Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (33,144)

Search Parameters:
Keywords = surface potentials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10648 KiB  
Article
Green-Synthesized Silver Nanoparticle-Loaded Antimicrobial Films: Preparation, Characterization, and Food Preservation
by Wenxi Yu, Qin Lei, Jingxian Jiang, Jianwei Yan, Xijian Yi, Juan Cheng, Siyu Ou, Wenjia Yin, Ziyan Li and Yuru Liao
Foods 2025, 14(14), 2509; https://doi.org/10.3390/foods14142509 (registering DOI) - 17 Jul 2025
Abstract
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and [...] Read more.
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and concentration of AgNO3 were considered using a central composite design coupled with response surface methodology to obtain the optimum AgNPs (2 h, 75 °C, 2 mM). Analysis of substance concentration changes confirmed that the higher phenolic and flavonoid content in MRLE acted as reducing agents and stabilizers in AgNP synthesis, participating in the reaction rather than adsorbing to nanoparticles. TEM, XRD, and FTIR images revealed a spherical shape of the prepared AgNPs, with an average diameter of 8.23 ± 4.27 nm. The incorporation of AgNPs@MMT significantly enhanced the mechanical properties of the films, with the elongation at break and shear strength increasing by 65.19% and 52.10%, respectively, for the PAM2 sample. The films exhibited strong antimicrobial activity against both Escherichia coli (18.56 mm) and Staphylococcus aureus (20.73 mm). The films demonstrated effective food preservation capabilities, significantly reducing weight loss and extending the shelf life of packaged grapes and bananas. Molecular dynamics simulations reveal the diffusion behavior of AgNPs in different matrices, while the measured silver migration (0.25 ± 0.03 mg/kg) complied with EFSA regulations (10 mg/kg), confirming its food safety. These results demonstrate the film’s potential as an active packaging material for fruit preservation. Full article
Show Figures

Figure 1

21 pages, 1088 KiB  
Review
Veterinary Clinics as Reservoirs for Pseudomonas aeruginosa: A Neglected Pathway in One Health Surveillance
by George Cosmin Nadăş, Alice Mathilde Manchon, Cosmina Maria Bouari and Nicodim Iosif Fiț
Antibiotics 2025, 14(7), 720; https://doi.org/10.3390/antibiotics14070720 (registering DOI) - 17 Jul 2025
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen with significant clinical relevance in both human and veterinary medicine. Despite its well-documented role in hospital-acquired infections in human healthcare settings, its persistence and transmission within veterinary clinics remain underexplored. This review highlights the overlooked [...] Read more.
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen with significant clinical relevance in both human and veterinary medicine. Despite its well-documented role in hospital-acquired infections in human healthcare settings, its persistence and transmission within veterinary clinics remain underexplored. This review highlights the overlooked status of veterinary facilities as environmental reservoirs and amplification points for multidrug-resistant (MDR) P. aeruginosa, emphasizing their relevance to One Health surveillance. We examine the bacterium’s environmental survival strategies, including biofilm formation, resistance to disinfectants, and tolerance to nutrient-poor conditions that facilitate the long-term colonization of moist surfaces, drains, medical equipment, and plumbing systems. Common transmission vectors are identified, including asymptomatic animal carriers, contaminated instruments, and the hands of veterinary staff. The review synthesizes current data on antimicrobial resistance in environmental isolates, revealing frequent expression of efflux pumps and mobile resistance genes, and documents the potential for zoonotic transmission to staff and pet owners. Key gaps in environmental monitoring, infection control protocols, and genomic surveillance are identified, with a call for standardized approaches tailored to the veterinary context. Control strategies, including mechanical biofilm disruption, disinfectant cycling, effluent monitoring, and staff hygiene training, are evaluated for feasibility and impact. The article concludes with a One Health framework outlining cross-species and environmental transmission pathways. It advocates for harmonized surveillance, infrastructure improvements, and intersectoral collaboration to reduce the risk posed by MDR P. aeruginosa within veterinary clinical environments and beyond. By addressing these blind spots, veterinary facilities can become proactive partners in antimicrobial stewardship and global resistance mitigation. Full article
Show Figures

Figure 1

27 pages, 4282 KiB  
Article
Synthesis and Characterization of Keratin-Based Scaffold for Potential Tissue Engineering Applications
by Murugiah Krishani, Jia Ning Chong, Wan Rong Lim, Norwahyu Jusoh, Nonni Soraya Sambudi and Hazwani Suhaimi
Fibers 2025, 13(7), 97; https://doi.org/10.3390/fib13070097 (registering DOI) - 17 Jul 2025
Abstract
Keratin, a fibrous structural protein, has been employed as a biomaterial for hemostasis and tissue repair due to its structural stability, mechanical strength, biocompatibility, and biodegradability. While extensive research has focused on developing scaffolds using keratin extracted from various sources, no studies to [...] Read more.
Keratin, a fibrous structural protein, has been employed as a biomaterial for hemostasis and tissue repair due to its structural stability, mechanical strength, biocompatibility, and biodegradability. While extensive research has focused on developing scaffolds using keratin extracted from various sources, no studies to date have explored the use of keratin derived from human nail clippings. In this study, keratin was extracted from human nail clippings using the Shindai method and used to fabricate and compare two types of scaffolds for bone tissue engineering via the freeze-drying method. The first scaffold consisted of keratin combined with gelatin (KG), while the second combined keratin, gelatin, and hydroxyapatite (HAp) (KGH), the latter synthesized from blood cockle clam shells using the wet precipitation method. Physicochemical characterization and surface morphology analysis of keratin and both scaffolds showed promising results. Tensile strength testing revealed a significant difference in Young’s modulus. The KG scaffold exhibited higher porosity, water uptake, and water retention capacity compared to the KGH scaffold. In vitro biocompatibility studies revealed that the KGH scaffold supported higher cell proliferation compared to the KG scaffold. This study demonstrates the potential of using human nail-derived keratin in composite scaffold fabrication and serves as a foundation for future research on this novel biomaterial source. Full article
Show Figures

Figure 1

21 pages, 8827 KiB  
Article
Nano-Biochar Enhanced Adsorption of NO3-N and Its Role in Mitigating N2O Emissions: Performance and Mechanisms
by Weimin Xing, Tao Zong, Yidi Sun, Wenhao Fang, Tong Shen and Yuhao Zhou
Agronomy 2025, 15(7), 1723; https://doi.org/10.3390/agronomy15071723 (registering DOI) - 17 Jul 2025
Abstract
Biochar (BC) demonstrates considerable potential for reducing nitrogen emissions. However, it frequently exhibits a limited capacity for the adsorption of NO3-N, thereby reducing its effectiveness in mitigating N2O emissions. Nano-biochar (NBC) is attracting attention due to its higher [...] Read more.
Biochar (BC) demonstrates considerable potential for reducing nitrogen emissions. However, it frequently exhibits a limited capacity for the adsorption of NO3-N, thereby reducing its effectiveness in mitigating N2O emissions. Nano-biochar (NBC) is attracting attention due to its higher surface energy, but there is a lack of information on enhancing NO3-N adsorption and reducing N2O emissions. Accordingly, this study conducted batch adsorption experiments for NO3-N and simulated N2O emissions experiments. The NO3-N adsorption experiments included two treatments: bulk BC and NBC; the N2O emissions experiments involved three treatments: a no-biochar control, BC, and NBC. N2O emissions experiments were incorporated into the soil at mass ratios of 0.3%, 0.6%, 1%, and 3%. The results demonstrate that NBC exhibits nearly twice the NO3-N adsorption capacity compared to bulk biochar (BC), with adsorption behavior best described by a physical adsorption model. The enhanced adsorption performance was primarily attributed to NBC’s significantly increased specific surface area, pore volume, abundance of surface acidic functional groups, and higher aromaticity, which collectively strengthened multiple sorption mechanisms, including physical adsorption, electrostatic interactions, π–π interactions, and apparent ion exchange. In addition, NBC application (0.3–3%) reduced cumulative N2O emissions by 11.60–54.77%, outperforming BC (9.16–32.65%). NBC treatments also increased soil NH4+-N and NO3-N concentrations by 2.4–8.2% and 7.3–59.0%, respectively, indicating improved inorganic N retention. Overall, NBC demonstrated superior efficacy over bulk BC in mitigating N2O emissions and conserving soil nitrogen, highlighting its promise as a sustainable amendment for integrated nutrient management and greenhouse gas reduction in soil. Full article
(This article belongs to the Special Issue Safe and Efficient Utilization of Water and Fertilizer in Crops)
Show Figures

Figure 1

11 pages, 251 KiB  
Review
PET and SPECT Imaging of Macrophages in the Tumor Stroma: An Update
by Shaobo Li, Alex Maes, Tijl Vermassen, Justine Maes, Chabi Sathekge, Sylvie Rottey and Christophe Van de Wiele
J. Clin. Med. 2025, 14(14), 5075; https://doi.org/10.3390/jcm14145075 (registering DOI) - 17 Jul 2025
Abstract
Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor stroma, whose dynamic alterations significantly impact tumor progression and therapeutic responses. Conventional methods for TAM detection, such as biopsy, are invasive and incapable of whole-body dynamic monitoring. In contrast, positron emission tomography (PET) [...] Read more.
Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor stroma, whose dynamic alterations significantly impact tumor progression and therapeutic responses. Conventional methods for TAM detection, such as biopsy, are invasive and incapable of whole-body dynamic monitoring. In contrast, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) offer a non-invasive imaging approach by targeting TAM-specific biomarkers like CD206, TSPO, and CCR2. This review comprehensively summarizes the advancements in TAM-targeted imaging probes, including cell surface markers, metabolic/functional markers, and multifunctional nanoprobe, while assessing their potential in tumor immune surveillance and tumor targeting therapeutic applications. While current probes, including 68Ga-NOTA-anti-CD206 and 64Cu-Macrin, have exhibited high specificity and theragnostic potential in preclinical and early clinical trials, challenges such as target heterogeneity, off-target effects, and clinical translation persist. Moving forward, the advancement of multi-target probes, optimization of pharmacokinetics, and incorporation of multimodal imaging technologies are anticipated to further enhance the impact of TAM-targeted imaging in precision medicine and tumor immunotherapy, fostering the refinement of personalized treatment strategies and improving patient outcomes. Full article
16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 (registering DOI) - 17 Jul 2025
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

22 pages, 5041 KiB  
Article
Molecular Insights into the Temperature-Dependent Binding and Conformational Dynamics of Noraucuparin with Bovine Serum Albumin: A Microsecond-Scale MD Simulation Study
by Erick Bahena-Culhuac and Martiniano Bello
Pharmaceuticals 2025, 18(7), 1048; https://doi.org/10.3390/ph18071048 (registering DOI) - 17 Jul 2025
Abstract
Background/Objectives: Understanding the molecular interactions between small bioactive compounds and serum albumins is essential for drug development and pharmacokinetics. Noraucuparin, a biphenyl-type phytoalexin with promising pharmacological properties, has shown a strong binding affinity to bovine serum albumin (BSA), a model protein for [...] Read more.
Background/Objectives: Understanding the molecular interactions between small bioactive compounds and serum albumins is essential for drug development and pharmacokinetics. Noraucuparin, a biphenyl-type phytoalexin with promising pharmacological properties, has shown a strong binding affinity to bovine serum albumin (BSA), a model protein for drug transport. This study aims to elucidate the structural and energetic characteristics of the noraucuparin–BSA complex under physiological and slightly elevated temperatures. Methods: Microsecond-scale molecular dynamics (MD) simulations and Molecular Mechanics Generalized Born Surface Area (MMGBSA)-binding-free energy calculations were performed to investigate the interaction between noraucuparin and BSA at 298 K and 310 K. Conformational flexibility and per-residue energy decomposition analyses were conducted, along with interaction network mapping to assess ligand-induced rearrangements. Results: Noraucuparin preferentially binds to site II of BSA, near the ibuprofen-binding pocket, with stabilization driven by hydrogen bonding and hydrophobic interactions. Binding at 298 K notably increased the structural mobility of BSA, affecting its global conformational dynamics. Key residues, such as Trp213, Arg217, and Leu237, contributed significantly to complex stability, and the ligand induced localized rearrangements in the protein’s intramolecular interaction network. Conclusions: These findings offer insights into the dynamic behavior of the noraucuparin–BSA complex and enhance the understanding of serum albumin–ligand interactions, with potential implications for drug delivery systems. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

18 pages, 11724 KiB  
Article
Hydrogen–Rock Interactions in Carbonate and Siliceous Reservoirs: A Petrophysical Perspective
by Rami Doukeh, Iuliana Veronica Ghețiu, Timur Vasile Chiș, Doru Bogdan Stoica, Gheorghe Brănoiu, Ibrahim Naim Ramadan, Ștefan Alexandru Gavrilă, Marius Gabriel Petrescu and Rami Harkouss
Appl. Sci. 2025, 15(14), 7957; https://doi.org/10.3390/app15147957 (registering DOI) - 17 Jul 2025
Abstract
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and [...] Read more.
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and quartz-dominant siliceous cores subjected to high-pressure hydrogen (100 bar, 70 °C, 100 days). Distinct from prior research focused on diffraction peak shifts, our analysis prioritizes quantitative changes in mineral concentration (%) as a direct metric of reactivity and structural integrity, offering more robust insights into long-term storage viability. Hydrogen exposure induced significant dolomite dissolution, evidenced by reduced crystalline content (from 12.20% to 10.53%) and accessory phase loss, indicative of partial decarbonation and ankerite-like formation via cation exchange. Conversely, limestone exhibited more pronounced carbonate reduction (vaterite from 6.05% to 4.82% and calcite from 2.35% to 0%), signaling high reactivity, mineral instability, and potential pore clogging from secondary precipitation. In contrast, quartz-rich cores demonstrated exceptional chemical inertness, maintaining consistent mineral concentrations. Furthermore, Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore distribution analyses revealed enhanced porosity and permeability in dolomite (pore volume increased >10×), while calcite showed declining properties and quartz showed negligible changes. SEM-EDS supported these trends, detailing Fe migration and textural evolution in dolomite, microfissuring in calcite, and structural preservation in quartz. This research establishes a unique experimental framework for understanding hydrogen–rock interactions under reservoir-relevant conditions. It provides crucial insights into mineralogical compatibility and structural resilience for UHS, identifying dolomite as a highly promising host and highlighting calcitic rocks’ limitations for long-term hydrogen containment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Scattering of Radiation by a Periodic Structure of Circular and Elliptical Microcavities in a Multimode Optical Waveguide
by Alexandra Yu. Petukhova, Anatolii V. Perminov, Mikhail A. Naparin and Victor V. Krishtop
Photonics 2025, 12(7), 727; https://doi.org/10.3390/photonics12070727 (registering DOI) - 17 Jul 2025
Abstract
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the [...] Read more.
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the intensity distribution of scattered light with a wavelength of 1310 nm along the periodic structure, i.e., along the side surface of the waveguide, as a function of the microcavity dimensions and their spatial arrangement within the waveguide core. The optimal geometrical parameters of the microstructure, ensuring the most uniform light scattering, were identified. The model is valid for multimode optical fibres containing strictly periodic structures of microcavities with spherical or elliptical cross-sections that scatter laser radiation in all directions. One potential application of such fibres is as light sources in medical probes for surgical procedures requiring additional illumination and uniform irradiation of affected tissues. Furthermore, the findings of this study offer significant potential for the development of sensing elements for fibre-optic sensors. The findings of this study will facilitate the design of scattering structures with microcavities that ensure a highly uniform scattering pattern. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

17 pages, 3902 KiB  
Article
Electrical Potential-Induced Lubricity Changes in an Ionic Liquid-Lubricated Friction Pair
by Raimondas Kreivaitis, Audrius Žunda and Albinas Andriušis
Lubricants 2025, 13(7), 311; https://doi.org/10.3390/lubricants13070311 (registering DOI) - 17 Jul 2025
Abstract
The control of lubricity induced by electric potential is appealing for numerous applications. On the other hand, the high polarity of ionic liquids facilitates the adsorption of equally charged molecules onto polar surfaces. This phenomenon and its consequences are well understood at the [...] Read more.
The control of lubricity induced by electric potential is appealing for numerous applications. On the other hand, the high polarity of ionic liquids facilitates the adsorption of equally charged molecules onto polar surfaces. This phenomenon and its consequences are well understood at the nanoscale; however, they have recently garnered significant attention at the macroscale. This study investigates the lubricity of trihexyltetradecylphosphonium dicyanamide, a phosphonium ionic liquid, when used as a neat lubricant in reciprocating sliding under electrically charged conditions. Two different polarities with the same potential were applied to the friction pair of bearing steel against bearing steel while monitoring electrical contact resistance. The lubricity was evaluated through measurements of friction, wear, surface morphology, and composition. It was found that the application of electric potential significantly alters the lubricity of the investigated ionic liquid where a positive potential applied to the ball resulted in the least damaging situation. The recorded electrical contact resistance enabled the monitoring of tribofilm formation during reciprocation. It was found that there was minimal to no separation between interacting surfaces when the ball was changing direction. Full article
Show Figures

Figure 1

23 pages, 3262 KiB  
Article
An Exploratory Study on the Growth Dynamics of Alkalihalophilus marmarensis Using a Model-Based Approach
by Yağmur Atakav, Eldin Kurpejović, Dilek Kazan and Nihat Alpagu Sayar
Appl. Microbiol. 2025, 5(3), 69; https://doi.org/10.3390/applmicrobiol5030069 (registering DOI) - 17 Jul 2025
Abstract
Alkalihalophilus marmarensis is an obligate alkaliphile with exceptional tolerance to high-pH environments, making it a promising candidate for industrial bioprocesses that require contamination-resistant and extremophilic production platforms. However, its practical deployment is hindered by limited biomass formation under extreme conditions, which constrains overall [...] Read more.
Alkalihalophilus marmarensis is an obligate alkaliphile with exceptional tolerance to high-pH environments, making it a promising candidate for industrial bioprocesses that require contamination-resistant and extremophilic production platforms. However, its practical deployment is hindered by limited biomass formation under extreme conditions, which constrains overall productivity. This study presents a model-driven investigation of how pH (8.8 and 10.5), culture duration (24 and 48 h), and nitrogen source composition (peptone and meat extract) affect cell dry mass, lactate, and protease synthesis. Using the response surface methodology and multi-objective optimization, we established predictive models (R2 up to 0.92) and uncovered key trade-offs in biomass and metabolite yields. Our findings reveal that peptone concentration critically shapes the metabolic output, with low levels inhibiting growth and high levels suppressing protease activity. Maximum cell dry mass (4.5 g/L), lactate (19.3 g/L), and protease activity (43.5 U/mL) were achieved under distinct conditions, highlighting the potential for targeted process tuning. While the model validation confirmed predictions for lactate, deviations in cell dry mass and protease outputs underscore the complexity of growth–product interdependencies under nutrient-limited regimes. This work delivers a foundational framework for developing fermentations with A. marmarensis and advancing its application in sustainable, high-pH industrial bioprocesses. The insights gained here can be further leveraged through synthetic biology and bioprocess engineering to fully exploit the metabolic potential of obligate alkaliphiles like A. marmarensis. Full article
Show Figures

Figure 1

22 pages, 6134 KiB  
Article
The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model
by Xiaofei Yang, Zhitao Zhang, Qi Xu, Ning Dong, Xuqian Bai and Yanfu Liu
Plants 2025, 14(14), 2209; https://doi.org/10.3390/plants14142209 (registering DOI) - 17 Jul 2025
Abstract
Transpiration is the dominant process driving water loss in crops, significantly influencing their growth, development, and yield. Efficient monitoring of transpiration rate (Tr) is crucial for evaluating crop physiological status and optimizing water management strategies. The three-temperature (3T) model has potential for rapid [...] Read more.
Transpiration is the dominant process driving water loss in crops, significantly influencing their growth, development, and yield. Efficient monitoring of transpiration rate (Tr) is crucial for evaluating crop physiological status and optimizing water management strategies. The three-temperature (3T) model has potential for rapid estimation of transpiration rates, but its application to low-altitude remote sensing has not yet been further investigated. To evaluate the performance of 3T model based on land surface temperature (LST) and canopy temperature (TC) in estimating transpiration rate, this study utilized an unmanned aerial vehicle (UAV) equipped with a thermal infrared (TIR) camera to capture TIR images of summer maize during the nodulation-irrigation stage under four different moisture treatments, from which LST was extracted. The Gaussian Hidden Markov Random Field (GHMRF) model was applied to segment the TIR images, facilitating the extraction of TC. Finally, an improved 3T model incorporating fractional vegetation coverage (FVC) was proposed. The findings of the study demonstrate that: (1) The GHMRF model offers an effective approach for TIR image segmentation. The mechanism of thermal TIR segmentation implemented by the GHMRF model is explored. The results indicate that when the potential energy function parameter β value is 0.1, the optimal performance is provided. (2) The feasibility of utilizing UAV-based TIR remote sensing in conjunction with the 3T model for estimating Tr has been demonstrated, showing a significant correlation between the measured and the estimated transpiration rate (Tr-3TC), derived from TC data obtained through the segmentation and processing of TIR imagery. The correlation coefficients (r) were 0.946 in 2022 and 0.872 in 2023. (3) The improved 3T model has demonstrated its ability to enhance the estimation accuracy of crop Tr rapidly and effectively, exhibiting a robust correlation with Tr-3TC. The correlation coefficients for the two observed years are 0.991 and 0.989, respectively, while the model maintains low RMSE of 0.756 mmol H2O m−2 s−1 and 0.555 mmol H2O m−2 s−1 for the respective years, indicating strong interannual stability. Full article
Show Figures

Figure 1

17 pages, 4068 KiB  
Article
Mechanical Properties and Tribological Behavior of Al2O3–ZrO2 Ceramic Composites Reinforced with Carbides
by Jana Andrejovská, Dávid Medveď, Marek Vojtko, Richard Sedlák, Piotr Klimczyk and Ján Dusza
Lubricants 2025, 13(7), 310; https://doi.org/10.3390/lubricants13070310 (registering DOI) - 17 Jul 2025
Abstract
To elucidate the key material parameters governing the tribological performance of ceramic composites under dry sliding against steel, this study presents a comprehensive comparative assessment of the microstructural characteristics, mechanical performance, and tribological behavior of two alumina–zirconia (Al2O3–ZrO2 [...] Read more.
To elucidate the key material parameters governing the tribological performance of ceramic composites under dry sliding against steel, this study presents a comprehensive comparative assessment of the microstructural characteristics, mechanical performance, and tribological behavior of two alumina–zirconia (Al2O3–ZrO2) ceramic composites, each reinforced with a 42 vol.% carbide phase: zirconium carbide (ZrC) and tungsten carbide (WC). Specifically, tungsten carbide (WC) was selected for its exceptional bulk mechanical properties, while zirconium carbide (ZrC) was chosen to contrast its potentially different interfacial reactivity against a steel counterface. ZrC and WC were selected as reinforcing phases due to their high hardness and distinct chemical and interfacial properties, which were expected to critically affect the wear and friction behavior of the composites under demanding conditions. Specimens were consolidated via spark plasma sintering (SPS). The investigation encompassed macro- and nanoscale hardness measurements (Vickers hardness HV1, HV10; nanoindentation hardness H), elastic modulus (E), fracture toughness (KIC), coefficient of friction (COF), and specific wear rate (Ws) under unlubricated reciprocating sliding against 100Cr6 steel at normal loads of 10 N and 25 N. The Al2O3–ZrO2–WC composite exhibited an ultrafine-grained microstructure and markedly enhanced mechanical properties (HV10 ≈ 20.9 GPa; H ≈ 33.6 GPa; KIC ≈ 4.7 MPa·m½) relative to the coarse-grained Al2O3–ZrO2–ZrC counterpart (HV10 ≈ 16.6 GPa; H ≈ 27.0 GPa; KIC ≈ 3.2 MPa·m½). Paradoxically, the ZrC-reinforced composite demonstrated superior tribological performance, with a low and load-independent specific wear rate (Ws ≈ 1.2 × 10−9 mm3/Nm) and a stable steady-state COF of approximately 0.46. Conversely, the WC-reinforced system exhibited significantly elevated wear volumes—particularly under the 25 N regime—and a higher, more fluctuating COF. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM–EDX) of the wear tracks revealed the formation of a continuous, iron-enriched tribofilm on the ZrC composite, derived from counterface material transfer, whereas the WC composite surface displayed only sparse tribofilm development. These findings underscore that, in steel-paired tribological applications of Al2O3–ZrO2–based composites, the efficacy of interfacial tribolayer generation can supersede intrinsic bulk mechanical attributes as the dominant factor governing wear resistance. Full article
Show Figures

Figure 1

17 pages, 3305 KiB  
Article
Evolution of Blood Innate Immune Cell Phenotypes Following SARS-CoV-2 Infection in Hospitalized Patients with COVID-19
by Arnaud Dendooven, Stephane Esnault, Marie Jacob, Jacques Trauet, Emeline Delaunay, Thomas Guerrier, Amali E. Samarasinghe, Floriane Mirgot, Fanny Vuotto, Karine Faure, Julien Poissy, Marc Lambert, Myriam Labalette, Guillaume Lefèvre and Julie Demaret
Cells 2025, 14(14), 1093; https://doi.org/10.3390/cells14141093 (registering DOI) - 17 Jul 2025
Abstract
Innate immune cells appear to have an important implication in the resolution and/or the aggravation of the COVID-19 pathogenesis after infection with SARS-CoV-2. To better appreciate the role of these cells during COVID-19, changes in blood eosinophil, the neutrophil and monocyte count, and [...] Read more.
Innate immune cells appear to have an important implication in the resolution and/or the aggravation of the COVID-19 pathogenesis after infection with SARS-CoV-2. To better appreciate the role of these cells during COVID-19, changes in blood eosinophil, the neutrophil and monocyte count, and levels of surface protein markers have been reported. However, analyses at several timepoints of multiple surface markers on granulocytes and monocytes over a period of one month after a SARS-CoV-2 infection are missing. Therefore, in this study, we performed blood eosinophil, neutrophil, and monocyte phenotyping using a list of surface proteins and flow cytometry during a period of 30 days after the hospitalization of patients with severe SARS-CoV-2 infections. Blood cell counts were reported at seven different timepoints over the 30-day period as well as measures of multiple mediators in serum using a targeted multiplex assay approach. Our results indicate a 95% drop in the blood eosinophil count by D1, with eosinophils displaying a phenotype defined as CD69/CD63/CD125high and CCR3/CD44low during the early phases of hospitalization. Conversely, by D7 the neutrophil count increased significantly and displayed an immature, activated, and immunosuppressive phenotype (i.e., 3% of CD10/CD16low and CD10lowCD177high, 6.7% of CD11bhighCD62Llow, and 1.6% of CD16highCD62Llow), corroborated by enhanced serum proteins that are markers of neutrophil activation. Finally, our results suggest a rapid recruitment of non-classical monocytes leaving CD163/CD64high and CD32low monocytes in circulation during the very early phase. In conclusion, our study reveals potential very early roles for eosinophils and monocytes in the pathogenesis of COVID-19 with a likely reprogramming of eosinophils in the bone marrow. The exact roles of the pro-inflammatory neutrophils and the functions of the eosinophils and the monocytes, as well as these innate immune cell types, interplays need to be further investigated. Full article
(This article belongs to the Special Issue Eosinophils and Their Role in Allergy and Related Diseases)
Show Figures

Figure 1

15 pages, 1084 KiB  
Article
Dynamic Changes in Mimic Muscle Tone During Early Orthodontic Treatment: An sEMG Study
by Oskar Komisarek, Roksana Malak and Paweł Burduk
J. Clin. Med. 2025, 14(14), 5048; https://doi.org/10.3390/jcm14145048 (registering DOI) - 16 Jul 2025
Abstract
Background: Surface electromyography (sEMG) enables the non-invasive assessment of muscle activity and is widely used in orthodontics for evaluating masticatory muscles. However, little is known about the dynamic changes in facial expression muscles during orthodontic treatment. This study aimed to investigate alterations in [...] Read more.
Background: Surface electromyography (sEMG) enables the non-invasive assessment of muscle activity and is widely used in orthodontics for evaluating masticatory muscles. However, little is known about the dynamic changes in facial expression muscles during orthodontic treatment. This study aimed to investigate alterations in facial muscle tone during the leveling and alignment phase in adult female patients undergoing fixed appliance therapy. Methods: The study included 30 female patients aged 20–31 years who underwent sEMG assessment at four time points: before treatment initiation (T0), at the start of appliance placement (T1), three months into treatment (T2), and six months into treatment (T3). Muscle activity was recorded during four standardized facial expressions: eye closure, nasal strain, broad smile, and lip protrusion. Electrodes were placed on the orbicularis oris, orbicularis oculi, zygomaticus major, and levator labii superioris alaeque nasi muscles. A total of 1440 measurements were analyzed using Friedman and Conover-Inman tests (α = 0.05). Results: Significant changes in muscle tone were observed during treatment. During lip protrusion, the orbicularis oris and zygomaticus major showed significant increases in peak and minimum activity (p < 0.01). Eye closure was associated with altered orbicularis oris activation bilaterally at T3 (p < 0.01). Nasal strain induced significant changes in zygomaticus and levator labii muscle tone, particularly on the right side (p < 0.05). No significant changes were noted during broad smiling. Conclusions: Orthodontic leveling and alignment influence the activity of selected facial expression muscles, demonstrating a dynamic neuromuscular adaptation during treatment. These findings highlight the importance of considering soft tissue responses in orthodontic biomechanics and suggest potential implications for facial esthetics and muscle function monitoring. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

Back to TopTop