Veterinary Clinics as Reservoirs for Pseudomonas aeruginosa: A Neglected Pathway in One Health Surveillance
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Appraisal
2.5. Data Synthesis
2.6. Sensitivity and Subgroup Analyses
3. Environmental Survival and Adaptation Mechanisms
4. Sources and Transmission in Veterinary Settings
5. Studies and Surveillance Gaps
6. Antimicrobial Resistance in Environmental Isolates
7. Implications for Nosocomial Infections in Pets
8. Infection Control and Sanitation Practices
9. One Health Perspective and Zoonotic Considerations
10. Research Gaps and Future Directions
10.1. Need for Environmental Surveillance Protocols
10.2. Genomic Studies Comparing Environmental and Clinical Isolates
10.3. Standardizing Infection Control in Veterinary Settings
10.4. Limitations and Generalizability
10.5. Priority Research Agenda
- Standardize environmental surveillance protocols—agree on core wet-zone sites, sampling frequency, and analytic thresholds to enable cross-facility benchmarking.
- Apply whole-genome sequencing (WGS)—systematically link environmental and clinical isolates and populate shared veterinary AMR databases.
- Design and validate species-appropriate infection-control SOPs—include audited hand-hygiene and surface-disinfection workflows tailored to different animal wards.
- Evaluate biofilm-targeted disinfection and engineering interventions—test enzymatic detergents, drain sleeves, and oxidizing “shock” flushes in prospective, real-world trials.
- Integrate effluent/wastewater monitoring into One Health surveillance—track the off-site dissemination of high-risk clones and resistance genes.
- Quantify zoonotic spill-over risk—run longitudinal staff-and-owner carriage studies with SNP-level source attribution to inform risk-based personal protective equipment (PPE) and home-care guidance.
11. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, T.; Hébraud, M.; Dapkevicius, M.L.; Maltez, L.; Pereira, J.E.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 12892. [Google Scholar] [CrossRef] [PubMed]
- Elfadadny, A.; Ragab, R.F.; AlHarbi, M.; Badshah, F.; Ibáñez-Arancibia, E.; Farag, A.; Hendawy, A.O.; De los Ríos-Escalante, P.R.; Aboubakr, M.; Zakai, S.A.; et al. Antimicrobial resistance of Pseudomonas aeruginosa: Navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front. Microbiol. 2024, 15, 1374466. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; de Sousa, T.; Silva, C.; Igrejas, G.; Poeta, P. Impact of Antimicrobial Resistance of Pseudomonas aeruginosa in Urine of Small Companion Animals in Global Context: Comprehensive Analysis. Vet. Sci. 2025, 12, 157. [Google Scholar] [CrossRef]
- Secker, B.; Shaw, S.; Hobley, L.; Atterbury, R.J. Genomic and phenotypic characterisation of Pseudomonas aeruginosa isolates from canine otitis externa reveals high-risk sequence types identical to those found in human nosocomial infections. Front. Microbiol. 2025, 16, 1526843. [Google Scholar] [CrossRef]
- Gholipour, S.; Nikaeen, M.; Mehdipour, M.; Mohammadi, F.; Rabbani, D. Occurrence of chlorine-resistant Pseudomonas aeruginosa in hospital water systems: Threat of waterborne infections for patients. Antimicrob. Resist. Infect. Control 2024, 13, 111. [Google Scholar] [CrossRef]
- Verdial, C.; Serrano, I.; Tavares, L.; Gil, S.; Oliveira, M. Mechanisms of antibiotic and biocide resistance that contribute to Pseudomonas aeruginosa persistence in the hospital environment. Biomedicines 2023, 11, 1221. [Google Scholar] [CrossRef]
- López-de-la-Cruz, J.; Pérez-Aranda, M.; Alcudia, A.; Begines, B.; Caraballo, T.; Pajuelo, E.; Ginel, P.J. Dynamics and numerical simulations to predict empirical antibiotic treatment of multi-resistant Pseudomonas aeruginosa infection. Commun. Nonlinear Sci. Numer. Simul. 2020, 91, 105418. [Google Scholar] [CrossRef]
- Dégi, J.; Moțco, O.A.; Dégi, D.M.; Suici, T.; Mareș, M.; Imre, K.; Cristina, R.T. Antibiotic susceptibility profile of Pseudomonas aeruginosa canine isolates from a multicentric study in Romania. Antibiotics 2021, 10, 846. [Google Scholar] [CrossRef]
- Soonthornsit, J.; Pimwaraluck, K.; Kongmuang, N.; Pratya, P.; Phumthanakorn, N. Molecular epidemiology of antimicrobial-resistant Pseudomonas aeruginosa in a veterinary teaching hospital environment. Vet. Res. Commun. 2023, 47, 73–86. [Google Scholar] [CrossRef]
- Schimmunech, M.S.; Lima, E.A.; de Assis Silveira, Â.V.; de Oliveira, A.F.; Moreira, C.N.; de Souza, C.M.; de Paula, E.M.; Stella, A.E. Pseudomonas aeruginosa isolated from the Environment of a Veterinary Academic Hospital in Brazil-resistance profile. Acta Sci. Vet. 2022, 50, 1–7. [Google Scholar] [CrossRef]
- Bernal-Rosas, Y.; Osorio-Muñoz, K.; Torres-García, O. Pseudomonas aeruginosa: An emerging nosocomial trouble in veterinary. Rev. MVZ Córdoba 2015, 20, 4937–4946. [Google Scholar] [CrossRef]
- Hattab, J.; Mosca, F.; Di Francesco, C.E.; Aste, G.; Marruchella, G.; Guardiani, P.; Tiscar, P.G. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Vet. World 2021, 14, 978. [Google Scholar] [CrossRef]
- de Sousa, T.; Machado, S.; Caniça, M.; Ramos, M.J.; Santos, D.; Ribeiro, M.; Hébraud, M.; Igrejas, G.; Alves, O.; Costa, E.; et al. Pseudomonas aeruginosa: One Health approach to deciphering hidden relationships in Northern Portugal. J. Appl. Microbiol. 2025, 136, lxaf037. [Google Scholar] [CrossRef] [PubMed]
- Elfadadny, A.; Uchiyama, J.; Goto, K.; Imanishi, I.; Ragab, R.F.; Nageeb, W.M.; Iyori, K.; Toyoda, Y.; Tsukui, T.; Ide, K.; et al. Antimicrobial resistance and genotyping of Pseudomonas aeruginosa isolated from the ear canals of dogs in Japan. Front. Vet. Sci. 2023, 10, 1074127. [Google Scholar] [CrossRef] [PubMed]
- Pottier, M.; Castagnet, S.; Gravey, F.; Leduc, G.; Sévin, C.; Petry, S.; Giard, J.C.; Le Hello, S.; Léon, A. Antimicrobial resistance and genetic diversity of Pseudomonas aeruginosa strains isolated from equine and other veterinary samples. Pathogens 2022, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Dalponte, A.; Filor, V.; Lübke-Becker, A.; Fulde, M.; Alter, T.; Müsken, M.; Bäumer, W. Characterization and purification of Pseudomonas aeruginosa phages for the treatment of canine infections. BMC Microbiol. 2025, 25, 289. [Google Scholar] [CrossRef]
- De Plano, L.M.; Caratozzolo, M.; Conoci, S.; Guglielmino, S.P.; Franco, D. Impact of nutrient starvation on biofilm formation in Pseudomonas aeruginosa: An analysis of growth, adhesion, and spatial distribution. Antibiotics 2024, 13, 987. [Google Scholar] [CrossRef]
- van Leuven, N.; Lucassen, R.; Dicks, A.; Braß, P.; Lipski, A.; Bockmühl, D.P. Does Antibiotic Use Contribute to Biofilm Resistance in Sink Drains? A Case Study from Four German Hospital Wards. Antibiotics 2024, 13, 1148. [Google Scholar] [CrossRef]
- Coniglio, M.A.; Fuochi, V.; Furneri, P.M. Inactivation of Pseudomonas aeruginosa Mature Biofilm by Monochloramine. Biointerface Res. Appl. Chem. 2023, 13, 576. [Google Scholar] [CrossRef]
- Ferguson, D.L.; Gloag, E.S.; Parsek, M.R.; Wozniak, D.J. Extracellular DNA enhances biofilm integrity and mechanical properties of mucoid Pseudomonas aeruginosa. J. Bacteriol. 2023, 205, e00238-23. [Google Scholar] [CrossRef]
- Lewenza, S.; Abboud, J.; Poon, K.; Kobryn, M.; Humplik, I.; Bell, J.R.; Mardan, L.; Reckseidler-Zenteno, S. Pseudomonas aeruginosa displays a dormancy phenotype during long-term survival in water. PLoS ONE 2018, 13, e0198384. [Google Scholar] [CrossRef]
- Spagnolo, A.M.; Sartini, M.; Cristina, M.L. Pseudomonas aeruginosa in the healthcare facility setting. Rev. Res. Med. Microbiol. 2021, 32, 169–175. [Google Scholar] [CrossRef]
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.A.; Hamouda, A.; Amyes, S.G. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2013, 71, 292–301. [Google Scholar]
- Fisher, K.; Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009, 155, 1749–1757. [Google Scholar] [CrossRef]
- Manges, A.R.; Johnson, J.R.; Foxman, B.; O’Bryan, T.; Fullerton, S.; Riley, L.W. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 2019, 32, e00323-18. [Google Scholar] [CrossRef]
- Mazzolini, R.; Rodríguez-Arce, I.; Fernández-Barat, L.; Piñero-Lambea, C.; Garrido, V.; Rebollada-Merino, A.; Motos, A.; Torres, A.; Grilló, M.J.; Serrano, L.; et al. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat. Biotechnol. 2023, 41, 1089–1098. [Google Scholar] [CrossRef]
- Jia, Y.G.; Li, T.R.; Lau, R.W.T.; Lian, S.B.; Zhou, J.Y.; Liu, J.L.; Pan, X.Z. Can humidifier reservoir bacteria colonize the circuit during mechanical ventilation: An in vitro study. Nurs. Crit. Care 2024, 29, 1496–1501. [Google Scholar] [CrossRef]
- Chao, K.Y.; Liu, W.L.; Chen, C.Y.; Su, C.H.; Yang, S.H.; Huang, Y.T. Bacterial Colonization of Silver-Additive Ventilator Circuit in Patients Receiving Mechanical Ventilation: A Randomized Controlled Trial. Clin. Respir. J. 2025, 19, e70058. [Google Scholar] [CrossRef]
- Li, Y.C.; Lin, H.L.; Liao, F.C.; Wang, S.S.; Chang, H.C.; Hsu, H.F.; Chen, S.H.; Wan, G.H. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems. PLoS ONE 2018, 13, e0194246. [Google Scholar] [CrossRef]
- Nadăș, G.C.; Novac, C.Ș.; Matei, I.A.; Bouari, C.M.; Gal, Z.M.; Tamas-Krumpe, O.M.; Macri, A.M.; Fiț, N.I. Prevalence of antimicrobial-resistant bacteria from conjunctival flora in an eye infection-prone breed (Saint Bernard). Molecules 2021, 26, 2219. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Vet. World 2021, 14, 2155. [Google Scholar] [CrossRef]
- Crăciun, S.; Novac, C.Ș.; Fiț, N.I.; Bouari, C.M.; Bel, L.V.; Nadăș, G.C. Bacterial Diversity in Pet Rabbits: Implications for Public Health, Zoonotic Risks, and Antimicrobial Resistance. Microorganisms 2025, 13, 653. [Google Scholar] [CrossRef]
- Bayani, M.; Raisolvaezin, K.; Almasi-Hashiani, A.; Mirhoseini, S.H. Bacterial biofilm prevalence in dental unit waterlines: A systematic review and meta-analysis. BMC Oral Health 2023, 23, 158. [Google Scholar] [CrossRef] [PubMed]
- Mount, R.; Schick, A.E.; Lewis, T.P., II; Newton, H.M. Evaluation of bacterial contamination of clipper blades in small animal private practice. J. Am. Anim. Hosp. Assoc. 2016, 52, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Vinall, G.; Cogan, T.; Jeffery, A.; Tivers, M. Staphylococcal bacterial contamination of portable electronic devices in a large veterinary hospital. J. Small Anim. Pract. 2021, 62, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Traverse, M.; Aceto, H. Environmental cleaning and disinfection. Vet. Clin. Small Anim. Pract. 2015, 45, 299–330. [Google Scholar] [CrossRef]
- Lalancette, C.; Charron, D.; Laferrière, C.; Dolcé, P.; Déziel, E.; Prévost, M.; Bédard, E. Hospital drains as reservoirs of Pseudomonas aeruginosa: Multiple-locus variable-number of tandem repeats analysis genotypes recovered from faucets, sink surfaces and patients. Pathogens 2017, 6, 36. [Google Scholar] [CrossRef]
- Kokkinos, P.; Morgan, L.; Hughes, K.; Pollard, D.; Gasson, J.; Bowlt-Blacklock, K. Scrubs contamination, domestic laundry effect and workwear habits of clinical staff at a referral hospital. J. Small Anim. Pract. 2020, 61, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Stull, J.W.; Bjorvik, E.; Bub, J.; Dvorak, G.; Petersen, C.; Troyer, H.L. 2018 AAHA infection control, prevention, and biosecurity guidelines. J. Am. Anim. Hosp. Assoc. 2018, 54, 297–326. [Google Scholar] [CrossRef] [PubMed]
- Klarczyk, B.R.; Ruffert, L.; Ulatowski, A.; Mogrovejo, D.C.; Steinmann, E.; Steinmann, J.; Brill, F.H. Evaluation of temperature, drying time and other determinants for the recovery of Gram-negative bacterial pathogens in disinfectant efficacy testing. J. Hosp. Infect. 2023, 141, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Kirby, A.L.; Rosenkrantz, W.S.; Ghubash, R.M.; Neradilek, B.; Polissar, N.L. Evaluation of otoscope cone disinfection techniques and contamination level in small animal private practice. Vet. Dermatol. 2010, 21, 175–183. [Google Scholar] [CrossRef]
- Cristina, M.L.; Sartini, M.; Schinca, E.; Ottria, G.; Casini, B.; Spagnolo, A.M. Evaluation of multidrug-resistant P. aeruginosa in healthcare facility water systems. Antibiotics 2021, 10, 1500. [Google Scholar] [CrossRef]
- Burgess, B.A. Does environmental microbiological surveillance support infection control in veterinary hospitals? A PRO/CON debate. JAC-Antimicrob. Resist. 2024, 6, dlae115. [Google Scholar] [CrossRef]
- Goeman, V.R.; Tinkler, S.H.; Hammac, G.K.; Ruple, A. Evaluation of environmental sampling methods for detection of Salmonella enterica in a large animal veterinary hospital. Can. Vet. J. 2018, 59, 408–412. [Google Scholar]
- Deschaght, P.; Schelstraete, P.; Lopes dos Santos Santiago, G.; Van Simaey, L.; Haerynck, F.; Van Daele, S.; De Wachter, E.; Malfroot, A.; Lebecque, P.; Knoop, C.; et al. Comparison of culture and qPCR for the detection of Pseudomonas aeruginosa in not chronically infected cystic fibrosis patients. BMC Microbiol. 2010, 10, 1. [Google Scholar] [CrossRef]
- Koritnik, T.; Cvetkovikj, I.; Zendri, F.; Blum, S.E.; Chaintoutis, S.C.; Kopp, P.A.; Hare, C.; Štritof, Z.; Kittl, S.; Gonçalves, J.; et al. Towards harmonized laboratory methodologies in veterinary clinical bacteriology: Outcomes of a European survey. Front. Microbiol. 2024, 15, 1443755. [Google Scholar] [CrossRef]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef]
- Sehulster, L.; Chinn, R.Y.; Arduino, M.J.; Carpenter, J.; Donlan, R.; Ashford, D.; Besser, R.; Fields, B.; McNeil, M.M.; Whitney, C.; et al. Guidelines for environmental infection control in health-care facilities. MMWR Recomm. Rep. 2003, 52, RR-10. [Google Scholar]
- Nutman, A.; Marchaim, D. How to: Molecular investigation of a hospital outbreak. Clin. Microbiol. Infect. 2019, 25, 688–695. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, D.L.; Xiao, L.H.; Mo, L.F.; Wu, Q.F.; Chen, Y.W.; Luo, X.F. Comparison of two electronic hand hygiene monitoring systems in promoting hand hygiene of healthcare workers in the intensive care unit. BMC Infect. Dis. 2021, 21, 1. [Google Scholar] [CrossRef]
- Benedict, K.M.; Morley, P.S.; Van Metre, D.C. Characteristics of biosecurity and infection control programs at veterinary teaching hospitals. J. Am. Vet. Med. Assoc. 2008, 233, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Environmental Cleaning Procedures: Best Practices for Environmental Cleaning in Global Healthcare Facilities; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2024.
- Anderson, M.E. Infection Prevention and Control Best Practices for Small Animal Veterinary Clinics. Canadian Committee on Antibiotic Resistance, 2020. Available online: www.oahn.ca/resources/ipc-best-practices (accessed on 14 July 2025).
- Price, E.R.; McDermott, D.; Sherman, A.; Kelley, L.; Mehr, J.; Greeley, R.; Cole, S.D. Canine Multidrug-Resistant Pseudomonas aeruginosa Cases Linked to Human Artificial Tears–Related Outbreak. Emerg. Infect. Dis. 2024, 30, 2689–2692. [Google Scholar] [CrossRef] [PubMed]
- Amsalu, A.; Sapula, S.A.; De Barros Lopes, M.; Hart, B.J.; Nguyen, A.H.; Drigo, B.; Turnidge, J.; Leong, L.E.; Venter, H. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: A case study in the development of multidrug resistance in environmental hotspots. Microorganisms 2020, 8, 1647. [Google Scholar] [CrossRef]
- Yoon, E.J.; Jeong, S.H. Mobile carbapenemase genes in Pseudomonas aeruginosa. Front. Microbiol. 2021, 12, 614058. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Sellera, F.P.; Moura, Q.; Carvalho, M.P.; Rosato, P.N.; Cerdeira, L.; Lincopan, N. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa. Brazil. Emerg. Infect. Dis. 2018, 24, 1160–1163. [Google Scholar] [CrossRef]
- Fan, Z.; Zhu, H.; Tao, C.; Deng, N.; Huang, X. Quantitative detection of VBNC state Pseudomonas aeruginosa contributing to accurate assessment of microbial inactivation in drinking water disinfection. Water 2024, 16, 236. [Google Scholar] [CrossRef]
- Pirzadian, J.; Souhoka, T.; Herweijer, M.; van Heel, L.; van Wamel, W.J.; Goossens, R.H.; Severin, J.A.; Vos, M.C. Impact of sink design on bacterial transmission from hospital sink drains to the surrounding sink environment tested using a fluorescent marker. J. Hosp. Infect. 2022, 127, 39–43. [Google Scholar] [CrossRef]
- Zagui, G.S.; de Almeida, O.G.; Moreira, N.C.; Silva, N.G.; Meschede, M.S.; Darini, A.L.; Andrade, L.N.; Segura-Muñoz, S.I. Hospital wastewater as source of human pathogenic bacteria: A phenotypic and genomic analysis of international high-risk clone VIM-2-producing Pseudomonas aeruginosa ST235/O11. Environ. Res. 2024, 255, 119166. [Google Scholar] [CrossRef]
- Okafor, J.U.; Nwodo, U.U. Antibiogram profile and detection of resistance genes in Pseudomonas aeruginosa recovered from hospital wastewater effluent. Antibiotics 2023, 12, 1517. [Google Scholar] [CrossRef] [PubMed]
- Baghal Asghari, F.; Dehghani, M.H.; Dehghanzadeh, R.; Farajzadeh, D.; Shanehbandi, D.; Mahvi, A.H.; Yaghmaeian, K.; Rajabi, A. Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater. Sci. Rep. 2021, 11, 24519. [Google Scholar] [CrossRef] [PubMed]
- Buelow, E.; Rico, A.; Gaschet, M.; Lourenço, J.; Kennedy, S.P.; Wiest, L.; Ploy, M.C.; Dagot, C. Hospital discharges in urban sanitation systems: Long-term monitoring of wastewater resistome and microbiota in relationship to their eco-exposome. Water Res. X 2020, 7, 100045. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Hakki, M.; Ozer, E.A.; Laird, A.; Strasfeld, L. The impact of an intervention to reduce dispersal from wastewater drain sites on carbapenem-resistant Pseudomonas aeruginosa colonization and bloodstream infection on a hematopoietic cell transplant and hematologic malignancy unit. Infect. Control Hosp. Epidemiol. 2024, 45, 847–855. [Google Scholar] [CrossRef]
- Catho, G.; Martischang, R.; Boroli, F.; Chraïti, M.N.; Martin, Y.; Koyluk Tomsuk, Z.; Renzi, G.; Schrenzel, J.; Pugin, J.; Nordmann, P.; et al. Outbreak of Pseudomonas aeruginosa producing VIM carbapenemase in an intensive care unit and its termination by implementation of waterless patient care. Crit. Care 2021, 25, 1. [Google Scholar] [CrossRef]
- Menezes, M.P.; Borzi, M.M.; Ruaro, M.A.; Cardozo, M.V.; Rabelo, R.C.; Verbisck, N.V.; Moraes, P.C. Multidrug-resistant bacteria isolated from surgical site of dogs, surgeon’s hands and operating room in a veterinary teaching hospital in Brazil. Top. Comp. Anim. Med. 2022, 49, 100638. [Google Scholar] [CrossRef]
- Barnard, N.; Foster, A. How to treat Pseudomonas otitis in dogs. Vet. Rec. 2018, 182, 109–110. [Google Scholar] [CrossRef]
- Secker, B.; Shaw, S.; Atterbury, R.J. Pseudomonas spp. in canine otitis externa. Microorganisms 2023, 11, 2650. [Google Scholar] [CrossRef]
- Meitner, C.; Feuerstein, R.A.; Steele, A.M. Nursing strategies for the mechanically ventilated patient. Front. Vet. Sci. 2023, 10, 1145758. [Google Scholar] [CrossRef]
- Fox, C.; Daly, M.; Bellis, T. Identification of ventilator-associated pneumonia in dogs and evaluation of empiric antimicrobial therapy: 13 cases (2012–2016). J. Vet. Emerg. Crit. Care 2021, 31, 66–71. [Google Scholar] [CrossRef]
- Swaddiwudhipong, W.; Tangkitchot, T.; Silarug, N. An outbreak of Pseudomonas aeruginosa postoperative endophthalmitis caused by contaminated intraocular irrigating solution. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 288–292. [Google Scholar] [CrossRef]
- Spratt, H.G.; Millis, N.; Levine, D.; Brackett, J.; Millis, D. Bacterial Contamination of Environmental Surfaces of Veterinary Rehabilitation Clinics. Animals 2024, 14, 1896. [Google Scholar] [CrossRef]
- Exner, M.; Bhattacharya, S.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Ling, M.L.; Merkens, W.; et al. Chemical disinfection in healthcare settings: Critical aspects for the development of global strategies. GMS Hyg. Infect. Control 2020, 15, Doc36. [Google Scholar] [PubMed]
- DeQueiroz, G.A.; Day, D.F. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. J. Appl. Microbiol. 2007, 103, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Martín-Espada, M.C.; D’ors, A.; Bartolomé, M.C.; Pereira, M.; Sánchez-Fortún, S. Peracetic acid disinfectant efficacy against Pseudomonas aeruginosa biofilms on polystyrene surfaces and comparison between methods to measure it. LWT-Food Sci. Technol. 2014, 56, 58–61. [Google Scholar] [CrossRef]
- Ayub, A.; Cheong, Y.K.; Castro, J.C.; Cumberlege, O.; Chrysanthou, A. Use of hydrogen peroxide vapour for microbiological disinfection in hospital environments: A review. Bioengineering 2024, 11, 205. [Google Scholar] [CrossRef]
- Maillard, J.Y.; Pascoe, M. Disinfectants and antiseptics: Mechanisms of action and resistance. Nat. Rev. Microbiol. 2024, 22, 4–17. [Google Scholar] [CrossRef]
- Akinbobola, A.B.; Sherry, L.; McKay, W.G.; Ramage, G.; Williams, C. Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection. J. Hosp. Infect. 2017, 97, 162–168. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Simões, M.; Simões, L.C.; Vieira, M.J. A review of current and emergent biofilm control strategies. LWT-Food Sci. Technol. 2010, 43, 573–583. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef]
- Chino, T.; Nukui, Y.; Morishita, Y.; Moriya, K. Morphological bactericidal fast-acting effects of peracetic acid against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing. Antimicrob. Resist. Infect. Control 2017, 6, 122. [Google Scholar] [CrossRef]
- Sharrocks, K.; Prossomariti, D.; Snell, L.B.; Dibbens, M.; Alcolea-Medina, A.; Gargee, L.; Marashi, J.; Edgeworth, J.D.; Otter, J.A.; Goldenberg, S.D. Use of a peracetic acid (PAA) disinfectant to reduce total viable bacteria count in hospital wastewater drains. J. Hosp. Infect. 2024, 151, 79–83. [Google Scholar] [CrossRef]
- Frippiat, T.; Art, T.; Delguste, C. Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives. Nanomaterials 2025, 15, 202. [Google Scholar] [CrossRef]
- Wood, C.L.; Tanner, B.D.; Higgins, L.A.; Dennis, J.S.; Luempert, L.G. Effectiveness of a steam cleaning unit for disinfection in a veterinary hospital. Am. J. Vet. Res. 2014, 75, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Breidablik, H.J.; Johannessen, L.; Andersen, J.R.; Søreide, H.; Kleiven, O.T. Effect of Optimal Alcohol-Based Hand Rub among Nurse Students Compared with Everyday Practice among Random Adults; Can Water-Based Hand Rub Combined with a Hand Dryer Machine Be an Alternative to Remove E. coli Contamination from Hands? Microorganisms 2023, 11, 325. [Google Scholar] [CrossRef] [PubMed]
- Sickbert-Bennett, E.E.; Weber, D.J.; Gergen-Teague, M.F.; Sobsey, M.D.; Samsa, G.P.; Rutala, W.A. Comparative efficacy of hand hygiene agents in the reduction of bacteria and viruses. Am. J. Infect. Control 2005, 33, 67–77. [Google Scholar] [CrossRef]
- Dick, A.; Sterr, C.M.; Dapper, L.; Nonnenmacher-Winter, C.; Günther, F. Tailored positioning and number of hand rub dispensers: The fundamentals for optimized hand hygiene compliance. J. Hosp. Infect. 2023, 141, 71–79. [Google Scholar] [CrossRef]
- Siebers, C.; Mittag, M.; Grabein, B.; Zoller, M.; Frey, L.; Irlbeck, M. Hand hygiene compliance in the intensive care unit: Hand hygiene and glove changes. Am. J. Infect. Control 2023, 51, 1167–1171. [Google Scholar] [CrossRef]
- Singaravelu, A.; Leggett, B.; Leonard, F.C. Improving infection control in a veterinary hospital: A detailed study on patterns of fecal contamination to inform changes in practice. Ir. Vet. J. 2023, 76, 4. [Google Scholar] [CrossRef]
- Sousa, M.; Machado, I.; Simões, L.C.; Simões, M. Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. Env. Sci. Eco. Tech. 2025, 25, 100557. [Google Scholar] [CrossRef]
- Męcik, M.; Stefaniak, K.; Harnisz, M.; Korzeniewska, E. Hospital and municipal wastewater as a source of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in the environment: A review. Environ. Sci. Pollut. Res. 2024, 31, 48813–48838. [Google Scholar] [CrossRef]
- Badis, A.; Heleili, N.; Merradi, M.; Ayachi, A.; Martino, P.A.; Meroni, G.; Soggiu, A. Outbreak of Carbapenem-Resistant High-Risk Clone ST244 of Pseudomonas aeruginosa in Dogs and Cats in Algeria. Antibiotics 2025, 14, 230. [Google Scholar] [CrossRef]
- Stull, J.W.; Stevenson, K.B. Zoonotic disease risks for immunocompromised and other high-risk clients and staff: Promoting safe pet ownership and contact. Vet. Clin. Small Anim. Pract. 2015, 45, 377–392. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar, C.; Herskin, M.; et al. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Antimicrobial-resistant Pseudomonas aeruginosa in dogs and cats. EFSA J. 2022, 20, e07310. [Google Scholar] [CrossRef] [PubMed]
- Bengis, R.G.; Leighton, F.A.; Fischer, J.R.; Artois, M.; Morner, T.; Tate, C.M. The role of wildlife in emerging and re-emerging zoonoses. Rev. Sci. Technol. OIE 2004, 23, 497–512. [Google Scholar]
- Aarestrup, F.M.; Woolhouse, M.E.J. Using sewage for surveillance of antimicrobial resistance. Science 2020, 367, 630–632. [Google Scholar] [CrossRef] [PubMed]
- van Bree, F.P.; Bokken, G.C.; Mineur, R.; Franssen, F.; Opsteegh, M.; van der Giessen, J.W.; Lipman, L.J.; Overgaauw, P.A. Zoonotic bacteria and parasites found in raw meat-based diets for cats and dogs. Vet. Rec. 2018, 182, 50. [Google Scholar] [CrossRef]
- Freeman, L.M.; Chandler, M.L.; Hamper, B.A.; Weeth, L.P. Current knowledge about the risks and benefits of raw meat–based diets for dogs and cats. J. Am. Vet. Med. Assoc. 2013, 243, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Saliba, R.; Ghelfenstein-Ferreira, T.; Lomont, A.; Pilmis, B.; Carbonnelle, E.; Seytre, D.; Nasser-Ayoub, E.; Zahar, J.R.; Karam-Sarkis, D. Risk factors for the environmental spread of different multidrug-resistant organisms: A prospective cohort study. J. Hosp. Infect. 2021, 111, 155–161. [Google Scholar] [CrossRef]
- Blanc, D.S.; Magalhães, B.; Koenig, I.; Senn, L.; Grandbastien, B. Comparison of whole genome (wg-) and core genome (cg-) MLST (BioNumerics™) versus SNP variant calling for epidemiological investigation of Pseudomonas aeruginosa. Front. Microbiol. 2020, 11, 1729. [Google Scholar] [CrossRef]
- Lanza, V.F.; Baquero, F.; Martínez, J.L.; Ramos-Ruíz, R.; González-Zorn, B.; Andremont, A.; Sánchez-Valenzuela, A.; Ehrlich, S.D.; Kennedy, S.; Ruppé, E.; et al. In-depth resistome analysis by targeted metagenomics. Microbiome 2018, 6, 45. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Ma, M.; He, F.; Song, Z.; Zhang, W.; Wu, C. GT-WGS: An efficient and economic tool for large-scale WGS analyses based on the AWS cloud service. BMC Genom. 2018, 19, 89. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar]
Pathogen | Environmental Survival Time | Biofilm Formation | Resistance to Disinfectants | Veterinary Relevance | Zoonotic Potential |
---|---|---|---|---|---|
Pseudomonas aeruginosa | Up to months (moist surfaces) | Strong (dense EPS matrix) | High (especially in biofilms) | Wounds, otitis, and surgical site infections | Moderate to High |
Staphylococcus pseudintermedius | Days to weeks | Moderate | Moderate | Canine pyoderma, abscesses, wounds | Low to Moderate |
Acinetobacter baumannii | Weeks to months (dry/moist) | Strong | High | MDR hospital pathogen in animals | Moderate |
Enterococcus faecalis | Weeks (especially dry surfaces) | Weak to Moderate | Variable | GI tract, wounds, urinary tract | Moderate |
Escherichia coli | Days (especially moist) | Moderate | Moderate | UTIs, GI infections, and common contaminants | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadăş, G.C.; Manchon, A.M.; Bouari, C.M.; Fiț, N.I. Veterinary Clinics as Reservoirs for Pseudomonas aeruginosa: A Neglected Pathway in One Health Surveillance. Antibiotics 2025, 14, 720. https://doi.org/10.3390/antibiotics14070720
Nadăş GC, Manchon AM, Bouari CM, Fiț NI. Veterinary Clinics as Reservoirs for Pseudomonas aeruginosa: A Neglected Pathway in One Health Surveillance. Antibiotics. 2025; 14(7):720. https://doi.org/10.3390/antibiotics14070720
Chicago/Turabian StyleNadăş, George Cosmin, Alice Mathilde Manchon, Cosmina Maria Bouari, and Nicodim Iosif Fiț. 2025. "Veterinary Clinics as Reservoirs for Pseudomonas aeruginosa: A Neglected Pathway in One Health Surveillance" Antibiotics 14, no. 7: 720. https://doi.org/10.3390/antibiotics14070720
APA StyleNadăş, G. C., Manchon, A. M., Bouari, C. M., & Fiț, N. I. (2025). Veterinary Clinics as Reservoirs for Pseudomonas aeruginosa: A Neglected Pathway in One Health Surveillance. Antibiotics, 14(7), 720. https://doi.org/10.3390/antibiotics14070720