Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (339)

Search Parameters:
Keywords = surface texture direction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5495 KB  
Article
Mesoporous Silicas of Well-Organized Structure: Synthesis, Characterization, and Investigation of Physical Processes Occurring in Confined Pore Spaces
by Magdalena Blachnio, Malgorzata Zienkiewicz-Strzalka and Anna Derylo-Marczewska
Int. J. Mol. Sci. 2025, 26(18), 9255; https://doi.org/10.3390/ijms26189255 - 22 Sep 2025
Viewed by 209
Abstract
Mesoporous silica materials with well-organized architectures were synthesized using a series of Pluronic PE-type triblock copolymers (PE6800, PE9200, PE9400, PE10500) as structure-directing agents under acidic conditions. The study aimed to elucidate the impact of synthesis parameters—copolymer type, presence of a swelling agent, 1,3,5-trimethylbenzene, [...] Read more.
Mesoporous silica materials with well-organized architectures were synthesized using a series of Pluronic PE-type triblock copolymers (PE6800, PE9200, PE9400, PE10500) as structure-directing agents under acidic conditions. The study aimed to elucidate the impact of synthesis parameters—copolymer type, presence of a swelling agent, 1,3,5-trimethylbenzene, aging temperature, and silica precursor—on the structural, textural, and functional properties of the resulting mesocellular foam materials. Characterization by Nitrogen Adsorption/Desorption, Transmission Electron Microscopy, X-ray Diffraction, and Small-angle X-ray Scattering revealed that structural ordering and pore morphology are significantly influenced by the EO/PO ratio of the copolymers and the use of the expander. Materials synthesized with PE9400 and PE10500 in the presence of a swelling agent exhibited highly uniform bottle-shaped mesopores with increased surface area and pore volume. Thermal behavior studied via Differential Scanning Calorimetry indicated a correlation between pore size and melting point depression of confined water, consistent with the Gibbs–Thomson effect. Adsorption capacity and kinetics for methylene blue varied significantly with pore structure, with materials possessing narrow mesopores showing superior dye uptake, and materials with larger mesopores and open-pore architecture exhibiting faster adsorption rates. This work demonstrates the tunability of mesoporous silica structure through precise control of synthesis conditions and highlights its potential in applications involving adsorption and phase phenomena in confined pore systems. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

24 pages, 19579 KB  
Article
Biomimetic Hexagonal Texture with Dual-Orientation Groove Interconnectivity Enhances Lubrication and Tribological Performance of Gear Tooth Surfaces
by Yan Wang, Shanming Luo, Tongwang Gao, Jingyu Mo, Dongfei Wang and Xuefeng Chang
Lubricants 2025, 13(9), 420; https://doi.org/10.3390/lubricants13090420 - 18 Sep 2025
Viewed by 264
Abstract
Enhanced lubrication is critical for improving gear wear resistance. Current research on surface textures has overlooked the fundamental role of structural connectivity. Inspired by biological scales, a biomimetic hexagonal texture (BHT) was innovatively designed for tooth flanks, featuring dual-orientation grooves (perpendicular and inclined [...] Read more.
Enhanced lubrication is critical for improving gear wear resistance. Current research on surface textures has overlooked the fundamental role of structural connectivity. Inspired by biological scales, a biomimetic hexagonal texture (BHT) was innovatively designed for tooth flanks, featuring dual-orientation grooves (perpendicular and inclined to the rolling-sliding direction) with bidirectional interconnectivity. This design synergistically combines hydrodynamic effects and directional lubrication to achieve tribological breakthroughs. A lubrication model for line contact conditions was established. Subsequently, the texture parameters were then optimized using response surface methodology and numerical simulations. FZG gear tests demonstrated the superior performance of the optimized BHT, which achieved a substantial 82.83% reduction in the average wear area ratio and a 25.35% decrease in tooth profile deviation variation. This indicated that the biomimetic texture can effectively mitigate tooth surface wear, thereby extending the service life of gears. Furthermore, it significantly improves thermal management by enhancing convective heat transfer and lubricant distribution, as evidenced by a 7–11 °C rise in bulk lubricant temperature. This work elucidates the dual-mechanism coupling effect of bio-inspired textures in tribological enhancement, thus establishing a new paradigm for gear surface engineering. Full article
Show Figures

Figure 1

33 pages, 26241 KB  
Article
Evaluation of Hydrocarbon Entrapment Linked to Hydrothermal Fluids and Mapping the Spatial Distribution of Petroleum Systems in the Cretaceous Formation: Implications for the Advanced Exploration and Development of Petroleum Systems in the Kurdistan Region, Iraq
by Zana Muhammad, Namam Salih and Alain Préat
Minerals 2025, 15(9), 908; https://doi.org/10.3390/min15090908 - 27 Aug 2025
Viewed by 591
Abstract
This study utilizes high-resolution X-ray computed tomography (CT) to evaluate the reservoir characterization in heterogenous carbonate rocks. These rocks show a diagenetic alteration that influences the reservoir quality in the Cretaceous Qamchuqa–Bekhme formations in outcrop and subsurface sections (Gali-Bekhal, Bekhme, and Taq Taq [...] Read more.
This study utilizes high-resolution X-ray computed tomography (CT) to evaluate the reservoir characterization in heterogenous carbonate rocks. These rocks show a diagenetic alteration that influences the reservoir quality in the Cretaceous Qamchuqa–Bekhme formations in outcrop and subsurface sections (Gali-Bekhal, Bekhme, and Taq Taq oilfields, NE Iraq). The scanning of fifty-one directional line analyses was conducted on three facies: marine, early diagenetic (non-hydrothermal), and late diagenetic (hydrothermal dolomitization, or HTD). The facies were analyzed from thousands of micro-spot analyses (up to 5250) and computed tomographic numbers (CTNs) across vertical, horizontal, and inclined directions. The surface (outcrop) marine facies exhibited CTNs ranging from 2578 to 2982 Hounsfield Units (HUs) (Av. 2740 HU), with very low average porosity (1.20%) and permeability (0.14 mD) values, while subsurface marine facies showed lower CTNs (1446–2556 HU, Av. 2360 HU) and higher porosity (Av. 8.40%) and permeability (Av. 1.02 mD) compared to the surface samples. Subsurface marine facies revealed higher porosity, lower density, and considerably enhanced conditions for hydrocarbon storage. The CT measurements and petrophysical properties in early diagenesis highlight a considerable porous system in the surface compared to the one in subsurface settings, significantly controlling the quality of the reservoir storage. The late diagenetic scanning values coincide with a saddle dolomite formation formed under high temperature conditions and intensive rock–fluid interactions. These dolomites are related to a hot fluid and are associated with intensive fracturing, vuggy porosities, and zebra-like textures. These textures are more pronounced in the surface than the subsurface settings. A surface evaluation showed a wide CTN range, accompanied by an average porosity of up to 15.47% and permeability of 301.27 mD, while subsurface facies exhibited a significant depletion in the CTN (<500 HU), with an average porosity of about 14.05% and permeability of 91.56 mD. The petrophysical characteristics of the reservoir associated with late-HT dolomitization (subsurface setting) show two populations. The first one exhibited CTN values between 1931 and 2586 HU (Av. 2341 HU), with porosity ranging from 3.10 to 18.43% (Av. 8.84%) and permeability from 0.08 to 2.39 mD (Av. 0.31 mD). The second one recorded a considerable range of CTNs from 457 to 2446 HU (Av. 1823 HU), with porosity from 6.38 to 52.92% (Av. 20.97%) and permeability from 0.16 to 5462.62 mD (Av. 223.11 mD). High temperatures significantly altered the carbonate rock’s properties, with partial/complete occlusion of the porous vuggy and fractured networks, enhancing or reducing the reservoir quality and its storage. In summary, the variations in the CTN across both surface and subsurface facies provide new insight into reservoir heterogeneity and characterization, which is a fundamental factor for understanding the potential of hydrocarbon storage within various geological settings. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

17 pages, 13580 KB  
Article
Investigation of the Lubrication Performance of Petal-Shaped Micro-Pit Texture on the Surface of Stator Rubber in Screw Pumps
by Xiaoming Wu, Xinfu Liu, Guoqing Han, Xiangzhi Shi, Jiuquan An, Xiaoli Yin and Li Geng
Lubricants 2025, 13(9), 379; https://doi.org/10.3390/lubricants13090379 - 26 Aug 2025
Viewed by 613
Abstract
This study proposed a surface modification method, based on petal-shaped micro-pit texture, allowing to solve the problem of significant wear of the stator caused by the oil film rupture in the metal-rubber friction pair of the screw pump under complex conditions in the [...] Read more.
This study proposed a surface modification method, based on petal-shaped micro-pit texture, allowing to solve the problem of significant wear of the stator caused by the oil film rupture in the metal-rubber friction pair of the screw pump under complex conditions in the later stages of oilfield extraction. A geometric model of the petal-shaped micro-pit texture on the stator rubber surface and a mathematical model of the hydrodynamic lubrication flow field based on the Reynolds equation were developed. Computational Fluid Dynamics (CFD) simulations and friction tests were conducted to systematically study the influence of the medium flow direction, texture area ratio, and texture size on the lubrication performance. The obtained results showed that compared with the flow in the x-direction, the load-carrying capacity of the oil film was increased by more than 0.93% when the medium flowed in y-direction, and it reached its optimal value at an area of 10%. When the area ratio reached 60%, the interference effect of the flow field reduced the pressure by 6.98%. The increase of the size of the petals allowed to expand the positive pressure zone and increase the net load-carrying capacity. Furthermore, friction tests demonstrated that the friction coefficient was decreased with the increase of the texture size and increased with the increase of the texture area ratio. The petal-shaped micro-pit texture with size of 350 μm and an area ratio of 10% demonstrated the lowest friction coefficient and highest wear resistance. Full article
Show Figures

Figure 1

18 pages, 3916 KB  
Article
Bond Behavior Between Fabric-Reinforced Cementitious Matrix (FRCM) Composites and Different Substrates: An Experimental Investigation
by Pengfei Ma, Shangke Yuan and Shuming Jia
J. Compos. Sci. 2025, 9(8), 407; https://doi.org/10.3390/jcs9080407 - 1 Aug 2025
Viewed by 605
Abstract
This study investigates the bond behavior of fabric-reinforced cementitious matrix (FRCM) composites with three common masonry substrates—solid clay bricks (SBs), perforated bricks (PBs), and concrete hollow blocks (HBs)—using knitted polyester grille (KPG) fabric. Through uniaxial tensile tests of the KPG fabric and FRCM [...] Read more.
This study investigates the bond behavior of fabric-reinforced cementitious matrix (FRCM) composites with three common masonry substrates—solid clay bricks (SBs), perforated bricks (PBs), and concrete hollow blocks (HBs)—using knitted polyester grille (KPG) fabric. Through uniaxial tensile tests of the KPG fabric and FRCM system, along with single-lap and double-lap shear tests, the interfacial debonding modes, load-slip responses, and composite utilization ratio were evaluated. Key findings reveal that (i) SB and HB substrates predominantly exhibited fabric slippage (FS) or matrix–fabric (MF) debonding, while PB substrates consistently failed at the matrix–substrate (MS) interface, due to their smooth surface texture. (ii) Prism specimens with mortar joints showed enhanced interfacial friction, leading to higher load fluctuations compared to brick units. PB substrates demonstrated the lowest peak stress (69.64–74.33 MPa), while SB and HB achieved comparable peak stresses (133.91–155.95 MPa). (iii) The FRCM system only achieved a utilization rate of 12–30% in fabric and reinforcement systems. The debonding failure at the matrix–substrate interface is one of the reasons that cannot be ignored, and exploring methods to improve the bonding performance between the matrix–substrate interface is the next research direction. HB bricks have excellent bonding properties, and it is recommended to prioritize their use in retrofit applications, followed by SB bricks. These findings provide insights into optimizing the application of FRCM reinforcement systems in masonry structures. Full article
Show Figures

Figure 1

17 pages, 6842 KB  
Article
Inside the Framework: Structural Exploration of Mesoporous Silicas MCM-41, SBA-15, and SBA-16
by Agnieszka Karczmarska, Wiktoria Laskowska, Danuta Stróż and Katarzyna Pawlik
Materials 2025, 18(15), 3597; https://doi.org/10.3390/ma18153597 - 31 Jul 2025
Cited by 1 | Viewed by 636
Abstract
In the rapidly evolving fields of materials science, catalysis, electronics, drug delivery, and environmental remediation, the development of effective substrates for molecular deposition has become increasingly crucial. Ordered mesoporous silica materials have garnered significant attention due to their unique structural properties and exceptional [...] Read more.
In the rapidly evolving fields of materials science, catalysis, electronics, drug delivery, and environmental remediation, the development of effective substrates for molecular deposition has become increasingly crucial. Ordered mesoporous silica materials have garnered significant attention due to their unique structural properties and exceptional potential as substrates for molecular immobilization across these diverse applications. This study compares three mesoporous silica powders: MCM-41, SBA-15, and SBA-16. A multi-technique characterization approach was employed, utilizing low- and wide-angle X-ray diffraction (XRD), nitrogen physisorption, and transmission electron microscopy (TEM) to elucidate the structure–property relationships of these materials. XRD analysis confirmed the amorphous nature of silica frameworks and revealed distinct pore symmetries: a two-dimensional hexagonal (P6mm) structure for MCM-41 and SBA-15, and three-dimensional cubic (Im3¯m) structure for SBA-16. Nitrogen sorption measurements demonstrated significant variations in textural properties, with MCM-41 exhibiting uniform cylindrical mesopores and the highest surface area, SBA-15 displaying hierarchical meso- and microporosity confirmed by NLDFT analysis, and SBA-16 showing a complex 3D interconnected cage-like structure with broad pore size distribution. TEM imaging provided direct visualization of particle morphology and internal pore architecture, enabling estimation of lattice parameters and identification of structural gradients within individual particles. The integration of these complementary techniques proved essential for comprehensive material characterization, particularly for MCM-41, where its small particle size (45–75 nm) contributed to apparent structural inconsistencies between XRD and sorption data. This integrated analytical approach provides valuable insights into the fundamental structure–property relationships governing ordered mesoporous silica materials and demonstrates the necessity of combined characterization strategies for accurate structural determination. Full article
Show Figures

Graphical abstract

32 pages, 23752 KB  
Article
Investigation of Ground Surface Temperature Increases in Urban Textures with Different Characteristics: The Case of Denizli City
by Gizem Karacan Tekin and Duygu Gökce
Sustainability 2025, 17(15), 6818; https://doi.org/10.3390/su17156818 - 27 Jul 2025
Viewed by 722
Abstract
Today, urban areas have started to grow and expand with the urbanization and industrialization processes brought about by rapid population growth. The increase in urban density brought about by this growth process has led to the destruction of natural areas and created surfaces [...] Read more.
Today, urban areas have started to grow and expand with the urbanization and industrialization processes brought about by rapid population growth. The increase in urban density brought about by this growth process has led to the destruction of natural areas and created surfaces such as concrete, asphalt, etc., that absorb solar energy. The expansion/proliferation of impervious surfaces in the city has changed the urban climate in the direction of temperature increase compared to the surrounding rural areas. When this change is combined with the temperature increases due to global climate change, it creates urban heat islands, especially in high density areas, and directly affects land surface temperatures. In this study, ground surface temperature analysis for the years 2012–2022 was carried out in order to determine the temperature changes in Denizli city. As a result of the analysis, eight urban textures with different characteristics with very high and high temperature increase were determined. Analyses were made in the context of urban heat island criteria in the determined textures, and the effect of the settlement pattern on urban heat island formation was examined by making use of the analysis results and related literature findings. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

18 pages, 11724 KB  
Article
Hydrogen–Rock Interactions in Carbonate and Siliceous Reservoirs: A Petrophysical Perspective
by Rami Doukeh, Iuliana Veronica Ghețiu, Timur Vasile Chiș, Doru Bogdan Stoica, Gheorghe Brănoiu, Ibrahim Naim Ramadan, Ștefan Alexandru Gavrilă, Marius Gabriel Petrescu and Rami Harkouss
Appl. Sci. 2025, 15(14), 7957; https://doi.org/10.3390/app15147957 - 17 Jul 2025
Viewed by 1250
Abstract
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and [...] Read more.
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and quartz-dominant siliceous cores subjected to high-pressure hydrogen (100 bar, 70 °C, 100 days). Distinct from prior research focused on diffraction peak shifts, our analysis prioritizes quantitative changes in mineral concentration (%) as a direct metric of reactivity and structural integrity, offering more robust insights into long-term storage viability. Hydrogen exposure induced significant dolomite dissolution, evidenced by reduced crystalline content (from 12.20% to 10.53%) and accessory phase loss, indicative of partial decarbonation and ankerite-like formation via cation exchange. Conversely, limestone exhibited more pronounced carbonate reduction (vaterite from 6.05% to 4.82% and calcite from 2.35% to 0%), signaling high reactivity, mineral instability, and potential pore clogging from secondary precipitation. In contrast, quartz-rich cores demonstrated exceptional chemical inertness, maintaining consistent mineral concentrations. Furthermore, Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore distribution analyses revealed enhanced porosity and permeability in dolomite (pore volume increased >10×), while calcite showed declining properties and quartz showed negligible changes. SEM-EDS supported these trends, detailing Fe migration and textural evolution in dolomite, microfissuring in calcite, and structural preservation in quartz. This research establishes a unique experimental framework for understanding hydrogen–rock interactions under reservoir-relevant conditions. It provides crucial insights into mineralogical compatibility and structural resilience for UHS, identifying dolomite as a highly promising host and highlighting calcitic rocks’ limitations for long-term hydrogen containment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

22 pages, 11295 KB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 565
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

9 pages, 4257 KB  
Article
Ultrasonic-Assisted Face Turning of C45 Steel: An Experimental Investigation on Surface Integrity
by Thanh-Trung Nguyen
Alloys 2025, 4(3), 13; https://doi.org/10.3390/alloys4030013 - 10 Jul 2025
Viewed by 356
Abstract
This study investigates the effect of ultrasonic vibration applied in the cutting speed direction on surface quality during face turning of C45 steel. The experiments were performed using an ultrasonic generator operating at a frequency of 20 kHz with an amplitude of approximately [...] Read more.
This study investigates the effect of ultrasonic vibration applied in the cutting speed direction on surface quality during face turning of C45 steel. The experiments were performed using an ultrasonic generator operating at a frequency of 20 kHz with an amplitude of approximately 10 µm. The cutting parameters used in the experiments included spindle speeds of 700, 1100, and 1300 rpm, feed rates of 0.1 and 0.15 mm/rev, while the depth of cut was fixed at 0.2 mm. Surface quality was evaluated based on the roughness parameters Ra and Rz, as well as surface topography was observed using a Keyence VHX-7000 digital microscope. The results show that ultrasonic-assisted face turning (UAFT) significantly improves surface finish, particularly in the central region of the workpiece where the cutting speed is lower and built-up edge (BUE) formation is more likely. The lowest Ra value recorded was 0.91 µm, representing a 71% reduction compared to conventional turning (CT). Furthermore, at the highest spindle speed (1300 rpm), the standard deviations of both Ra and Rz were minimal, indicating improved surface consistency due to the suppression of BUE by ultrasonic vibration. Topographical observations further confirmed that UAFT generated regular and periodic surface patterns, in contrast to the irregular textures observed in CT. Full article
Show Figures

Figure 1

14 pages, 2481 KB  
Article
Insights on the Influence of the Drying Method and Surface Wettability on the Final Properties of Silica Aerogels
by Beatriz Merillas, Maria Inês Roque, Cláudio M. R. Almeida, Miguel Ángel Rodríguez-Pérez and Luisa Durães
Gels 2025, 11(7), 511; https://doi.org/10.3390/gels11070511 - 1 Jul 2025
Viewed by 730
Abstract
In the synthesis of aerogels, the influence of the drying process on the nanostructure is an issue of utmost relevance for tailoring the final properties of these materials. Among the complex parameters affecting this process, the hydrophobicity of the aerogel structure plays a [...] Read more.
In the synthesis of aerogels, the influence of the drying process on the nanostructure is an issue of utmost relevance for tailoring the final properties of these materials. Among the complex parameters affecting this process, the hydrophobicity of the aerogel structure plays a key role. Thus, herein, four different silica aerogel formulations based on tetraethyl orthosilicate and trimethoxymethylsilane were employed to produce aerogels with different wettability properties (from hydrophilic samples to highly hydrophobic). The synthesized gels were dried by three methods, namely freeze-drying, high-temperature supercritical drying with ethanol, and low-temperature supercritical drying with carbon dioxide, and the influence of each procedure on bulk density, porosity, pore size, and specific surface area of the resulting aerogels was analyzed in detail. The direct correlation between the surface hydrophobicity/hydrophilicity of the silica gels and the effects of each drying technique was analyzed, providing insights into a proper selection of the drying method depending on both the water affinity of the gel and the desired textural properties and structures. Full article
(This article belongs to the Special Issue Polymer Aerogels and Aerogel Composites)
Show Figures

Figure 1

20 pages, 5107 KB  
Article
Controlled Synthesis of N-Doped Hierarchical Porous Carbon Spheres Through Polydopamine for CO2 Adsorption and High-Performance Supercapacitors
by Xiaoqi Jin, Jinlong Ge, Zhong Wu, Linlin Zhu, Mingwen Xiong, Jiahui Qi and Chengxiu Ruan
Molecules 2025, 30(13), 2747; https://doi.org/10.3390/molecules30132747 - 26 Jun 2025
Cited by 1 | Viewed by 636
Abstract
Hierarchical porous N-doped carbon spheres featuring a combination of micropores, mesopores and macropores as well as tuneable properties were synthesised using dopamine as a carbon precursor and triblock copolymers (F127, P123 and F127/P123 composites) as templates via direct polymerisation-induced self-assembly. The structures and [...] Read more.
Hierarchical porous N-doped carbon spheres featuring a combination of micropores, mesopores and macropores as well as tuneable properties were synthesised using dopamine as a carbon precursor and triblock copolymers (F127, P123 and F127/P123 composites) as templates via direct polymerisation-induced self-assembly. The structures and textures of these materials were characterised using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption isotherm analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The sample synthesised at an F127:P123 molar ratio of 1:3 (NCS-FP3) exhibited the highest surface area (463 m2/g) and pore volume (0.27 cm3/g). The hydrophobic/hydrophilic molar ratios of the templates were adjusted to control the morphology of the corresponding micelles and hence the porous structures and morphologies of the carbon spheres, which exhibited high CO2 capture capacities (2.90–3.46 mmol/g at 273 K and 760 mmHg) because of their developed microporous structures and N doping. Additionally, NCS-FP3 exhibited an outstanding electrochemical performance, achieving a high specific capacitance (328.3 F/g at a current density of 0.5 A/g) and outstanding cycling stability (99.2% capacitance retention after 10,000 cycles). These high CO2 capture and electrochemical performances were ascribed to the beneficial effects of pore structures and surface chemistry features. Full article
Show Figures

Figure 1

21 pages, 6399 KB  
Article
An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy
by Solmaz Fathololoumi, Daniel D. Saurette, Harnoordeep Singh Mann, Naoya Kadota, Hiteshkumar B. Vasava, Mojtaba Naeimi, Prasad Daggupati and Asim Biswas
Land 2025, 14(7), 1344; https://doi.org/10.3390/land14071344 - 24 Jun 2025
Cited by 1 | Viewed by 529
Abstract
Understanding and mapping ephemeral gullies (EGs) are vital for enhancing agricultural productivity and achieving food security. This study proposes an upscaling-based strategy to refine the predictive mapping of EGs, utilizing high-resolution Pléiades Neo (0.6 m) and medium-resolution Sentinel-2 (10 m) satellite imagery, alongside [...] Read more.
Understanding and mapping ephemeral gullies (EGs) are vital for enhancing agricultural productivity and achieving food security. This study proposes an upscaling-based strategy to refine the predictive mapping of EGs, utilizing high-resolution Pléiades Neo (0.6 m) and medium-resolution Sentinel-2 (10 m) satellite imagery, alongside ground-truth EGs mapping in Niagara Region, Canada. The research involved generating spectral feature maps using Blue, Green, Red, and Near-infrared spectral bands, complemented by indices indicative of surface wetness, vegetation, color, and soil texture. Employing the Random Forest (RF) algorithm, this study executed three distinct strategies for EGs identification. The first strategy involved direct calibration using Sentinel-2 spectral features for 10 m resolution mapping. The second strategy utilized high-resolution Pléiades Neo data for model calibration, enabling EGs mapping at resolutions of 0.6, 2, 4, 6, and 8 m. The third, or upscaling strategy, applied the high-resolution calibrated model to medium-resolution Sentinel-2 imagery, producing 10 m resolution EGs maps. The accuracy of these maps was evaluated against actual data and compared across strategies. The findings highlight the Variable Importance Measure (VIM) of different spectral features in EGs identification, with normalized near-infrared (Norm NIR) and normalized red reflectance (Norm Red) exhibiting the highest and lowest VIM, respectively. Vegetation-related indices demonstrated a higher VIM compared to surface wetness indices. The overall classification error of the upscaling strategy at spatial resolutions of 0.6, 2, 4, 6, 8, and 10 m (Upscaled), as well as that of the direct Sentinel-2 model, were 7.9%, 8.2%, 9.1%, 10.3%, 11.2%, 12.5%, and 14.5%, respectively. The errors for EGs maps at various resolutions revealed an increase in identification error with higher spatial resolution. However, the upscaling strategy significantly improved the accuracy of EGs identification in medium spatial resolution scenarios. This study not only advances the methodology for EGs mapping but also contributes to the broader field of precision agriculture and environmental management. By providing a scalable and accessible approach to EGs mapping, this research supports enhanced soil conservation practices and sustainable land management, addressing key challenges in agricultural sustainability and environmental stewardship. Full article
Show Figures

Figure 1

25 pages, 2162 KB  
Article
Adsorption of Butylparaben and Methylene Blue from Aqueous Solution Using Activated Carbon Derived from Oak Bark
by Dorota Paluch, Robert Wolski, Aleksandra Bazan-Wozniak and Robert Pietrzak
Materials 2025, 18(13), 2984; https://doi.org/10.3390/ma18132984 - 24 Jun 2025
Viewed by 489
Abstract
This study presents the production of activated carbon through the direct physical activation of oak bark using carbon (IV) oxide. The activation process was conducted at three distinct temperatures of 700 °C, 800 °C, and 900 °C. The activation time was 60 min. [...] Read more.
This study presents the production of activated carbon through the direct physical activation of oak bark using carbon (IV) oxide. The activation process was conducted at three distinct temperatures of 700 °C, 800 °C, and 900 °C. The activation time was 60 min. A comprehensive series of analytical procedures was performed on the resultant adsorbents. These included elemental analysis, determination of textural parameters, Boehm titration, pH determination of aqueous extracts, pHpzC0, assessment of ash content, and elemental and XPS analysis. Subsequently, adsorption tests for butyl paraben and methylene blue were carried out on the materials obtained. The total surface area of the sorbents ranged from 247 m2/g to 696 m2/g. The acid-based properties of the samples tested were examined, and the results indicated that the sorbents exhibited a distinct alkaline surface character. The sorption capacities of the tested samples for butylparaben ranged between 20 and 154 mg/g, while the capacities for methylene blue varied between 13 and 224 mg/g. The constants of the Langmuir and Freundlich models were determined for each of the impurities, as well as the thermodynamic parameters. The present study investigates the influence of contact time between adsorbent and adsorbate, in addition to the kinetics of the adsorption processes. The activated carbon samples obtained demonstrated satisfactory sorption capacities, with the material obtained at 900 °C exhibiting the best sorption capacities. Full article
Show Figures

Graphical abstract

11 pages, 3551 KB  
Article
The Influence of Surface Texture Orientation on the Current-Carrying Friction Performance of Elastic Pairs
by Zhenghai Yang, Wenbo Li, Xiaowei Wang, Kaifeng Hu, Xiaojun Tian, Mengfeng Zhao and Yongzhen Zhang
Coatings 2025, 15(7), 735; https://doi.org/10.3390/coatings15070735 - 20 Jun 2025
Viewed by 425
Abstract
To improve the performance of elastic current-carrying friction pairs, this study employs a wire–plate friction pair and investigates the effect of surface texture orientation on current-carrying friction performance using a self-made micro-sliding current-carrying friction wear tester. The following conclusions were drawn: The angle [...] Read more.
To improve the performance of elastic current-carrying friction pairs, this study employs a wire–plate friction pair and investigates the effect of surface texture orientation on current-carrying friction performance using a self-made micro-sliding current-carrying friction wear tester. The following conclusions were drawn: The angle between texture orientation and friction direction primarily influences the friction pair’s lifespan. At 0°, the lifespan is the longest, exceeding 500 cycles, followed by 90° with a lifespan of 394 cycles, and the shortest lifespan is observed with multi-directional textures. The primary wear mechanisms during the lifespan are furrowing, adhesive tearing, arc erosion, oxidation, and material transfer. At 0°, the width of mechanical damage is confined to the furrows, and the arc erosion is minimal. At 90°, the mechanical damage width and arc erosion are moderate, while at 45°, 135°, and multi-directional orientations, the mechanical wear width and arc erosion are more severe, with the multi-directional texture having the widest mechanical wear. The texture orientation has a significant impact on the performance and running process of current-carrying friction pairs. An appropriate texture orientation can suppress wear, thereby enhance performance and extending service life. Full article
Show Figures

Figure 1

Back to TopTop