Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = surface and subsurface properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7655 KB  
Article
Enhancing the Machinability of Sapphire via Ion Implantation and Laser-Assisted Diamond Machining
by Jinyang Ke, Honglei Mo, Ke Ling, Jianning Chu, Xiao Chen and Jianfeng Xu
Micromachines 2025, 16(10), 1165; https://doi.org/10.3390/mi16101165 - 14 Oct 2025
Viewed by 264
Abstract
Sapphire crystals, owing to their outstanding mechanical and optical properties, which are widely used in advanced optics, microelectronic devices, and medical instruments. The manufacturing precision of sapphire optical components critically affects the performance of advanced optical systems. However, the extremely high hardness and [...] Read more.
Sapphire crystals, owing to their outstanding mechanical and optical properties, which are widely used in advanced optics, microelectronic devices, and medical instruments. The manufacturing precision of sapphire optical components critically affects the performance of advanced optical systems. However, the extremely high hardness and low fracture toughness of sapphire make it a typical hard-to-machine material, prone to brittle surface fractures and subsurface damage during material removal. Improving the machinability of sapphire remains a pressing challenge in advanced manufacturing. In this study, surface modification and enhanced ductility of C-plane sapphire were achieved via ion implantation, and the machinability of the modified sapphire was further improved through laser-assisted diamond machining (LADM). Monte Carlo simulations were employed to investigate the interaction mechanisms between incident ions and the target material. Based on the simulation results, phosphorus ion implantation experiments were conducted, and transmission electron microscopy observation was used to characterize the microstructural evolution of the modified layer, while the optical properties of the samples before and after modification were analyzed. Finally, groove cutting experiments verified the enhancement in ductile machinability of the modified sapphire under LADM. At a laser power of 16 W, the ductile–brittle transition depth of the modified sapphire increased to 450.67 nm, representing a 51.57% improvement over conventional cutting. The findings of this study provide valuable insights for improving the ductile machining performance of hard and brittle materials. Full article
(This article belongs to the Special Issue Future Trends in Ultra-Precision Machining)
Show Figures

Figure 1

33 pages, 2702 KB  
Article
Seasonal Variability of Soil Physicochemical Properties, Potentially Toxic Elements, and PAHs in Crude Oil-Impacted Environments: Chemometric Analysis and Health Risk Assessment
by Victoria Koshofa Akinkpelumi, Chika Maurine Ossai, Prosper Manu Abdulai, Joaquim Rovira, Chiara Frazzoli and Orish Ebere Orisakwe
Environments 2025, 12(10), 363; https://doi.org/10.3390/environments12100363 - 7 Oct 2025
Viewed by 592
Abstract
Crude oil exploration and transportation have led to significant soil contamination in nearby communities, yet seasonal and depth-related variations remain poorly understood. This study assessed physicochemical properties, potentially toxic elements, and polycyclic aromatic hydrocarbons in surface (0–15 cm) and subsurface (15–30 cm) soils [...] Read more.
Crude oil exploration and transportation have led to significant soil contamination in nearby communities, yet seasonal and depth-related variations remain poorly understood. This study assessed physicochemical properties, potentially toxic elements, and polycyclic aromatic hydrocarbons in surface (0–15 cm) and subsurface (15–30 cm) soils from the Ibaa community and its pipeline Right of Way (ROW) in Rivers State, Nigeria. Samples were collected during wet and dry seasons from five locations, and analyses were conducted using standard methods. Results showed that soil temperature ranged from 27.5 to 31.2 °C, reflecting natural environmental conditions, while nitrate concentrations (1.23–3.45 mg/kg) and moisture content (14.3–23.9%) were within acceptable WHO limits. The pH values (4.61–5.72) suggested acidic conditions, particularly in the unremediated areas. Total Organic Carbon exceeded 3%, with a maximum of 6.23% recorded in the wet season, suggesting persistent hydrocarbon contamination. Phosphorus levels (2.65–6.02 mg/kg) were below the 15 mg/kg threshold. Notably, As (4.93 mg/kg) and Cd (1.67 mg/kg) concentrations exceeded the permissible WHO limits. Positive correlations were observed between As–Cd (r = 0.79), Cd–Cu (r = 0.85), and Pb–Cu (r = 0.64). Principal Component Analysis identified four components for physicochemical parameters (81.9% variance) and two for metals (82.6% variance), suggesting crude oil combustion and vehicular emissions as dominant pollution sources. Pb also correlated significantly with total PAHs in the dry season (r = 0.54, p < 0.05). The study highlights the influence of season and depth on contaminant behavior and emphasizes the urgent need for remediation and monitoring to mitigate ecological and public health risks. Full article
Show Figures

Figure 1

24 pages, 3688 KB  
Article
Iron Curtain Formation in Coastal Aquifers: Insights from Darcy-Scale Experiments and Reactive Transport Modelling
by Wenran Cao, Harald Hofmann and Alexander Scheuermann
J. Mar. Sci. Eng. 2025, 13(10), 1909; https://doi.org/10.3390/jmse13101909 - 4 Oct 2025
Viewed by 241
Abstract
Although many studies have examined reaction zones in groundwater–seawater mixing areas, little attention has been given to how subsurface processes drive changes in iron (Fe) precipitation over time and space. This gap has limited our understanding of the “iron curtain” phenomenon in coastal [...] Read more.
Although many studies have examined reaction zones in groundwater–seawater mixing areas, little attention has been given to how subsurface processes drive changes in iron (Fe) precipitation over time and space. This gap has limited our understanding of the “iron curtain” phenomenon in coastal aquifers. To address this, this study developed a reactive transport model to investigate how porosity evolves during the oxidative precipitation of Fe(II) in porous media. The model incorporates the dynamic effects of tortuosity, diffusivity, and surface area as minerals accumulate. Validation experiments, conducted with syringe tests that simulated Fe precipitation during freshwater–saltwater mixing, showed that precipitates formed mainly near the inlets, reflecting the development of a geochemical barrier at the groundwater–seawater interface. Scanning electron microscopy confirmed that Fe precipitates coated the surfaces of spherical particles. Numerical simulations further revealed that high Fe(II) concentrations drove pore clogging near the inlet, creating a dense precipitation zone akin to the iron curtain in coastal aquifers. At 10 mmol/L Fe(II), local clogging was observed, while at 100 mmol/L Fe(II), outflow rates (i.e., discharge) were substantially reduced. Together, the experiments and simulations highlight how hydrogeochemical processes influence hydraulic properties during the oxidative precipitation of Fe(II) in mixing zones. Full article
(This article belongs to the Special Issue Monitoring Coastal Systems and Improving Climate Change Resilience)
Show Figures

Figure 1

12 pages, 3173 KB  
Article
Effect of Grain Size on Polycrystalline Copper Finish Quality of Ultra-Precision Cutting
by Chuandong Zhang, Xinlei Yue, Kaiyuan You and Wei Wang
Micromachines 2025, 16(10), 1133; https://doi.org/10.3390/mi16101133 - 30 Sep 2025
Viewed by 265
Abstract
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical [...] Read more.
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical modeling to simulate nanoscale cutting processes in polycrystalline copper with controlled grain structures, coupled with experimental ultra-precision machining validation. Comprehensive analysis of stress distribution, subsurface damage formation, and cutting force evolution reveals that refined grain structures promote more homogeneous plastic deformation, resulting in superior surface finish with reduced roughness and diminished grain boundary step formation. However, the enhanced grain boundary density in fine-grained specimens necessitates increased cutting energy input. These findings establish critical process–structure–property relationships essential for advancing precision manufacturing of copper-based optical systems. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

15 pages, 3517 KB  
Article
Evaluation of Oxinium (Oxidized Zr2.5Nb) Femoral Heads in Hip Endoprostheses—Case Report
by Boštjan Kocjančič, Ema Kocjančič, Špela Tadel Kocjančič, Janez Kovač, Monika Jenko and Mojca Debeljak
Coatings 2025, 15(9), 1087; https://doi.org/10.3390/coatings15091087 - 16 Sep 2025
Viewed by 726
Abstract
Total hip arthroplasty (THA) is a widely performed and successful surgical treatment for degenerative joint disease. With increasing use in younger and more active patients, the demand for durable, biocompatible, and low-wear implant materials has grown. Oxidized zirconium (Oxinium, Zr2.5Nb) was introduced as [...] Read more.
Total hip arthroplasty (THA) is a widely performed and successful surgical treatment for degenerative joint disease. With increasing use in younger and more active patients, the demand for durable, biocompatible, and low-wear implant materials has grown. Oxidized zirconium (Oxinium, Zr2.5Nb) was introduced as a promising femoral head material, combining the strength of metal with the low-friction properties of ceramic. Despite encouraging early results, clinical reports have documented complications including head wear, especially after dislocation, and metallosis. We present the case of a 64-year-old male who underwent primary THA in 2009 and required revision in 2021 due to severe metallosis. Notably, no dislocation was observed that could explain the damage to the Oxinium head. Surface and subsurface analyses using X-ray photoelectron spectroscopy (XPS) and micro-indentation hardness testing revealed wear and deformation inconsistent with Oxinium’s anticipated durability. These findings highlight the importance of the femoral head–polyethylene liner interface in implant longevity. Although Oxinium–XLPE articulations remain promising, risks such as damage to the femoral head, liner dislocation, impingement, and metallosis must be carefully considered. Surgical technique, liner placement, and locking mechanisms play critical roles in preventing failure. Further biomechanical and clinical studies are needed to optimize implant design and improve long-term outcomes. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

13 pages, 14630 KB  
Article
Atomic Insight into the Nano-Grinding Mechanism of Reaction-Bonded Silicon Carbide: Effect of Abrasive Size
by Honglei Mo, Xie Chen, Cui Luo and Xiaojiang Cai
Micromachines 2025, 16(9), 1049; https://doi.org/10.3390/mi16091049 - 15 Sep 2025
Viewed by 453
Abstract
Reaction-bonded silicon carbide (RB-SiC) is a high-performance ceramic material known for its excellent mechanical, thermal, and chemical properties. It contains phases with different mechanical properties, which introduce complex machining mechanisms. In the present work, molecular dynamics (MD) simulation was conducted to investigate the [...] Read more.
Reaction-bonded silicon carbide (RB-SiC) is a high-performance ceramic material known for its excellent mechanical, thermal, and chemical properties. It contains phases with different mechanical properties, which introduce complex machining mechanisms. In the present work, molecular dynamics (MD) simulation was conducted to investigate the effect of abrasive size on the nano-grinding mechanism of RB-SiC. The surface morphology and subsurface deformation mechanism were investigated. The simulation results suggest that when a small abrasive is used, the surface swelling of SiC is primarily generated by the bending and tearing of SiC at the interfaces. As the abrasive radius increases, the surface swelling is mainly formed by Si atoms, which is identified as elastic recovery. Meanwhile, the material removal rate gradually decreases, and the depth of plastic deformation is obviously increased. Stocking of Si is more apparent at the interface, and obvious sliding of SiC grains is observed, forming edge cracks at the margin of the workpiece. In the subsurface workpiece, the high-pressure phase transition (HPPT) of Si is promoted, and the squeeze of disordered Si is obvious with more dislocations formed when larger abrasive is used. Full article
(This article belongs to the Special Issue Future Trends in Ultra-Precision Machining)
Show Figures

Figure 1

22 pages, 7111 KB  
Article
Study on the Ground-Penetrating Radar Response Characteristics of Pavement Voids Based on a Three-Phase Concrete Model
by Shuaishuai Wei, Huan Zhang, Jiancun Fu and Wenyang Han
Sensors 2025, 25(18), 5713; https://doi.org/10.3390/s25185713 - 12 Sep 2025
Viewed by 588
Abstract
Concrete pavements frequently develop subsurface voids between surface and base layers during long-term service due to cyclic loading, environmental effects, and subgrade instability, which compromise structural integrity and traffic safety. Ground-penetrating radar (GPR) has been widely used as a non-destructive method for detecting [...] Read more.
Concrete pavements frequently develop subsurface voids between surface and base layers during long-term service due to cyclic loading, environmental effects, and subgrade instability, which compromise structural integrity and traffic safety. Ground-penetrating radar (GPR) has been widely used as a non-destructive method for detecting such voids. However, the presence of coarse aggregates with strong electromagnetic scattering properties often introduces pseudo-reflection signals in radar images, hindering accurate void identification. To address this challenge, this study develops a high-fidelity three-phase concrete model incorporating aggregates, mortar, and the interfacial transition zone (ITZ). The Finite-Difference Time-Domain (FDTD) method is used to simulate electromagnetic wave propagation in both voided and intact structures. Simulation results reveal that aggregate-induced scattering can blur or distort reflection interfaces, generating pseudo-hyperbolic anomalies even in the absence of voids. In cases of thin-layer voids, real echo signals may be masked by aggregate scattering, leading to missed detections. GPR systems can be broadly classified into impulse, continuous-wave, and multi-frequency types. To validate the simulations, field tests using multi-frequency 2D/3D GPR systems and borehole verification were conducted. The results confirm the consistency between simulated and actual radar anomalies and validate the proposed model. This work provides theoretical insight and modeling strategies to enhance the interpretation accuracy of GPR data for subsurface void detection in concrete pavements. Full article
(This article belongs to the Special Issue Electromagnetic Non-Destructive Testing and Evaluation)
Show Figures

Figure 1

12 pages, 3372 KB  
Article
Rotating Bending Fatigue Properties of 30CrNi2Mo Steel After Electropulsing-Assisted Ultrasonic Surface Rolling Process
by Dan Liu, Hongsheng Huang, Yalin Shen, Jie Liu, Changsheng Tan, Haonan Fan and Yinglin Ke
Coatings 2025, 15(9), 1075; https://doi.org/10.3390/coatings15091075 - 12 Sep 2025
Viewed by 390
Abstract
With the rapid development of mechanical components, increasingly stringent demands are placed on steel properties—particularly tensile strength and rotating bending fatigue resistance. This study systematically investigates the effects of the electropulsing-assisted ultrasonic surface rolling process (EUSRP) on the surface microstructure and fatigue performance [...] Read more.
With the rapid development of mechanical components, increasingly stringent demands are placed on steel properties—particularly tensile strength and rotating bending fatigue resistance. This study systematically investigates the effects of the electropulsing-assisted ultrasonic surface rolling process (EUSRP) on the surface microstructure and fatigue performance of 30CrNi2Mo steel. A fine-grained surface layer (depth: 80 μm) was formed. Lath martensite width decreased significantly from 7 μm to 4 μm after EUSRP treatment, which was significantly refined after electropulsing treatment and an ultrasonic surface-rolling process. Under identical stress amplitudes, the rotating bending fatigue life of EUSRP-treated specimens substantially exceeded that of the as-machined state. Fatigue cracks in the as-machined state consistently initiated at the surface, coalesced, and propagated into large cracks, leading to premature fracture. In EUSRP-treated samples, crack initiation shifted to subsurface regions, delaying failure and extending fatigue life. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

19 pages, 4151 KB  
Article
Three-Dimensional Heterogeneity of Salinity Extremes Modulated by Mesoscale Eddies Around the Hawaiian Islands
by Shiyan Li, Zhenhui Yi, Qiwei Sun, Hanshi Wang, Xiang Gao, Wenjing Zhang, Jian Shi, Hailong Guo, Jingxing Chen and Jie Wu
Remote Sens. 2025, 17(18), 3167; https://doi.org/10.3390/rs17183167 - 12 Sep 2025
Viewed by 442
Abstract
Salinity extremes (SEs) play a crucial role in marine ecosystems, ocean circulation, and climate variability. Understanding their distribution and drivers is essential for predicting changes in ocean salinity under climate change, particularly in dynamic regions such as the Hawaiian Islands, where mesoscale eddies [...] Read more.
Salinity extremes (SEs) play a crucial role in marine ecosystems, ocean circulation, and climate variability. Understanding their distribution and drivers is essential for predicting changes in ocean salinity under climate change, particularly in dynamic regions such as the Hawaiian Islands, where mesoscale eddies significantly modulate water mass properties. This study investigates the three-dimensional characteristics of SEs and their responses to mesoscale eddies using mooring observations and sea surface salinity data. We find that high salinity extremes (HSEs) generally occur more frequently than low salinity extremes (LSEs) in the study region, though LSEs exhibit greater duration and intensity. Mesoscale eddies modulate SEs significantly—anticyclonic eddies (AEs) enhance LSEs, whereas cyclonic eddies (CEs) promote HSEs in the upper layer. This relationship reverses in the deeper layer, with AEs favoring HSEs and CEs enhancing LSEs. These opposing effects are driven by a vertical displacement of the subsurface salinity maximum layer, where CEs lift high-salinity subsurface water to the upper ocean via upwelling, creating HSEs in the upper layer and LSEs in the deeper layer, while AEs subduct high-salinity water downward, reducing upper-layer salinity (LSEs) but increasing deeper-layer salinity (HSEs) via downwelling. Spatially, CEs exhibit a single-core high-salinity anomaly, displaced westward by 0.3 times of the eddy radius from the eddy center, with HSEs peaking in frequency and intensity near the core. In contrast, AEs display a dipole salinity anomaly (low northwest/high southeast), aligning with LSE frequency distribution, while HSEs show an inverse pattern. Mooring data further reveal that AE-LSE co-occurrence is highest within 1.2 times of the eddy radius, whereas CE-HSE probability declines with eddy intensity. Notably, AE-HSE and CE-LSE probabilities, though initially weaker, surpass AE-LSE and CE-HSE at certain depths, underlining the complexity of depth-dependent eddy modulation. These findings may advance understanding of ocean salinity dynamics and provide insights into how mesoscale processes modulate extreme events, with implications for marine biogeochemistry and climate modeling. Full article
Show Figures

Figure 1

14 pages, 1622 KB  
Article
Vertical Differentiation Characteristics and Environmental Regulatory Mechanisms of Microbial Biomass Carbon and Nitrogen in Coastal Wetland Sediments from the Northern Yellow Sea
by Yue Zhang, Haiting Xu and Jian Zhou
Sustainability 2025, 17(17), 8082; https://doi.org/10.3390/su17178082 - 8 Sep 2025
Viewed by 572
Abstract
Coastal saltmarsh wetlands play a pivotal role in global carbon and nitrogen cycling, yet the vertical distribution characteristics of sediment carbon and nitrogen and their regulatory mechanisms remain uncertain. Microbial biomass carbon (MBC) and nitrogen (MBN) serve as critical [...] Read more.
Coastal saltmarsh wetlands play a pivotal role in global carbon and nitrogen cycling, yet the vertical distribution characteristics of sediment carbon and nitrogen and their regulatory mechanisms remain uncertain. Microbial biomass carbon (MBC) and nitrogen (MBN) serve as critical indicators of ecosystem functioning, representing the most labile organic fractions that directly mediate biogeochemical processes in coastal wetlands. We investigated Yalu River Estuary coastal wetlands in the northern Yellow Sea. Sediment cores (0–100 cm depth) were collected and stratified into 20-cm intervals to analyse physicochemical properties and carbon–nitrogen indicators, enabling quantitative assessment of vertical distribution patterns and environmental drivers. The key findings are as follows: (1) Both microbial biomass carbon (MBC) and nitrogen (MBN) exhibited significant depth-dependent decreases, with MBC decreasing sharply by 45% (90.42 to 60.06 mg/kg) in the 40–60 cm layer and MBN decreasing by 50% (7.50 to 3.72 mg/kg) in the 80–100 cm layer. Total carbon (TC) peaked in the 40–60 cm layer (6.49 g/kg), whereas total nitrogen (TN) continuously decreased (from 0.51 (surface) to 0.24 g/kg (bottom)). (2) Depth-specific controls were identified: Surface layers (0–20 cm) were governed by tidal scouring (causing TC loss) and pH buffering; subsurface layers (20–40 cm) were constrained by moisture content (MC) and bulk density (BD), with partial mitigation by labile TC; and deeper layers (40–100 cm) were dominated by chemical factors exhibiting TN limitation and high electrical conductivity (EC). Understanding these microbial biomass dynamics is particularly crucial for predicting how coastal wetlands will respond to climate change and anthropogenic disturbances, as MBC and MBN serve as sensitive early-warning indicators of ecosystem health. Notably, MBC and MBN in northern Yellow Sea coastal wetlands are regulated primarily by physical—biological interactions in surface sediments and chemical stressors in deeper layers, providing crucial theoretical foundations for precise wetland carbon sink assessment and sustainable ecosystem management. Full article
Show Figures

Figure 1

25 pages, 13726 KB  
Article
Comprehensive Investigation of Coverage Rates of Shot Peening on the Tribological Properties of 6061-T6 Alloy
by Orçun Canbulat and Fatih Bozkurt
Metals 2025, 15(9), 964; https://doi.org/10.3390/met15090964 - 29 Aug 2025
Cited by 1 | Viewed by 603
Abstract
In the search for lightweight and sustainable engineering approaches, enhancing the surface wear resistance of structural materials, such as 6061-T6 aluminum alloy, has become increasingly important. This study investigates the effect of coverage rates on the tribological properties of shot-peened 6061-T6 alloy, aiming [...] Read more.
In the search for lightweight and sustainable engineering approaches, enhancing the surface wear resistance of structural materials, such as 6061-T6 aluminum alloy, has become increasingly important. This study investigates the effect of coverage rates on the tribological properties of shot-peened 6061-T6 alloy, aiming to improve its usage in industries where weight reduction and durability are important, such as aerospace, automotive, railway, and renewable energy systems. A shot peening process was applied at four different coverage rates of 100%, 200%, 500%, and 1500% for comprehensive evaluation. A series of experimental analyses were conducted, including microhardness tests, ball-on-plate wear tests, residual stress measurements, and surface roughness evaluations. Furthermore, microstructural analysis was performed to investigate subsurface deformation, and scanning electron microscopy (SEM) was carried out to identify the wear mechanisms of the worn surfaces in detail. The results demonstrated a clear trend of gradual improvement in wear resistance with increasing shot peen coverage. The sample treated at a 1500% coverage rate exhibited 1.34 times higher hardness and 19 times higher wear resistance compared to the untreated sample. This study highlights that shot peening is an effective and feasible surface engineering method for enhancing the wear performance of 6061-T6 alloy. The findings offer valuable contributions for the development of lightweight and wear-resistant components considering sustainable material design. Full article
Show Figures

Figure 1

33 pages, 26241 KB  
Article
Evaluation of Hydrocarbon Entrapment Linked to Hydrothermal Fluids and Mapping the Spatial Distribution of Petroleum Systems in the Cretaceous Formation: Implications for the Advanced Exploration and Development of Petroleum Systems in the Kurdistan Region, Iraq
by Zana Muhammad, Namam Salih and Alain Préat
Minerals 2025, 15(9), 908; https://doi.org/10.3390/min15090908 - 27 Aug 2025
Viewed by 648
Abstract
This study utilizes high-resolution X-ray computed tomography (CT) to evaluate the reservoir characterization in heterogenous carbonate rocks. These rocks show a diagenetic alteration that influences the reservoir quality in the Cretaceous Qamchuqa–Bekhme formations in outcrop and subsurface sections (Gali-Bekhal, Bekhme, and Taq Taq [...] Read more.
This study utilizes high-resolution X-ray computed tomography (CT) to evaluate the reservoir characterization in heterogenous carbonate rocks. These rocks show a diagenetic alteration that influences the reservoir quality in the Cretaceous Qamchuqa–Bekhme formations in outcrop and subsurface sections (Gali-Bekhal, Bekhme, and Taq Taq oilfields, NE Iraq). The scanning of fifty-one directional line analyses was conducted on three facies: marine, early diagenetic (non-hydrothermal), and late diagenetic (hydrothermal dolomitization, or HTD). The facies were analyzed from thousands of micro-spot analyses (up to 5250) and computed tomographic numbers (CTNs) across vertical, horizontal, and inclined directions. The surface (outcrop) marine facies exhibited CTNs ranging from 2578 to 2982 Hounsfield Units (HUs) (Av. 2740 HU), with very low average porosity (1.20%) and permeability (0.14 mD) values, while subsurface marine facies showed lower CTNs (1446–2556 HU, Av. 2360 HU) and higher porosity (Av. 8.40%) and permeability (Av. 1.02 mD) compared to the surface samples. Subsurface marine facies revealed higher porosity, lower density, and considerably enhanced conditions for hydrocarbon storage. The CT measurements and petrophysical properties in early diagenesis highlight a considerable porous system in the surface compared to the one in subsurface settings, significantly controlling the quality of the reservoir storage. The late diagenetic scanning values coincide with a saddle dolomite formation formed under high temperature conditions and intensive rock–fluid interactions. These dolomites are related to a hot fluid and are associated with intensive fracturing, vuggy porosities, and zebra-like textures. These textures are more pronounced in the surface than the subsurface settings. A surface evaluation showed a wide CTN range, accompanied by an average porosity of up to 15.47% and permeability of 301.27 mD, while subsurface facies exhibited a significant depletion in the CTN (<500 HU), with an average porosity of about 14.05% and permeability of 91.56 mD. The petrophysical characteristics of the reservoir associated with late-HT dolomitization (subsurface setting) show two populations. The first one exhibited CTN values between 1931 and 2586 HU (Av. 2341 HU), with porosity ranging from 3.10 to 18.43% (Av. 8.84%) and permeability from 0.08 to 2.39 mD (Av. 0.31 mD). The second one recorded a considerable range of CTNs from 457 to 2446 HU (Av. 1823 HU), with porosity from 6.38 to 52.92% (Av. 20.97%) and permeability from 0.16 to 5462.62 mD (Av. 223.11 mD). High temperatures significantly altered the carbonate rock’s properties, with partial/complete occlusion of the porous vuggy and fractured networks, enhancing or reducing the reservoir quality and its storage. In summary, the variations in the CTN across both surface and subsurface facies provide new insight into reservoir heterogeneity and characterization, which is a fundamental factor for understanding the potential of hydrocarbon storage within various geological settings. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

20 pages, 3111 KB  
Article
Study on Influencing Factors of Strength of Plastic Concrete Vertical Cutoff Wall
by Guolong Jin, Jingrui Liang, Lei Zhang, Haoqing Xu, Haoran Li and Shengwei Wang
Buildings 2025, 15(17), 2978; https://doi.org/10.3390/buildings15172978 - 22 Aug 2025
Viewed by 592
Abstract
Vertical containment barriers—critical for intercepting contaminant transport in subsurface environments—demand materials that balance low permeability with adequate strength, particularly in stress-sensitive mountainous terrain. Plastic concrete, as a key barrier material, provides essential properties, including exceptional stress relaxation, to suppress fracture development under compressive [...] Read more.
Vertical containment barriers—critical for intercepting contaminant transport in subsurface environments—demand materials that balance low permeability with adequate strength, particularly in stress-sensitive mountainous terrain. Plastic concrete, as a key barrier material, provides essential properties, including exceptional stress relaxation, to suppress fracture development under compressive loads, coupled with effective seepage control. This study examines its strength performance through experiments on varied mixing techniques (dry, wet, and 24 h hydration), unconfined compression under uncontaminated conditions (water–binder ratios: 1.3–2.1, bentonite content: 20–30%, ages: 14–90 days), barium ion immersion (1–5 g/L, pH 7–11), and dry–wet cycling (10 cycles). Key findings demonstrate that (1) the strength of samples prepared by dry mixing and wet mixing is lower than that of samples mixed for 24 h, and all specimens met the target design strength following 28 days of curing; (2) under pollution-free conditions, strength decreases with higher water–binder ratios and bentonite content, showing a linear relationship. Strength increases exponentially with age; (3) in the presence of Ba2+, strength gradually decreases as Ba2+ concentration and pH increase, particularly notably at 3 g/L Ba2+ and pH 11. Strength increases with age, following a power relationship; (4) under dry–wet cycles, ion concentration has minimal impact on sample quality and surface state but significantly affects strength, with higher ion concentrations leading to greater strength loss and susceptibility to cycles; (5) during solution immersion, higher ion concentrations and pHs result in greater strength loss and worse erosion resistance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 4468 KB  
Article
Enhancing Fatigue Lifetime of Secondary AlZn10Si8Mg Alloys Through Shot Peening: Influence of Iron Content and Surface Defects
by Denisa Straková, Zuzana Šurdová, Eva Tillová, Lenka Kuchariková, Martin Mikolajčík, Denisa Závodská and Mario Guagliano
Materials 2025, 18(16), 3901; https://doi.org/10.3390/ma18163901 - 20 Aug 2025
Viewed by 3926
Abstract
The rising demand for aluminium and environmental concerns highlight the need for a circular economy using recycled alloys. This study examines the effect of shot peening on the high-cycle fatigue life of secondary AlZn10Si8Mg alloys with different iron contents: Alloy A (0.14 wt.% [...] Read more.
The rising demand for aluminium and environmental concerns highlight the need for a circular economy using recycled alloys. This study examines the effect of shot peening on the high-cycle fatigue life of secondary AlZn10Si8Mg alloys with different iron contents: Alloy A (0.14 wt.% Fe) and Alloy B (0.56 wt.% Fe). Although both alloys showed similar tensile properties, Alloy B had higher porosity and finer β-Al5FeSi intermetallics. Shot peening was applied at 100% and 1000% coverage to evaluate changes in surface roughness, porosity, residual stresses, and fatigue performance. The treatment significantly reduced surface-connected porosity via plastic deformation, enhancing fatigue life despite increased roughness. Fatigue tests showed a 21% increase in fatigue limit for Alloy A and a 6% gain for Alloy B at higher coverage. Fractographic analysis revealed that 95% of fatigue cracks initiated at surface pores. Residual stress measurements confirmed compressive stresses were limited to the near-surface layer, with minimal influence on subsurface crack propagation. Overall, shot peening proves to be an effective method for improving fatigue resistance in recycled aluminium alloys, even in alloys with elevated iron content, reinforcing their potential for structural applications under cyclic loading. Full article
(This article belongs to the Special Issue Fatigue, Damage and Fracture of Alloys)
Show Figures

Graphical abstract

23 pages, 3133 KB  
Review
Recent Advances in the Characterization of Subsurface Damage in Optical Materials
by Liwei Ou, Hongtu He, Fang Wang, Laixi Sun and Jiaxin Yu
Materials 2025, 18(16), 3883; https://doi.org/10.3390/ma18163883 - 19 Aug 2025
Viewed by 819
Abstract
Subsurface damage (SSD) in optical materials is easily induced during ultra-precision processes and plays a critical role in the surface performance and lifetime of optical materials. Without proper characterization of SSD in optical materials, it is difficult to fully understand its properties across [...] Read more.
Subsurface damage (SSD) in optical materials is easily induced during ultra-precision processes and plays a critical role in the surface performance and lifetime of optical materials. Without proper characterization of SSD in optical materials, it is difficult to fully understand its properties across various manufacturing processes and thus find effective ways to eliminate it. Despite the rapid development of SSD characterization, many unique features, principles, and applications of SSD characterization in optical materials are not known to this community. This review systematically reviewed the recent literature on characterization methods of SSD in optical materials in both destructive and non-destructive ways. The major drawbacks and limitations of all the characterization methods are presented in this paper, and future trends in the characterization of SSD in optical materials are also proposed. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

Back to TopTop