Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (350)

Search Parameters:
Keywords = surface cooling intensity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5416 KB  
Article
Dynamic Ocean–Atmosphere Processes of Typhoon Chan-Hom and Their Impact on Intensity, Rainfall and SST Cooling
by Guiting Song, Venkata Subrahmanyam Mantravadi, Chen Wang, Xiaoqing Liao, Yanmei Li and Shahriyor Nurulloyev
Atmosphere 2026, 17(1), 91; https://doi.org/10.3390/atmos17010091 - 16 Jan 2026
Abstract
This study aims to investigate the effects of Chan-Hom (2015) typhoon-induced variations in enthalpy flux (EF) and moisture flux (MF) on intensity variations and rainfall. Chan-Hom (2015) made landfall at Zhoushan, then changed its direction and moved towards Korea. This analysis used ERA5 [...] Read more.
This study aims to investigate the effects of Chan-Hom (2015) typhoon-induced variations in enthalpy flux (EF) and moisture flux (MF) on intensity variations and rainfall. Chan-Hom (2015) made landfall at Zhoushan, then changed its direction and moved towards Korea. This analysis used ERA5 reanalyzed data, encompassing daily surface latent and sensible heat flux, along with wind measurements at a height of 10 m. Furthermore, wind components and specific humidity data from the 1000–200 hPa level in ERA5 were utilized to compute the MF and MF convergence, in accordance with the equations outlined in the methodology. This study examines the correlation among typhoon intensity, precipitation, MF, and EF. The mechanism by which Typhoon Chan-Hom has caused a decline in sea surface temperature (SST) was analyzed. Typhoons need a higher EF that can affect them before landfall to maintain their intensity. The highest LHF was observed (340 W/m2) prior to typhoon landfall, indicating that LHF responds to intensity-induced wind during Chan-Hom. Typhoon-induced rainfall is mainly controlled by the MF convergence, rather than the typhoon intensity. The spatial and temporal distributions of MF and MF convergence (MFC) during typhoon formation to landfall reveal that the symmetric MFC is dominated by typhoon intensity; a symmetrical structure is observed when the intensity is high. MFC includes wind convergence and moisture advection. Wind convergence dominates the MFC during typhoons, but moisture advection forms at the eyewall. MF during the typhoon’s landfall can relate to the amount of rainfall that occurred over the land. However, the rainfall pattern changed after landfall, and the typhoon changed its direction. SST cooling observed in the study area is mainly due to the upwelling process with strong cyclonic winds. Full article
Show Figures

Figure 1

15 pages, 6337 KB  
Article
Physicochemical Properties of Two Poly-L-Lactic Acid Injectable Implants: Potential Impact on Their Biological Properties
by Luiz Avelar, Alessandra Haddad, Sabrina G. Fabi, Michael Somenek, Katie Beleznay, Shino Bay Aguilera, Kathryn Taylor-Barnes, Cheri Mao, Åke Öhrlund, Björn Lundgren, Lian Leng, Edwige Nicodeme, Peter Morgan and Daniel Bråsäter
Cosmetics 2026, 13(1), 18; https://doi.org/10.3390/cosmetics13010018 - 13 Jan 2026
Viewed by 143
Abstract
This study evaluated the thermal properties, crystallinity, particle size, morphology, and in vivo local inflammation and persistence of two poly-L-lactic acid (PLLA) injectable implants, Sculptra® (PLLA-SCA) and GANA V® (PLLA-GA). PLLA-SCA and PLLA-GA underwent differential scanning calorimetry and X-ray powder diffraction [...] Read more.
This study evaluated the thermal properties, crystallinity, particle size, morphology, and in vivo local inflammation and persistence of two poly-L-lactic acid (PLLA) injectable implants, Sculptra® (PLLA-SCA) and GANA V® (PLLA-GA). PLLA-SCA and PLLA-GA underwent differential scanning calorimetry and X-ray powder diffraction to evaluate their thermal properties and degree of crystallinity. X-ray powder diffraction spectra displayed a sharper, more intense peak for PLLA-GA than PLLA-SCA, with smaller peaks on either side of the main peak of PLLA-GA but not PLLA-SCA. Differential scanning calorimetry thermograms indicated three thermal events for both PLLA-SCA and PLLA-GA. For PLLA-SCA, the first two events occurred between 65 °C and 90 °C, and the third event occurred at 165 °C. For PLLA-GA all three events occurred between 156 °C and 169 °C. Heating samples to 120 °C and cooling to room temperature prior to differential scanning calorimetry resulted in no thermal events being observed between 65–90 °C with either product, while three events were observed with PLLA-GA and one event with PLLA-SCA between 156 °C and 169 °C. The median volume distribution diameter was 46.4 µm for PLLA-SCA and 31.7 µm for PLLA-GA. Scanning electron microscopy showed PLLA-GA particles were irregular in shape, had no sharp edges and had a wrinkled and crimped surface, while PLLA-SCA particles displayed plate-like shapes and had smoother surfaces. In vivo inflammatory reactivity scores indicated a slight reaction for PLLA-SCA at all time points (3.7 ± 1.1, 6.1 ± 1.6, 5.7 ± 1.2 and 6.2 ± 1.2 at 2, 12, 26 and 52 weeks, respectively), while for PLLA-GA, a moderate reaction was observed at 12 and 26 weeks (2.9 ± 1.5, 10.1 ± 1.0, 9.4 ± 0.7 and 7.1 ± 1.3 at 2, 12, 26 and 52 weeks, respectively). PLLA-SCA and PLLA-GA had similar persistence scores at 2, 12 and 26 weeks, while at 52 weeks the score was markedly higher for PLLA-SCA versus PLLA-GA (1.9 ± 0.2 versus 0.7 ± 0.2). In conclusion, PLLA-SCA is more amorphous than PLLA-GA. The single melting point of PLLA-SCA contrasts with the broader spectrum of melting points for PLLA-GA suggests a more homogenous formulation of PLLA-SCA. This, and its less crystalline structure, result in the slower degradation rate and more sustained biological response of PLLA-SCA compared with PLLA-GA. The physiochemical properties of PLLAs affect the biological response in clinical practice and should be taken into consideration when selecting a PLLA treatment for aesthetic use. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

21 pages, 4794 KB  
Article
Heat Transfer and Mechanical Performance Analysis and Optimization of Lattice Structure for Electric Vehicle Thermal Management
by Xiaokang Ye, Xiaoxia Sun, Zhixuan Liang, Ran Tian, Mingshan Wei, Panpan Song and Lili Shen
Electronics 2026, 15(2), 347; https://doi.org/10.3390/electronics15020347 - 13 Jan 2026
Viewed by 102
Abstract
With the trend toward integrated development in electric vehicles, thermal management components are becoming more compact and highly integrated. This evolution, however, leads to complex spatial layouts of high- and low-temperature fluid circuits, causing localized heat accumulation and unintended heat transfer between channels, [...] Read more.
With the trend toward integrated development in electric vehicles, thermal management components are becoming more compact and highly integrated. This evolution, however, leads to complex spatial layouts of high- and low-temperature fluid circuits, causing localized heat accumulation and unintended heat transfer between channels, which compromises cooling efficiency. Concurrently, these compact components must possess sufficient mechanical strength to withstand operational loads such as vibration. Therefore, designing structures that simultaneously suppress heat transfer and ensure mechanical intensity presents a critical challenge. This study introduces Triply Periodic Minimal Surface (TPMS) and Body-Centered Cubic (BCC) lattice structures as multifunctional solutions to address the undesired heat transfer and mechanical support requirements. Their thermal and mechanical performances are analyzed, and a feedforward neural network model is developed based on CFD simulations to map key structural parameters to thermal and mechanical outputs. A dual-objective optimization approach is then applied to identify optimal structural parameters that balance thermal and mechanical requirements. Validation via CFD confirms that the neural network-based optimization effectively achieves a trade-off between heat transfer suppression and structural strength, providing a reliable design methodology for integrated thermal management systems. Full article
Show Figures

Figure 1

23 pages, 3422 KB  
Article
Evolution of Urban–Agricultural–Ecological Spatial Structure Driven by Irrigation and Drainage Projects and Water–Heat–Vegetation Response
by Tianqi Su and Yongmei
Agriculture 2026, 16(2), 142; https://doi.org/10.3390/agriculture16020142 - 6 Jan 2026
Viewed by 163
Abstract
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal [...] Read more.
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal remote sensing data from 1985 to 2015, this study takes the Inner Mongolia Hetao Plain as the research area, constructs a “multifunctionality–dynamic evolution” dual-principle classification system for urban–agricultural–ecological space, and adopts the technical process of “separate interpretation of each single land type using the maximum likelihood algorithm followed by merging with conflict pixel resolution” to improve the classification accuracy to 90.82%. Through a land use transfer matrix, a standard deviation ellipse model, surface temperature (LST) inversion, and vegetation fractional coverage (VFC) analysis, this study systematically reveals the spatiotemporal differentiation patterns of spatial structure evolution and surface parameter responses throughout the project’s life cycle. The results show the following: (1) The spatial structure follows the path of “short-term intense disturbance–long-term stable optimization”, with agricultural space stability increasing by 4.8%, the ecological core area retention rate exceeding 90%, and urban space expanding with a shift from external encroachment to internal filling, realizing “stable grain yield with unchanged cultivated land area and improved ecological quality with controlled green space loss”. (2) The overall VFC shows a trend of “central area stable increase (annual growth rate 0.8%), eastern area fluctuating recovery (cyclic amplitude ±12%), and western area local improvement (key patches increased by 18%)”. (3) The LST-VFC relationship presents spatiotemporal misalignment, with a 0.8–1.2 °C anomalous cooling in the central region during the construction period (despite a 15% VFC decrease), driven by irrigation water thermal inertia, and a disrupted linear correlation after completion due to crop phenology changes and plastic film mulching. (4) Irrigation and drainage projects optimize water resource allocation, constructing a hub regulation model integrated with the Water–Energy–Food (WEF) Nexus, providing a replicable paradigm for ecological effect assessment of major water conservancy projects in arid regions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

23 pages, 5119 KB  
Article
Urban Heat Island Network Identification and Mitigation for Sustainable Urban Development Based on Source–Sink Theory and Local Climate Zone
by Shuran Zhang, Yanhong Chen, Yuanbin Cai and Wenbin Pan
Sustainability 2026, 18(1), 260; https://doi.org/10.3390/su18010260 - 26 Dec 2025
Viewed by 300
Abstract
The urban heat island (UHI) effect, intensified by rapid urbanization, necessitates the precise identification and mitigation of thermal sources and sinks. However, existing studies often overlook landscape connectivity and rarely analyze integrated source–sink networks within a unified framework. To address this gap, this [...] Read more.
The urban heat island (UHI) effect, intensified by rapid urbanization, necessitates the precise identification and mitigation of thermal sources and sinks. However, existing studies often overlook landscape connectivity and rarely analyze integrated source–sink networks within a unified framework. To address this gap, this research combines source–sink theory with the local climate zone classification to examine the spatiotemporal patterns of thermal characteristics in Fuzhou, China, from 2016 to 2023. Using morphological spatial pattern analysis, the minimum cumulative resistance model, and a gravity model, we identified key thermal source and sink landscapes, their connecting corridors, and barrier points. Results indicate that among built-type local climate zones, low-rise buildings exhibited the highest land surface temperature, while LCZ E and LCZ F were the warmest among natural types. Core heat sources were primarily LCZ 4, LCZ 7, and LCZ D, accounting for 19.71%, 13.66%, and 21.72% respectively, whereas LCZ A dominated the heat sinks, contributing to over 86%. We identified 75 heat source corridors, mainly composed of LCZ 7 and LCZ 4, along with 40 barrier points, largely located in LCZ G and LCZ D. Additionally, 70 heat sink corridors were identified, with LCZ A constituting 96.39% of them, alongside 84 barrier points. The location of these key structures implies that intervention efforts—such as implementing green roofs on high-intensity source buildings, enhancing the connectivity of cooling corridors, and performing ecological restoration at pinpointed barrier locations—can be deployed with maximum efficiency to foster sustainable urban thermal environments and support climate-resilient city planning. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

21 pages, 22321 KB  
Article
Cooling Effects in Large Urban Mountains: A Case Study of Chengdu Longquan Mountains Urban Forest Park
by Yuhang Ren, Liang Lin, Junjie Pan, Yi Feng, Chao Yu, Tianyi Li, Jialin Liu, Zian Guo and Lin Zhang
Forests 2025, 16(12), 1850; https://doi.org/10.3390/f16121850 - 12 Dec 2025
Viewed by 502
Abstract
Large Urban Mountains (LUM) with their rich vegetation cover offer a key natural solution to mitigate Urban Heat Island (UHI) effects. This study uses Longquan Mountain Forest Park (LMFP) as a case to investigate the spatiotemporal variations in cooling effects and the key [...] Read more.
Large Urban Mountains (LUM) with their rich vegetation cover offer a key natural solution to mitigate Urban Heat Island (UHI) effects. This study uses Longquan Mountain Forest Park (LMFP) as a case to investigate the spatiotemporal variations in cooling effects and the key factors influencing cooling intensity. Using Landsat images from 2001, 2011, and 2023, surface temperatures (LST) were retrieved through radiative transfer methods, and the thermal environment and cooling effects of LMFP were systematically analyzed. The eXtreme Gradient Boosting (XGBoost) model and Shapley Additive exPlanations(SHAP) methods were applied to explore the complex relationships between cooling intensity and its driving factors. Results show that in the years 2001, 2011, and 2023, the heat island area in LMFP has gradually shrunk, while the cooling intensity area has expanded. In the three years, the cooling distance increased from 330 m to 420 m, the cooling area expanded to 124.84 km2, and cooling efficiency increased to 18.31%. Vegetation coverage, leaf area index (LAI), and elevation are core factors influencing cooling, while human activities such as population and road density have a negative impact. This study provides important theoretical insights into the cooling mechanisms of large urban mountain parks. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

22 pages, 6476 KB  
Article
Tropical Cyclone-Induced Temperature Response in China’s Coastal Seas: Characteristics and Comparison with the Open Ocean
by Haixia Chen, Yuhao Liu, Qiyuzi Lu and Shoude Guan
J. Mar. Sci. Eng. 2025, 13(12), 2319; https://doi.org/10.3390/jmse13122319 - 6 Dec 2025
Viewed by 461
Abstract
Tropical cyclones (TCs) induce pronounced sea surface temperature (SST) cooling, which strongly influences their intensity. Accurate prediction of TC intensity is particularly important in coastal regions where landfall occurs. While SST cooling has been extensively studied in the open ocean, its characteristics in [...] Read more.
Tropical cyclones (TCs) induce pronounced sea surface temperature (SST) cooling, which strongly influences their intensity. Accurate prediction of TC intensity is particularly important in coastal regions where landfall occurs. While SST cooling has been extensively studied in the open ocean, its characteristics in coastal seas remain less understood. Using satellite and reanalysis data from 2004 to 2021, this study systematically characterizes SST cooling in China’s coastal seas—the Yellow Sea, East China Sea, Taiwan Strait, and northern South China Sea—and compares the cooling with adjacent offshore regions. Composite analyses of about 6300 TC track points reveal that coastal SST cooling shows significant differences relative to their offshore cooling. Regionally, the Yellow Sea exhibits significantly stronger coastal cooling (−2.5 °C vs. −1.8 °C), whereas the Taiwan Strait shows weaker coastal cooling. Further analyses using a statistical subsampling method reveal that coastal–offshore cooling differences result from the combined effects of TC attributes and pre-TC oceanic conditions, with temperature stratification exerting the dominant control. Furthermore, an increasing trend in coastal cooling is linked to enhanced temperature stratification. These findings highlight the critical role of pre-TC temperature structure in modulating coastal SST responses, with implications for improving intensity forecasts and risk assessments. Full article
Show Figures

Figure 1

25 pages, 5587 KB  
Article
Urban Heat on Hold: A Remote Sensing-Based Assessment of COVID-19 Lockdown Effects on Land Surface Temperature and SUHI in Nowshera, Pakistan
by Waqar Akhtar, Jinming Sha, Xiaomei Li, Muhammad Jamal Nasir, Waqas Ahmed Mahar, Syed Hamid Akbar, Muhammad Ibrahim and Sami Ur Rahman
Land 2025, 14(12), 2372; https://doi.org/10.3390/land14122372 - 4 Dec 2025
Viewed by 826
Abstract
The COVID-19 pandemic presented an unprecedented opportunity to assess the environmental effects of reduced anthropogenic activity on urban climates. This study investigates the impact of COVID-19-induced lockdowns on land surface temperature (LST) and the intensity of the surface urban heat island (SUHI) in [...] Read more.
The COVID-19 pandemic presented an unprecedented opportunity to assess the environmental effects of reduced anthropogenic activity on urban climates. This study investigates the impact of COVID-19-induced lockdowns on land surface temperature (LST) and the intensity of the surface urban heat island (SUHI) in Nowshera District, Khyber Pakhtunkhwa Province, Pakistan, which is experiencing rapid urbanization. Using Landsat 8/9 imagery, we assessed thermal changes across three periods: pre-lockdown (April 2019), during lockdown (April 2020), and post-lockdown (April 2021). Remote sensing indices, including NDVI and NDBI, were applied to evaluate the relationship between land cover and LST. Our results show a significant reduction in average LST during lockdown, from 31.38 °C in 2019 to 25.34 °C in 2020, a 6 °C decrease. Urban–rural LST differences narrowed from 9 °C to 6 °C. A one-way ANOVA confirmed significant differences in LST across the three periods (F (2, 3) = 3691.46, p < 0.001), with Tukey HSD tests indicating that the lockdown period differed significantly from both the pre- and post-lockdown periods (p < 0.001). SUHI intensity fell from 35.10 °C to 28.89 °C during lockdown, then rebounded to 35.37 °C post-lockdown. The indices analysis shows that built-up and rangeland areas consistently recorded the highest LST (e.g., 35.36 °C and 37.09 °C in 2021, respectively), while vegetation and water bodies maintained lower temperatures (34.68 °C and 32.69 °C in 2021). NDVI confirmed the cooling effect of green areas, while high NDBI values correlated with increased LST in urban areas. These findings underscore the impact of human activity on urban heat dynamics and highlight the role of sustainable urban planning and green infrastructure in enhancing climate resilience. By exploring the relationships among land cover, anthropogenic activity, and urban climate resilience, this research offers policymakers and urban planners’ valuable insights for developing adaptive, low-emission cities amid rapid urbanization and climate change. Full article
(This article belongs to the Special Issue Young Researchers in Land–Climate Interactions)
Show Figures

Figure 1

19 pages, 12470 KB  
Article
Thermal and Hydraulic Performance of Single-Stage Swirling Impinging Jet Array for Cooling of the Liner of Industrial Gas Turbine Combustor
by Muhammad Ikhlaq, Farzaneh Hafezi and Mehdi H. Biroun
Fluids 2025, 10(12), 321; https://doi.org/10.3390/fluids10120321 - 3 Dec 2025
Viewed by 282
Abstract
Stringent global regulations increasingly demand significant reductions in emissions from industrial gas turbines, underscoring the need for optimized combustor liner cooling to achieve lower emissions and enhanced thermal efficiency. Uniform liner temperature is crucial, as it minimizes thermal stresses, reduces fuel consumption, and [...] Read more.
Stringent global regulations increasingly demand significant reductions in emissions from industrial gas turbines, underscoring the need for optimized combustor liner cooling to achieve lower emissions and enhanced thermal efficiency. Uniform liner temperature is crucial, as it minimizes thermal stresses, reduces fuel consumption, and improves component reliability. Although impinging jet arrays with flow passages are widely utilized for cooling, cross-flow effects can diminish heat removal efficiency from the target surface. In contrast, the induction of swirl has the potential to improve heat transfer and its distribution uniformity. This study investigates the impact of varying swirl intensities, induced by incorporating a cross-twisted tape into the nozzle, on the flow and heat transfer characteristics of the jet array. Six twisted angles (0°, 15°, 30°, 45°, 60°, and 75°) were evaluated, where the introduction of the twisted tape divided the jet into four streams, leading to complex interactions that alter the cooling performance at the target surface. The results show that moderate swirl angles (15° and 30°) enhance temperature uniformity and provide more consistent heat transfer across the surface compared to higher swirl or no swirl. However, excessive swirl (60° and 75°) can hinder jet penetration and reduce cooling effectiveness in downstream regions. Overall, the introduction of swirl improves temperature uniformity but also increases pressure drop due to heightened turbulence. Full article
(This article belongs to the Special Issue Heat Transfer in the Industry)
Show Figures

Figure 1

19 pages, 9510 KB  
Article
Thermal Management Performance of Phase Change Material Coupled with Heat Pipe for Photovoltaic Modules: Experimental Exploration
by Liang Tang, Rumei Yang, Peixian Zuo, Ziyu Leng, Xuanxun Zhou, Jinwei Li and Xiaoling Cao
Energies 2025, 18(23), 6349; https://doi.org/10.3390/en18236349 - 3 Dec 2025
Viewed by 463
Abstract
Solar photovoltaic (PV) power generation has become an important source of global renewable energy. The photoelectric conversion efficiency of crystalline silicon PV modules decreases as their surface temperature rises, while excessively high operating temperatures can also affect their service life. Therefore, reducing the [...] Read more.
Solar photovoltaic (PV) power generation has become an important source of global renewable energy. The photoelectric conversion efficiency of crystalline silicon PV modules decreases as their surface temperature rises, while excessively high operating temperatures can also affect their service life. Therefore, reducing the temperature of photovoltaic modules is one of the effective methods of enhancing their photoelectric conversion efficiency. Passive thermal management methods, such as the use of phase change materials (PCM) and heat pipes (HP), can be used to control the temperature of PV modules, but they manifest the problems of poor thermal conductivity and low heat transfer efficiency at low heat flux density, respectively. On the other hand, previous experimental studies have mostly focused on small-scale non-standard PV cell modules, without considering encapsulation and installation issues in practical applications. Meanwhile, passive cooling technology exhibits strong regional characteristics, with significant variations in temperature control and energy efficiency improvements under different climatic conditions. To address these issues, this paper proposes a novel PV module temperature control unit that couples PCM and HP. Standard commercial PV cell modules are used as experimental subjects, and tests are conducted in four different regions of China to study the adaptability and effectiveness of the coupled PCM and HP control method. The experimental results show that the power generation pattern of PV modules is consistent with the variation in solar radiation intensity. When the operating temperature of the PV module is below 40 °C, the high thermal conductivity of the heat pipe plays a dominant role in dissipating heat. When the operating temperature of PV rises above 40 °C, the phase change material begins to play a role in heat storage and temperature control. Compared to using PCM alone for temperature control, the coupled method further enhances the cooling effect, preventing a sharp temperature increase after the PCM has completely melted, and increases the power generation of PV by 4–5%. The temperature control effect of the PV module is influenced by local ambient temperature and wind speed. The coupled temperature control method exerts a relatively low improvement effect under high-temperature and low-radiation environmental conditions, but it performs better when used under low-temperature and high-radiation environmental conditions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 1141 KB  
Article
Flow Evolution in Magmatic Conduits: A Constructal Law Analysis of Stochastic Basaltic and Felsic Lava Dynamics
by Antonio F. Miguel, Vinícius R. Pepe and Luiz A. O. Rocha
Fluids 2025, 10(12), 319; https://doi.org/10.3390/fluids10120319 - 2 Dec 2025
Viewed by 276
Abstract
This study probabilistically assesses magma ascent by modeling dike propagation as a fully coupled fluid-flow, thermo-mechanical problem, explicitly accounting for the stochastic heterogeneity of the crustal host rock. We study felsic (rhyolite) lava flow and two distinct basaltic feeding regimes that correspond to [...] Read more.
This study probabilistically assesses magma ascent by modeling dike propagation as a fully coupled fluid-flow, thermo-mechanical problem, explicitly accounting for the stochastic heterogeneity of the crustal host rock. We study felsic (rhyolite) lava flow and two distinct basaltic feeding regimes that correspond to the conditions necessary to produce the contrasting pāhoehoe and ʻaʻā surface morphologies. Basaltic dikes demonstrate high propagation efficiency to the surface (pāhoehoe-feeding regime 99.5%; ʻaʻā-feeding regime 97.5%), whereas rhyolite dikes have an 89% failure rate, attributed to significant friction. Both regimes represent distinct constructal approaches aimed at maximizing flow persistence. The pāhoehoe-feeding regime is a thermally regulated, stable design characterized by low-velocity, cooling-dominated dynamics. Its slow, persistent flow allows for significant conductive heating of the surrounding rock wall, creating an efficient, pre-heated thermal conduit. In contrast, the ʻaʻā-feeding regime is a mechanically dominated design governed by high-velocity, stochastic dynamics. This morphology is driven by forceful flow, and its thermal budget is supplemented by intense viscous dissipation (internal friction). Rhyolite magma flow fails upon losing constructal viability, driven by a coupled mechanical–thermal cascade. The sequence begins when a mechanical barrier halts the magma velocity, which triggers a freezing event and leads to permanent arrest. Full article
Show Figures

Figure 1

24 pages, 5458 KB  
Article
Lessons Learned from Gastroenteritis Outbreaks Associated to Wild Swimming in the German–Dutch Vecht Watershed During Hot Summers: What Measures Can Be Taken?
by Alfons A. C. Uijtewaal, Margarita R. Amador and Thorsten Kuczius
Water 2025, 17(23), 3420; https://doi.org/10.3390/w17233420 - 1 Dec 2025
Viewed by 941
Abstract
Given the increasing frequency of heat waves, it is likely that swimming in surface water not officially designated as swimming water (wild swimming) will become more popular. The goal of this exploratory case study was to determine the extent of wild swimming in [...] Read more.
Given the increasing frequency of heat waves, it is likely that swimming in surface water not officially designated as swimming water (wild swimming) will become more popular. The goal of this exploratory case study was to determine the extent of wild swimming in the Vecht river basin in Germany and the Netherlands and to identify and minimize biological risks. Through several years of field observations, supplemented by data from key informants and online sources, we identified the number of visitors, their level of exposure to water, and the total number of water-contact-associated outbreaks. During the hot summers of 2018 to 2020, between 29,000 and 37,000 people a year sought cooling in the streams, rivers and canals of this watershed, into which 52 sewage treatment plants discharge. As a result, 85% of the wild swimmers in the area swam in surface waters that do not comply with the European Bathing Water Directive. Between 2016 and 2020, at least eight outbreaks of gastroenteritis potentially linked to wild swimming occurred in the region. Most outbreaks have been associated with waters containing the highest concentrations of sewage effluent. A total of 1201 people participated in activities linked to the outbreaks. Of those, at least 107 (11%), primarily children who had engaged in intensive water-based activities, became infected. Potential prevention strategies were assessed. Targeted awareness raising, promoting safe alternatives for water recreation, outbreak surveillance, and adaptation of prevention manuals, are expected to be relatively easy to apply, effective, socially acceptable and not very costly. Full article
(This article belongs to the Special Issue Water Pollutants and Human Health: Challenges and Perspectives)
Show Figures

Figure 1

19 pages, 5156 KB  
Article
Multi-Scale Remote Sensing Evaluation of Land Surface Thermal Contributions Based on Quality–Quantity Dimensions and Land Use–Geomorphology Coupling
by Zhe Li, Jun Yang, He Liu and Xiao Xie
Land 2025, 14(12), 2318; https://doi.org/10.3390/land14122318 - 25 Nov 2025
Viewed by 372
Abstract
With the intensification of global warming, surface thermal environment issues have become increasingly prominent, particularly in the ecologically fragile Yellow River Basin (YRB). However, most studies neglect the synergistic effects of underlying surface composition and geomorphological context, limiting the understanding of regional thermal [...] Read more.
With the intensification of global warming, surface thermal environment issues have become increasingly prominent, particularly in the ecologically fragile Yellow River Basin (YRB). However, most studies neglect the synergistic effects of underlying surface composition and geomorphological context, limiting the understanding of regional thermal contribution patterns. Based on MODIS-derived land surface temperature and Landsat 8-based land use and Fathom DEM-derived geomorphological datasets, this study constructs an integrated assessment framework combining a dual “quality–quantity” perspective with land use–geomorphology coupling, systematically analyzing the comprehensive thermal contributions of different underlying surfaces. Results show that (1) the YRB features diverse underlying surfaces, transitioning from natural (forest, grassland) to human-dominated (cropland, construction land) land uses, and from high-altitude, large undulating mountains to low-altitude, small undulating plains along the source-to-downstream gradient. (2) The average LST is 17.97 °C, displaying a south–north and east–west gradient. Human disturbance intensity drives thermal responses at the land use level, with natural surfaces contributing to cooling regulation, while artificial and desert surfaces generate heat accumulation. Geomorphology jointly shapes the thermal distribution, with high mountains acting as cold sources and plains/hills as heat sources. (3) Dual “quality–quantity” dimensional evaluation reveals that temperature-based assessments alone overestimate localized extremes (e.g., towns, extremely high mountains) and underestimate broad, moderate surfaces (e.g., drylands, large and medium undulating high mountains). This “area-neglect effect” may lead to biased regional thermal assessments and unbalanced resource allocation. (4) Coupled land use–geomorphology analysis uncovers the multi-scale composite mechanisms of thermal formation and mitigates single-factor assessment biases. Geomorphology defines macro-scale energy exchange, while land use regulates local heat responses. The results provide scientific support for large-scale thermal assessment and refined management. Full article
Show Figures

Figure 1

26 pages, 4536 KB  
Article
Resolving Surface Heat Island Effects in Fine-Scale Spatio-Temporal Domains for the Two Warmest Metropolitan Cities of Korea
by Gi-Seong Jeon and Wonkook Kim
Remote Sens. 2025, 17(23), 3815; https://doi.org/10.3390/rs17233815 - 25 Nov 2025
Viewed by 556
Abstract
The urban heat island (UHI) has been a critical social problem as urbanization intensifies worldwide, significantly impacting human life by exacerbating heat-related health issues, increasing energy demand for cooling, and resulting in associated environmental problems. However, the fine-scale diurnal and spatial characteristics of [...] Read more.
The urban heat island (UHI) has been a critical social problem as urbanization intensifies worldwide, significantly impacting human life by exacerbating heat-related health issues, increasing energy demand for cooling, and resulting in associated environmental problems. However, the fine-scale diurnal and spatial characteristics of UHI remain poorly understood due to the limited resolution of traditional satellite datasets. This study aims to quantify the diurnal and spatial dynamics of surface urban heat islands (SUHI) in Busan and Daegu—the two hottest metropolitan cities in Korea—by integrating high-resolution ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) (70 m) and Geostationary Korea Multi-Purpose Satellite-2A (GK-2A) (2 km) land surface temperature (LST) data. Using the combined datasets, season-representative diurnal LST variations were characterized, and locational heat intensification (LHI) was evaluated across land use types and densities at sub-district scales. The results show that the maximum SUHI intensity reached 10 °C in Daegu and 7 °C in Busan during summer, up to 8 °C higher than estimates from coarse-resolution data. Industrial areas recorded the highest LST (47 °C in Daegu and 43 °C in Busan) with rapid morning intensification rates of 2.0 °C/h and 1.9 °C/h, respectively. Dense urban land uses amplified LHI by nearly twofold compared to less dense urban areas. These findings emphasize the critical role of land use density and industrial heat emissions in shaping urban thermal environments, providing key insights for use in urban heat mitigation and climate-adaptive planning. Full article
Show Figures

Figure 1

24 pages, 8438 KB  
Article
Cooling Performance of Night Ventilation and Climate Adaptation of Vernacular Buildings in the Turpan Basin with an Extremely Hot–Arid Climate
by Qingqing Han, Lei Zhang, Wuxing Zheng, Guochen Sang and Yiyun Zhu
Energies 2025, 18(23), 6135; https://doi.org/10.3390/en18236135 - 23 Nov 2025
Viewed by 539
Abstract
This study investigates the cooling potential of night ventilation and the climate adaptability of local vernacular buildings in the Turpan basin, aiming to identify passive energy-saving design strategies. A rural building with an air-drying shelter was selected for summer indoor environment measurements (two [...] Read more.
This study investigates the cooling potential of night ventilation and the climate adaptability of local vernacular buildings in the Turpan basin, aiming to identify passive energy-saving design strategies. A rural building with an air-drying shelter was selected for summer indoor environment measurements (two stages: all-day window closure vs. night ventilation), and a numerical model was established to simulate the impacts of window-to-wall ratio and window shading projection factor on the indoor environment. Results indicate that night ventilation introduces cool outdoor air to replace indoor hot air, cools building components, improves thermal comfort, and reduces cooling energy demand. Without additional cooling technology, increasing the window-to-wall ratio lowers nighttime temperatures but increases Degree Discomfort Hours, while appropriately sized shading devices mitigate daytime overheating from larger windows. Benefiting from the high thermal storage capacity of earth-appressed walls, semi-underground rooms offer better comfort with lower temperatures and higher humidity; for aboveground rooms, orientation is critical due to intense solar radiation. The air-drying shelter reduces solar radiant heat absorption and inhibits convective/radiative heat transfer on the roof’s external surface, significantly lowering its temperature from noon to midnight. This leads to notable reductions in the roof’s internal surface temperature (1.02 °C in the sealed stage, 2.09 °C during night ventilation) and the average indoor temperature (1.70 °C). Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

Back to TopTop