguides and THz optic modulators. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

11 pages, 3754 KiB  
Article
Low Dielectric Medium for Hyperbolic Phonon Polariton Waveguide in van der Waals Heterostructures
by Byung-Il Noh, Salvio Reza, Cassie Hardy, Jiahan Li, Adib Taba, Masoud Mahjouri-Samani, James H. Edgar and Siyuan Dai
Nanomaterials 2024, 14(16), 1344; https://doi.org/10.3390/nano14161344 - 14 Aug 2024
Cited by 2 | Viewed by 2346
Abstract
Polar van der Waals (vdW) crystals, composed of atomic layers held together by vdW forces, can host phonon polaritons—quasiparticles arising from the interaction between photons in free-space light and lattice vibrations in polar materials. These crystals offer advantages such as easy fabrication, low [...] Read more.
Polar van der Waals (vdW) crystals, composed of atomic layers held together by vdW forces, can host phonon polaritons—quasiparticles arising from the interaction between photons in free-space light and lattice vibrations in polar materials. These crystals offer advantages such as easy fabrication, low Ohmic loss, and optical confinement. Recently, hexagonal boron nitride (hBN), known for having hyperbolicity in the mid-infrared range, has been used to explore multiple modes with high optical confinement. This opens possibilities for practical polaritonic nanodevices with subdiffractional resolution. However, polariton waves still face exposure to the surrounding environment, leading to significant energy losses. In this work, we propose a simple approach to inducing a hyperbolic phonon polariton (HPhP) waveguide in hBN by incorporating a low dielectric medium, ZrS2. The low dielectric medium serves a dual purpose—it acts as a pathway for polariton propagation, while inducing high optical confinement. We establish the criteria for the HPhP waveguide in vdW heterostructures with various thicknesses of ZrS2 through scattering-type scanning near-field optical microscopy (s-SNOM) and by conducting numerical electromagnetic simulations. Our work presents a feasible and straightforward method for developing practical nanophotonic devices with low optical loss and high confinement, with potential applications such as energy transfer, nano-optical integrated circuits, light trapping, etc. Full article
(This article belongs to the Special Issue Nano-Optics and Light-Matter Interactions)
Show Figures

Figure 1

19 pages, 9067 KiB  
Article
Infrared Lightwave Memory-Resident Manipulation and Absorption Based on Spatial Electromagnetic Wavefield Excitation and Resonant Accumulation by GdFe-Based Nanocavity-Shaped Metasurfaces
by Cheng Chen, Chuang Zhang, Taige Liu, Zhe Wang, Jiashuo Shi and Xinyu Zhang
Nanomaterials 2024, 14(14), 1230; https://doi.org/10.3390/nano14141230 - 20 Jul 2024
Viewed by 929
Abstract
An arrayed nanocavity-shaped architecture consisting of the key GdFe film and SiO2 dielectric layer is constructed, leading to an efficient infrared (IR) absorption metasurface. By carefully designing and optimizing the film system configuration and the surface layout with needed geometry, a desirable [...] Read more.
An arrayed nanocavity-shaped architecture consisting of the key GdFe film and SiO2 dielectric layer is constructed, leading to an efficient infrared (IR) absorption metasurface. By carefully designing and optimizing the film system configuration and the surface layout with needed geometry, a desirable IR radiation absorption according to the spatial magnetic plasmon modes is realized experimentally. The simulations and measurements demonstrate that GdFe-based nanocavity-shaped metasurfaces can be used to achieve an average IR absorption of ~81% in a wide wavelength range of 3–14 μm. A type of the patterned GdFe-based nanocavity-shaped metasurface is further proposed for exciting relatively strong spatial electromagnetic wavefields confined by a patterned nanocavity array based on the joint action of the surface oscillated net charges over the charged metallic films and the surface conductive currents including equivalent eddy currents surrounding the layered GdFe and SiO2 materials. Intensive IR absorption can be attributed to a spatial electromagnetic wavefield excitation and resonant accumulation or memory residence according to the GdFe-based nanocavity-shaped array formed. Our research provides a potential clue for efficiently responding and manipulating and storing incident IR radiation mainly based on the excitation and resonant accumulation of spatial magnetic plasmons. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

17 pages, 3338 KiB  
Article
Monoolein-Based Wireless Capacitive Sensor for Probing Skin Hydration
by Vivek Chaturvedi, Magnus Falk, Sebastian Björklund, Juan F. Gonzalez-Martinez and Sergey Shleev
Sensors 2024, 24(14), 4449; https://doi.org/10.3390/s24144449 - 10 Jul 2024
Cited by 4 | Viewed by 2057
Abstract
Capacitive humidity sensors typically consist of interdigitated electrodes coated with a dielectric layer sensitive to varying relative humidity levels. Previous studies have investigated different polymeric materials that exhibit changes in conductivity in response to water vapor to design capacitive humidity sensors. However, lipid [...] Read more.
Capacitive humidity sensors typically consist of interdigitated electrodes coated with a dielectric layer sensitive to varying relative humidity levels. Previous studies have investigated different polymeric materials that exhibit changes in conductivity in response to water vapor to design capacitive humidity sensors. However, lipid films like monoolein have not yet been integrated with humidity sensors, nor has the potential use of capacitive sensors for skin hydration measurements been fully explored. This study explores the application of monoolein-coated wireless capacitive sensors for assessing relative humidity and skin hydration, utilizing the sensitive dielectric properties of the monoolein–water system. This sensitivity hinges on the water absorption and release from the surrounding environment. Tested across various humidity levels and temperatures, these novel double functional sensors feature interdigitated electrodes covered with monoolein and show promising potential for wireless detection of skin hydration. The water uptake and rheological behavior of monoolein in response to humidity were evaluated using a quartz crystal microbalance with dissipation monitoring. The findings from these experiments suggest that the capacitance of the system is primarily influenced by the amount of water in the monoolein system, with the lyotropic or physical state of monoolein playing a secondary role. A proof-of-principle demonstration compared the sensor’s performance under varying conditions to that of other commercially available skin hydration meters, affirming its effectiveness, reliability, and commercial viability. Full article
(This article belongs to the Special Issue Recent Advances in Low Cost Capacitive Sensors)
Show Figures

Figure 1

Back to TopTop